
SphericRTC: A System for Content-Adaptive Real-Time
360-Degree Video Communication

Shuoqian Wang
SUNY Binghamton

swang130@binghamton.edu

Xiaoyang Zhang
SUNY Binghamton

xzhan211@binghamton.edu

Mengbai Xiao
The Ohio State University

xiao.736@osu.edu

Kenneth Chiu
SUNY Binghamton

kchiu@binghamton.edu

Yao Liu
SUNY Binghamton

yaoliu@binghamton.edu

ABSTRACT
We present the SphericRTC system for real-time 360-degree video
communication. 360-degree video allows the viewer to observe the
environment in any direction from the camera location. This more-
immersive streaming experience allows users to more-e�ciently
exchange information and can be bene�cial in the real-time setting.
Our system applies a novel approach to select representations of
360-degree frames to allow e�cient, content-adaptive delivery. The
system performs joint content and bitrate adaptation in real-time
by o�oading expensive transformation operations to the GPU via
CUDA. The system demonstrates that the multiple sub-components
� viewport feedback, representation selection, and joint content
and bitrate adaptation � can be e�ectively integrated within a
single framework. Compared to a baseline implementation, views
in SphericRTC have consistently higher visual quality. The median
Viewport-PSNR of such views is 2.25 dB higher than views in the
baseline system.
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1 INTRODUCTION
360-degree videos allow users to navigate recorded scenes in three
degrees of freedom (3-DoF). The 360-degree video medium is not
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only useful for delivering pre-recorded content, but can also allow
users to more-naturally experience real-time events, e.g., telecon-
ferencing, telepresence, and human-controlled robotic navigation.

A core challenge in 360-degree video delivery involves deliver-
ing the frames required for immersive experience in a bandwidth-
e�cient way. Current implementations can su�er from both low
quality user-views and high bandwidth consumption. Both draw-
backs can be mitigated by reducing the number of transmitted, but
unviewed, pixels on 360-degree frames.

A wide range of approaches have been proposed to address
wasted bandwidth in the 360-degree video streaming setting. Tiling
approaches, e.g., [23, 38], transmit only a subset of the spatial por-
tions of the omnidirectional frame that will be observed by users.
Oriented projections [6, 8, 50] attempt to transmit representations
with higher pixel densities in regions likely to be viewed by users.
Both tiling and oriented projection approaches require accurate
predictions of the users' view-orientation to operate e�ectively. In
the on-demand streaming setting, many such prediction approaches
have been proposed [23, 36, 38, 44, 45].

Bandwidth-e�cient operation in the real-time 360-degree video
communication setting is signi�cantly more challenging than in
the on-demand streaming settings. In the real-time setting, much
less time is available to convert collected 360-degree segments
to more e�cient tile-based or oriented projection segments. In
addition, given that new content is generated on-the-�y, traces of
view orientations from many users over a single sequence of video
frames cannot be used to predict the current user's view.

This paper describes a practical end-to-end real-time 360-degree
video communication system, which we call SphericRTC. Spheri-
cRTC applies a combination of computational tools and algorithms
to achieve bandwidth-e�cient streaming in the real-time setting.
SphericRTC achieves bandwidth e�ciency and improves view qual-
ity by processing raw segments into content-adaptive oriented
projections. To perform this adaptation step in real-time, Spheri-
cRTC o�oads these transformations to the GPU. Speci�cally, this
work makes the following contributions:
� We design an oriented projection approach toward 360-degree

content adaptation suitable for real-time processing. This ap-
proach includes a novel strategy for selecting the best oriented
projection parameters for a given real-time adaptation bitrate.

� We show that, in our system, the simple approach of using the
most-recent reported user orientations is e�ective for generating
frame representations for high-quality views. This approach is
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e�ective due to the low latency between reporting user's view
orientation and consumption of the generated frames.

� We implement a CUDA library to create adaptive representa-
tions in real-time and integrate this library into our SphericRTC
framework.

� Our complete system integrates viewport feedback, adaptation
and transformation components. This integration demonstrates
that managing information �ow from video receiver to the video
collector and between prediction and adaption components are
possible in a practical system.

� Results from extensive experiments show that SphericRTC con-
sistently outperforms a baseline system: The median Viewport-
PSNR of views rendered in SphericRTC is 2.25 dB higher than
the views rendered in the baseline system.

