
Poster: Securing Device Inputs for Smartphones Using
Hypervisor Based Approach

Xin Zhang, Yongshu Bai, Pengzhan Hao, and Yifan Zhang
Department of Computer Science

SUNY Binghamton
Binghamton, NY

{xzhang99, ybai4, phao3, zhangy}@binghamton.edu

Introduction. Smartphone device inputs, such as inputs
from touchscreen, sensors, and GPS, carry sensitive user in-
formation, but are vulnerable to passive and active attacks.
In one category of the attacks, attackers can passively infer
or actively steal sensitive user info from smartphone device
inputs. In another category, attackers can tamper with or
forge smartphone device inputs to disrupt services relying
on those input data or even gain control of the smartphone.
We present our ongoing design and implementation of SDIF,
a Secure Device Input Framework for smartphones.

System architecture. Figure 1 shows the architecture
of SDIF on an Android smartphone. The core components
of SDIF are a small and dedicated bare-metal hypervisor built

using ARM hardware virtualization support and a user-space

sandbox framework, which collectively ensure SDIF’s support
for unmodified OSes and apps. SDIF secures smartphone de-
vice inputs with two novel designs:
• First, SDIF enables a secure path between smartphone in-

put devices and the protected applications, allowing device
input streams to be securely transferred between the two
endpoints. On the device endpoint, SDIF relies on the ded-
icated bare-metal hypervisor to achieve secure device I/O
management. By trapping and inspecting sensitive activi-
ties, the SDIF hypervisor can monitor the I/O operations in
the system without modifying any code of the OS. On the
application endpoint, SDIF relies on the user-space sandbox
framework to provide necessary utilities for the applications
to communicate with the input devices via the secure path.
To connect the two endpoints, a communication protocol
specifying how device inputs are transmitted between the
endpoints via the secure path is needed. We are currently
exploring three different communication protocol designs on
two different secure paths, aiming to ensure that no attacker
can infer or steal user information from device inputs when
the user is interacting with the protected applications.
• Second, to ensure that the input devices are properly con-
figured when device drivers read data from the devices, and
that device drivers themselves will not tampered with the
data before handing them over to the OS, SDIF ports the de-

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

MobiSys’17 June 19-23, 2017, Niagara Falls, NY, USA

c© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4928-4/17/06.

DOI: http://dx.doi.org/10.1145/3081333.3089313

Sandbox process

App

Hypervsior (Hyp mode)

Linux kernel (Kernel mode)

Android framework 
(User mode)

Shim Hypercall
interface

Sandbox process

App

Shim Hypercall
interface

…

Touchscreen Gyro
Hardware

App

Accelerometer…

Unsecure path Secure path

Device drivers

…

SDIF processing

Figure 1: SDIF overview (shaded parts are the compo-

nents of SDIF).

vice driver functionalities to the hypervisor, which provides
a trusted execution environment. However, this brings a no-
table challenge, which is the need of minimizing the hyper-
visor’s code size (and hence minimizing its TCB). SDIF ad-
dresses this challenge by porting only the driver functional-
ities that are critical for trusted device data reading, which
is a small part in driver’s code, into the hypervisor, such
that the original unmodified device driver and the hyper-
visor can collectively achieve trusted device data reading.
The above two designs collectively guarantee that the de-
vice inputs that a protected application receives have not
been tampered with.

Ongoing implementation. We are in the active process
of implementing SDIF system on real hardware, and plan
to validate the our designs by performing real-world exper-
iments on the prototype system. Due to the easiness of
flashing and running customized bootloaders, we use ARM
development boards featuring commercial smartphone SoCs
as our prototype and experiment platforms. Our initial plat-
form consists of an ODROID XU3 development board, a
9 inch 10-points capacitive multi touchscreen, and a WiFi
module. The ODROID XU3 features Samsung Exynos 5422
SoC, which is currently used on many popular smartphones
such as the Samsung Galaxy S5. We also have a plan to
port the implementation to and validate it on ARMv8 ar-
chitecture.

Acknowledgments. This work is being supported in part
by NSF Award #1566375.