2 BACKGROUND
2.1 360-Degree Video
360-degree videos present users with omnidirectional content, al-
lowing them to freely explore all orientations emanating from the
camera position. To e�ectively transmit 360-degree videos, the om-
nidirectional content is �rst projected onto a 2D plane. While many
projection schemes exist, theequirectangular projection [11] is
the one that is the most simple and widely used. Transmitting 360-
degree video streams typically include full omnidirectional frames.
However, although all pixels in the omnidirectional frame would be
transmitted, only the portion in the �eld of view (FoV) is rendered
and displayed to the viewer. This results in a large number of wasted
(i.e., unviewed) pixels. 360-degree video viewing devices' FoVs are
typically between 90°and 120°. To illustrate the amount of wasted
bandwidth, rendering a 100°� 100°FoV requires only approximately
15% of pixels on an equirectangular frame. A direct consequence
of wasted bandwidth is bad visual quality of the rendered views.
For example, suppose the available network bandwidth can sup-
port streaming of an equirectangular-projected video of 1080p, the
e�ective resolution of rendered views is only equivalent to 480p or
even 360p.

To address the bandwidth ine�ciency, a number of solutions
have been proposed to reduce the wasted data in the on-demand and
live video streaming settings. These approaches include tiling [21�
23, 28, 33, 35, 37, 38, 43, 44, 49] and oriented projections [6, 8, 50].
The high-level idea is to prepare representations of the 360-degree
videos such that it is possible to only transmit data within predicted
viewport in high quality.

2.2 Real-Time Video Communication
Real-time video communication is widely used for online video
chatting and video conferencing. Services such as Apple's FaceTime,
Google Hangouts, and Zoom allow video streams to be transmitted
with hundreds of milliseconds round-trip time [46, 48]. Developers
can also leverage the open-source WebRTC framework [13] to add
real-time video communication capabilities to their applications on
various platforms.

Real-time video communication, however, should be di�eren-
tiated from the term �live video streaming�. In �live streaming�,
broadcaster-to-viewer latency is on the order of tens of seconds [31,

47]. For example, Liu et al. found that the median broadcaster-
to-viewer latency of 360-degree live streaming is 37.1 seconds on
YouTube and 18.7 seconds on Facebook [31]. With less stringent
latency requirements, live video streaming can take advantage of
per-segment encoding (batching a few seconds of video before en-
coding) and reliable TCP-based transmission. On the other hand,
for real-time video communication, captured video frames should
be encoded and transmitted as soon as possible without batching.

A key challenge with real-time video communication is the ultra-
low latency required by interactive video, which helps create the
illusion that the video receiver is located in the same place as the
video collector. To do so, collected video frames are encoded and
then transmitted via the real-time transport protocol (RTP) [39]
typically over the UDP transport layer protocol.

2.3 WebRTC
WebRTC is an open-source framework for real-time video commu-
nication [13]. When transmitting videos over WebRTC, the video
collector encodes frames in RTP packets. The video receiver records
information about every RTP packet it receives and transmits the
information in a real-time transport control protocol (RTCP) mes-
sage (Transport-wide Feedback) back to the video collector. The
bandwidth controller at the video collector calculates metrics
such as inter-packet delay variation, queuing delay, and packet
loss. These metrics are then used to compute thetarget sending
bitrate for transmitting video content to the video receiver [3, 5].
The frame encoder then uses this target sending bitrate to adjust
the quantization parameter (qp). Thisqp parameter is further
used by the bandwidth controller. The bandwidth controller adjusts
target resolution of captured frames so that transmitted frames
more-closely match the target sending bitrate. To dynamically adapt
the video's sending bitrate based on the network conditions, the
bandwidth controller adjusts the <estimated bandwidth/target send-
ing bitrate, target resolution> of transmitted video streams based
on network statistics collected from the video receiver. Separate
from the main audio/video stream, WebRTC can also be used to set
up a data channel using the stream control transmission protocol
(SCTP) [4].

Vanilla WebRTC does not provide special support for 360-degree
videos. To provide real-time communication, 360-degree videos
have to be treated the same way as traditional 2D videos. For exam-
ple, consider a 360-degree camera connected to a video collector
computer via a wired connection, the camera outputs video frames
in the equirectangular projection. These equirectangular-projected
frames will be encoded and transmitted by WebRTC via the secure
real-time transport protocol (SRTP) [2]. During transmission, target
sending bitrate of the video collector/sender will be adapted based
on the delay and packet loss feedback from the receiver [17].

A main drawback with this solution, however, is that a large
percentage of pixels on the equirectangular-projected frame is
not viewed, causing wasted bandwidth and low quality of ren-
dered views. In this paper, we propose SphericRTC that achieves
bandwidth e�ciency and improves view quality by using content-
adaptive oriented projections. We compare the performance of
SphericRTC with the vanilla WebRTC baseline in evaluation.



3 DESIGN
3.1 Overview of SphericRTC
The core idea in SphericRTC's design involves transforming the
video content in a way that reduces unviewed pixels. In the real-time
setting, this transformation must take place within a tolerable frame
delivery threshold. SphericRTC performs this content adaptation
using i) the most recently reported view-orientation and ii) a bitrate
adaptation decision derived from network statistics.

Figure 1 provides an overview of SphericRTC components. Inter-
nally, SphericRTC is built on top of WebRTC. With vanilla WebRTC,
the video collector transmits video stream to the video receiver,
and the video receiver reports network statistics back to the video
collector to perform bitrate adaptation. To enable content adapta-
tion, in SphericRTC, the video receiver reports back the additional
�Viewport Feedback �, i.e., the user's view orientations while con-
suming the 360-degree video stream, to the video collector.

In the �Representation Selection � component, content-bitrate
adaptation decisions are made based on collected network statistics
and users' viewing data. For content adaptation, SphericRTC uses
oriented projections for representing 360-degree video frames.
Oriented projections devote more pixels in the projected frame to
areas on the sphere close to a target pixel-concentration orientation.
Decisions made by the �Representation Selection� component are
forwarded to the �Frame Processing� component, which spatially
transforms the camera-captured frame into representations with
di�erent pixel-concentration areas and frame resolutions.

In the remainder of this section, we �rst discuss how the �Rep-
resentation Selection� component makes adaptation decisions by
choosing appropriate oriented projection parameters. We then dis-
cuss both how to synchronize selected per-frame projection param-
eters with the video receiver as well as a variety of other design
considerations.

3.2 Analysis of Oriented Projections
An �oriented projection� uses more pixels on the video frame to
represent a selected target pixel-concentration area than other areas
in the frame [50]. After transformation to an oriented projection,
the frame will appear as if it �magni�es� the content near the
pixel-concentration direction. When the user's view is near this
target orientation, views rendered from oriented frames will be
of higher quality compared to views from a standard projection
of the same resolution. However, views farther away from the
target orientation can be in lower quality compared to views from
a comparable standard projection. We use theo�set spherical
projection to create oriented projections in SphericRTC.

3.2.1 O�set Spherical Projection.The o�set spherical projection
can be parameterized by a single o�set vector®d, k®dk 2 »0;1º. This
o�set vector describes the oriented projection's pixel-concentration
direction. An o�set projection can be created starting with pixels
from a 360-degree video frame are mapped to the surface of a
unit sphere. Each pixel can be represented by a unit vector®p (i.e.,
k®pk = 1) from the center of the sphere to the pixel position. All
pixels on the sphere are �o�set� by®d by applying the following

transformation: ®p0 =
®p� ®d

k®p� ®d k
, creating a new (normalized) vector,

®p0. Figure 2 illustrates how the o�set vector®d is applied to pixels
on a sphere.

As pixels are re-projected to new locations on the sphere, we
obtain a new sphere. We can then project pixels on the new sphere
to a 2D plane, e.g., using the equirectangular projection, for 2D video
encoding. Figure 3(a) shows an original equirectangular-projected
frame with no o�set applied. Figures 3(b), 3(c), and 3(d) show the
resulting o�set equirectangular projections after applying o�set
vectors with di�erent magnitudes.

3.2.2 Magnification Analysis.By applying the o�set, content on
the sphere near the o�set direction will be magni�ed. In Figure
2, red-tinted pixels represent magni�ed areas of the sphere while
content in the blue-tinted pixels indicate areas of the sphere that
were reduced to occupy smaller areas.

If we assume that the angle between a pixel vector®p on the
sphere and the o�set vector®d is � , then after applying the o�set,
the angle between the new vector®p0and the o�set vector becomes:

f ¹� º = arctan
sin�

�k ®dk + cos�
(1)

Consider a small FoV of 2� � , the magni�ed FoV will become
2� � 0 = 2� ¹f ¹� + � º � f ¹� ºº. We can thus calculate the magnifying
value as:

� 0

�
=

f ¹� + � º � f ¹� º
f ¹� º � f ¹0º

(2)

Per-pixel magni�cation can be thus approached by (3), which
can be calculated as the derivative off ¹� º as (4):

lim
� ! 0

f ¹� + � º � f ¹� º
�

(3)

g¹� º = f 0¹� º =

cos�
�k ®d k+cos�

+ ¹ sin�
�k ®d k+cos�

º2

1+ ¹ sin�
�k ®d k+cos�

º2
(4)

In this function, the greatest value is at� = 0, i.e., when the pixel
is in the same direction as the o�set vector®d, and the maximum
magni�cation can be calculated as:

g¹0º =
1

�k ®dk + 1
(5)

3.3 Joint Content and Bitrate Adaptation
Using o�set projections for content adaptation requires us to de-
termine the best o�set vector,®d, for transforming the 360-degree
content. Furthermore, we can represent®d as the product of a unit
vector,®o(the o�set direction), pointing from the center of the sphere
to a point on the spherical surface, and a scalar,m 2 »0; 1º (the o�set
magnitude), representing the magnitude of the o�set vector. That
is, ®d = m � ®o. The content adaptation task then becomes two tasks:
selection of o�set direction and selection of o�set magnitude.

3.3.1 O�set Direction Determination.Content magni�cation is
maximal in the pixel-concentration direction pointed by the o�set
vector. Therefore, to maximize the visual quality of views rendered
at the video receiver's side, theo�set directionshould be selected to
match the viewer's future view orientation. Typically, a prediction
algorithm would be used to predict the future orientation. Here,
real-time video communication allows us to take advantage of the



�9�L�G�H�R���5�H�F�H�L�Y�H�U

�1�H�W�Z�R�U�N���)�H�H�G�E�D�F�N

�9�L�H�Z�S�R�U�W���)�H�H�G�E�D�F�N

�����'�R�)���3�O�D�\�E�D�F�N

�9�L�G�H�R���&�R�O�O�H�F�W�R�U

�5�H�S�U�H�V�H�Q�W�D�W�L�R�Q���6�H�O�H�F�W�L�R�Q

�)�U�D�P�H��
�3�U�R�F�H�V�V�L�Q�J

�(�Q�F�R�G�L�Q�J �9�L�G�H�R���6�W�U�H�D�P

�9�L�H�Z�S�R�U�W���'�D�W�D

�1�H�W�Z�R�U�N���'�D�W�D

�&�D�S�W�X�U�H�G��
�)�U�D�P�H

Figure 1: High-level design of SphericRTC. The grey-shaded boxes show components added
or modi�ed by SphericRTC from the original WebRTC implementation.
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Figure 2: Illustration of the O�-
set Spherical Projection

(a) Original Equirectangular Frame� (b) O�set Equirectangulark ®d k = 0:5

(c) O�set Equirectangulark ®d k = 0:625 (d) O�set Equirectangulark ®d k = 0:75

Figure 3: By applying o�sets with di�erent magnitudes, con-
tents near the frame center are magni�ed to di�erent levels.
*Photo by Timothy Old�eld on Unsplash: https://unsplash
.com/photos/luufnHoChRU.

ultra-low end-to-end latency. Given that the view orientation will
not change too drastically during a small time period, we propose a
simple approach that predicts view orientation of a future frame as
the most recent received view orientation from the video receiver.
This predicted view orientation is then used as the o�set direction
for adapting the frame content.

3.3.2 O�set Magnitude Determination.To select the besto�set
magnitude, we have to take into account the bitrate adaptation de-
cision made by the WebRTC bandwidth controller. The bandwidth
controller adjusts thetarget resolutionaccording to the quantization
parameterqp returned from encoder, andqp is adjusted based on
the content to be encoded and thetarget bitrateselected by the
bandwidth controller. Our content adaptation selects an appropri-
ate o�set magnitude whenever the target resolution changes. This
o�set magnitude is chosen such that the pixel-concentration area's
pixel density matches the pixel density of the camera-supplied
frame. That is, our approach �xes the pixel density in the concen-
tration area and degrades densities away from the concentration
area if the bandwidth controller changes the target resolution.

We adaptively select o�set magnitude based on the following
quantities: (1) the resolution of the captured frame, i.e., the frame
provided by the 360-degree camera, and (2) the target resolution
selected by the bandwidth controller. If the estimated bandwidth
allows frames in the original resolution to be transmitted, then

no content magni�cation is permitted, and the o�set magnitude
should be set to 0. We thus use the following equation to determine
the o�set magnitude:

m = k®dk = 1 �
1

g¹0º
= 1 � max¹

w0

w
;
h0

h
º (6)

Here,w0andh0represent the width and height of the target resolu-
tion selected by WebRTC's bandwidth controller.w andh represent
the width and height of the original resolution of frame provided
by the video collector's 360-degree camera. Note that this equation
assumes that the original, camera-supplied frame and the adapted
frame use the same underlying base spherical projection, e.g., the
equirectangular projection. If not,w andh need to be adjusted
accordingly.

To summarize, the �Representation Selection� component in
SphericRTC makes adaptation decisions based on both the pre-
dicted view orientation (for using as the o�set direction) and the
target resolution selected by WebRTC's bandwidth controller (for
selecting the o�set magnitude). This dependence of o�set magni-
tude on target bitrate is a form of joint adaptation.

3.4 Transmitting O�set Direction to the
Receiver

As the video collector makes decisions regarding the bitrate adap-
tation and the content adaptation, the video receiver must also
understand how to correctly render received frames in the o�set
projections. While the o�set magnitude can be inferred from the
received frame's resolution, one must know the o�set direction
used for creating the o�set projection in order to correctly render
views at the video receiver side.

Unlike on-demand and live streaming where video receivers
request video segments that are pre-encoded and can contain one or
a few seconds of video content, in real-time communication, frames
are encoded and sent frame-by-frame to the receiver. As a result,
out-of-band transmission of metadata, e.g., the media presentation
description (MPD) document used in on-demand and live streaming,
is not feasible in real-time scenario.

Instead, we choose an in-band solution, sending the o�set direc-
tion information with each frame. In this way, the video receiver
can extract required information needed for view rendering from
the received frame directly. We will discuss our implementation
leveraging RTP header extension in Section 4.3.
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3.5 Other Considerations
Once the �Representation Selection� component has determined
the parameters of the o�set projection to encode, the �Frame Pro-
cessing� component will apply the transformation to the frame
captured from the 360-degree camera accordingly. SphericRTC uses
the equirectangular projection as the underlying mapping of spher-
ical pixels to the 2D frame. This design choice is based on the
following reasons:

First, many 360-degree cameras natively output the equirectan-
gular frames. Thus, we can represent the original, camera-supplied
frame as a special case of the o�set equirectangular projection, i.e.,
with the o�set magnitude being 0. In this way, no frame transforma-
tion is needed if the network bandwidth is su�cient for transmitting
the frame in its camera-supplied resolution.

Second, if we use other spherical projections such as the cubemap
projection, the projected content on the 2D rectangular plane may
no longer be continuous. Content discontinuity may negatively
a�ect the quality of encoded pixels under a same target encoding
bitrate. For example, the cubemap projection projects pixels on a
sphere onto six faces of a cube. However, even with the �baseball
layout� [20], the boundary between top and bottom portions of the
projection is not continuous. Discontinuous content makes it more
di�cult for the encoder to �nd similar blocks within the frame to
copy from, and thus requires more bits to encode to a same quality.

4 IMPLEMENTATION
We implement SphericRTC based on the open-source framework,
WebRTC. Figure 4 shows an overview of modules added or modi�ed
in the SphericRTC implementation. Three new modules are added:
(1) the �View Orientation Transmitter� module at the video receiver
side provides viewport data feedback to the video collector, (2) the
�O�set Direction Determination� module chooses the best o�set
direction based on feedback from the video receiver, and (3) the
�FastTransform360� library performs fast frame transformation.

In addition, to integrate these three new modules with the We-
bRTC code base, we further modi�ed the source code of a number
of objects in WebRTC. These modi�ed WebRTC objects are drawn
in dashed boxes in Figure 4.

Overall, the view orientation transmitter is written in about 100
lines of code in Javascript, the o�set direction determination module
is written in about 200 lines of code in C, the FastTransform360
library is written in about 1,000 lines of CUDA code and 600 lines
of code in C++ as an interface. Moreover, about 600 lines of code in
C++ is added to the WebRTC code base1.

4.1 View Orientation Transmission and O�set
Direction Determination

To select the best o�set direction for content adaptation, the video
collector needs to know where the viewer at the video receiver
side is going to look at. To do so, the video receiver sends back
user's view orientation data to the video collector and let the o�set
direction determination module perform the prediction.

1We make SphericRTC source code available at: https://github.com/bingsyslab/Spheri
cRTC

To reliably transmit user's view orientation data to the video
collector, we use the WebRTC data channel [4] which is imple-
mented using theusrsctp library and transmitted over SCTP. At
the video collector, the o�set direction determination module is
implemented as a shared-memory server using the POSIX shared
memory APIs [7]. It receives data sent from the video receiver,
performs view prediction, and writes the latest prediction to the
shared memory space. In this work, we simply predict future views
as the last-received view orientation. However, a more complex
view prediction scheme can be easily incorporated into our shared-
memory server. When SphericRTC needs the o�set direction, it
fetches from the piece of memory. With the producer-consumer
modeled shared-memory server, the video collector can always get
the latest predicted o�set direction.

4.2 The FastTransform360 Library (FT360)
Facebook has open-sourced a 360-degree video frame processing
library, Transform360 [9], that uses the CPU for its transformation
operations. However, we found that CPU-based frame transforma-
tion cannot satisfy the real-time latency and throughput require-
ments.

To this end, we implement a FastTransform360 (FT360) library
to perform fast frame processing based on joint content and bi-
trate adaptation decisions. FT360 is compiled as a shared library
using CUDA [10] with a C++ interface. It takes frame inputs in
YUVI420 byte array format, computes a mapping table, performs
sampling using the CUDA sampling module,tex2D() , and outputs
the transformed frame in YUVI420 format. The FT360 library can
perform scaling, rotation, o�set, and/or re-projection from input
equirectangular-projected frames to desired frames in various base
spherical projections.

4.3 RTP Header Extension
To provide in-band transmission of o�set direction information
to the video receiver, we use RTP header extension to include the
information and send it to the video receiver with the frame simul-
taneously. To transmit frames over the network, encoded frames
are split into multiple RTP packets and transmitted via UDP. To
reconstruct the frame at the video receiver side, each RTP packet
includes a header that includes a timestamp as the frame ID. Fur-
thermore, RTP also allows a header extension mechanism that can
carry additional information in the RTP header. We thus take ad-
vantage of this and add 5 bytes of add-on extension. Figure 5 shows
the new RTP header generated by SphericRTC. The add-on exten-
sion is used for encoding the o�set direction information into four
bytes (uint8): yaw, pitch, roll, and extra. Both �pitch� and �roll� have
180 unique integer values and can be represented using oneuint8,
while �yaw� has 360 unique integer values, and we use an extra
uint8 for it. Overall, the total number of o�set directions allowed
in our SphericRTC is 360� 180� 180= 11;664;000.

5 EVALUATION
We conducted extensive experiments comparing SphericRTC with
the naive implementation of real-time 360-degree video communi-
cation via vanilla WebRTC. We focus our performance evaluation
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Figure 4: Overview of SphericRTC implementation. Modules in dashed boxes are added or modi�ed by SphericRTC. The libyuv
library is used in vanilla WebRTC for frame scaling. With SphericRTC, frame scaling and transformation are all performed
via FastTransform360 instead.
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Figure 5: To support in-band transmission of o�set direc-
tions, we added 5 bytes to the RTP header.

on if SphericRTC can satisfy the real-time communication require-
ments, and if the content adaptation provided by SphericRTC can
indeed improve the visual quality of views rendered to the end
users.

5.1 Evaluation Methodology
5.1.1 Dataset.To conduct repeatable experiments for fair compari-
son between SphericRTC and vanilla WebRTC, we used 360-degree
videos and user head movement traces from two publicly-available
datasets [19, 42]. For each dataset, we used 5 videos for experiments,
and for each video, 50 seconds of video content and 20 users' head
movement traces are used, creating in total 10,000 seconds of videos
for each test setting. These videos are pre-decoded and saved in
.y4m[15] format � a byte array format. The.y4m�le can be read as
a virtual camera by the Chromium browser, simulating the frame
capture of a physical camera [14].

5.1.2 Workflow.The work�ows for SphericRTC and vanilla We-
bRTC are similar. We �rst establish a peer-to-peer WebRTC con-
nection between the video collector and the video receiver [12].
Once the WebRTC connection is established, the captured frames
will be transformed and encoded at the collector side. Here, we

record all the captured frames in YUVI420 format before encod-
ing, which is the last place we can keep frames lossless. Encoded
frames are then encrypted, split into RTP packets, and sent to the
receiver. At the receiver side, the RTP packets are reassembled,
decrypted, and passed to the video decoder. During transmission,
some of the frames may not be received due to packet loss or may
be dropped due to network delay (e.g., the frame arrives too late).
All the frames are also recorded in YUVI420 format after decoding,
for performance evaluation. Afterwards, frames are rendered by
WebGL shaders implemented in OpenGL Shading Language (GLSL).

For SphericRTC, additional steps are needed. The o�set direc-
tion determination module at the video collector passes the latest
received view-orientation as the predicted o�set direction. In the
mean time, it also calculates the o�set magnitude based on se-
lected target resolution via joint content and bitrate adaptation.
The FastTransform360 library then transforms frames to desired
o�set direction, o�set magnitude, and target resolution, and passes
them to the encoder. The video receiver extracts the o�set direction
from the RTP packets and infers the o�set magnitude from the
resolution of received frames.

5.1.3 Signaling Server.To help establishing the peer-to-peer con-
nection between the video collector and the video receiver, we use
a third-party signaling server [12]. In our experiments, we also use
this signaling server to store user head movement traces. In this
way, the video receiver can fetch the trace �le from the third-party
server and send the user's trace data to the collector in a desired in-
terval. While we selected the interval of 500 ms in our experiments,
this interval can be adjusted depending on the network latency,
frame content, and user behavior.

5.1.4 Frame Matching and Rendering.Frames recorded at the video
collector side are used to generate the �ground truth views�, and
frames recorded at the video receiver side are used to generate the
�receiver-side rendered views�. To compare �receiver-side rendered
views� with �ground truth views�, we must �rst match frames
recorded at both sides. To do so, we utilized timestamps inside the



Chromium browser and SphericRTC/WebRTC. From when a frame
is captured to when it is packetized in RTP packets, there exist four
levels of timestamps identifying a frame. The RTP timestamp is the
only timestamp shared by both sides. To address this issue, all the
timestamps are stored at the video collector side as three translation
tables. At the video receiver side, while each decoded frame is only
associated with its RTP timestamp, by using the translation tables,
we can �nd matches between receiver-side decoded frames with
corresponding captured frames.

We rendered views from each pair of matching frames and cal-
culated the visual quality metrics between receiver-observed views
and ground truth views. To render views based on user's view orien-
tation, we used an open-source tool, FFmpeg360 [32], for OpenGL-
based view rendering. We implemented new shaders for rendering
frames in the o�set equirectangular projection. We report visual
quality results in two objective metrics: viewport peak signal-to-
noise ratio (Viewport-PSNR) and viewport structural similarity [41]
(Viewport-SSIM).

5.2 Experiment Setup
To evaluate SphericRTC's performance under di�erent network
scenarios, we usedtc [1] for adjusting the network bandwidth,
latency, and packet loss rate in di�erent settings. Speci�cally, for
performance under di�erent network bandwidth, we experimented
with 3 test settings: {500 Kbps, 1 Mbps, and no constraint}. Note
that vanilla WebRTC consumes approximately 2.5 Mbps bandwidth
when there is no bandwidth constraint. For latency evaluations, we
experimented with the following 3 settings: {additional 500 ms one-
way network delay, additional 200 ms one-way, and no additional
delay}. Note that with our experiment setup, if no additional delay
is added, the end-to-end delay between the video collector and the
receiver, is approximately 200 ms one-way. This 200 ms one-way
delay includes frame processing time, frame encoding time, network
transmission delay, frame decoding time, and frame recording times
which are required by our evaluation methodology. Finally, we also
consider 3 packet loss rate settings: {�xed 5% loss, �xed 2% loss,
and nature packet loss}.

5.3 Frame Processing Time
We �rst evaluate if FastTransform360 can perform frame trans-
formation with low latency and high throughput. We compare
the per-frame processing time of FastTransform360 with the open-
source tool Transform360 on a same machine with an Intel i7-7700K
CPU without overclocking and an NVIDIA GeForce GTX 1080 GPU.
In the experiments, both FastTransform360 (integrated with Spheri-
cRTC) and Transform360 were used for converting input 3840� 1920
equirectangular-projected frames to output frames in a �xed resolu-
tion of 2880� 1440 in the o�set equirectangular projection. Figure
6 shows the per-frame processing time logged in our experiments.
Results show that the median frame processing time of CUDA-
based FastTransform360 library is 10.099 ms, reaching 99 frames
per second (FPS) processing throughput. On the other hand, the
median processing time of CPU-based Transform360 is 60.951 ms.

5.4 Viewport Quality
For view quality comparison, we used frames recorded at both
the video collector and the video receiver sides and users' head
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Figure 6: FastTransform360 runs signi�cantly faster than
Transform360. Note that the x-axis is drawn in log scale.

movement traces to render viewports with 100°� 100°FoV. Here, we
consider views rendered from frames recorded at the video collector
as �ground truth views� since these frames are not encoded or
transformed and are recorded in the lossless manner. We compare
�receiver-side rendered views� with �ground truth views� and report
the distribution of Viewport-PSNR and Viewport-SSIM.

Figures 7(a) and 7(b) show the viewport quality comparison of
various bandwidth settings. In these �gures, SphericRTC results
are denoted as �S-RTC�. Results show that SphericRTC consistently
outperforms naive WebRTC-based implementation (i.e., vanilla We-
bRTC). When there is no network constraint, the median Viewport-
PSNR obtained by SphericRTC is 33.66 dB, 2.25 dB higher than
the naive solution. The median Viewport-SSIM obtained by Spheri-
cRTC is 0.915, while the median Viewport-SSIM obtained by vanilla
WebRTC is only 0.890. With 500 Kbps and 1 Mbps bandwidth con-
straints, SphericRTC still renders views of higher quality, achieving
1.46 dB and 1.31 dB improvement in median Viewport-PSNR, re-
spectively.

When there is no bandwidth constraint but additional network
delay, our results show that the viewport quality decreases. This is
because WebRTC's bandwidth controller reduces the target sending
bitrate in response to long network delay. Increased network latency
also means it takes longer for receiver-side viewport feedback to
arrive. As a result, the actual view orientation may be more deviated
from the o�set orientation used for representing the frame. We
expect using a more complex view prediction scheme can alleviate
this problem. Even reduced target sending bitrate and less accurate
view prediction, results show that SphericRTC still consistently
performs better than the naive WebRTC implementation. Detailed
results are show in Figures 8(a) and 8(b).

Finally, when there is no bandwidth constraint or additional
network delay but with increased (2%) packet loss rate, the me-
dian Viewport-PSNR of SphericRTC drops only 0.4 dB. The same
can be observed for vanilla WebRTC as well. This indicates that
SphericRTC/WebRTC is not very sensitive to a moderate level of
packet loss. However, when the packet loss rate increases to 5%,
both SphericRTC and WebRTC perform much worse. In all sce-
narios, SphericRTC consistently outperforms the naive WebRTC
implementation as indicated in Figures 9(a) and 9(b).

6 RELATED WORK
Real-time 360-degree video communication has many practical use
cases. For example, Heshmat et al. set up a telepresence robot that
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Figure 7: Viewport quality comparison
under di�erent network bandwidth set-
tings {500 Kbps, 1 Mbps, no constraint}.
S-RTC means SphericRTC.
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Figure 8: Viewport quality comparison
under di�erent additional network delay
settings {500 ms, 200 ms, no additional de-
lay}. S-RTC means SphericRTC.
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Figure 9: Viewport quality comparison
under di�erent packet loss rate settings
{5%, 2%, natural}. S-RTC means Spheri-
cRTC.

can deliver 360-degree videos to a remote viewer via WebRTC to
provide shared outdoor activity experiences [29]. Ha et al. proposed
a telepresence wheelchair with 360-degree views delivered over
WebRTC [27]. Researchers have developed systems enabling other
types immersive media communication, such as virtual reality (VR)
conferencing, in real-time [24� 26]. For example, in [25], Gunkel
et al. used an RGB-D camera to capture photo-realistic representa-
tions of users. They developed a system to transmit the captured
representations via WebRTC to remote VR conference participants.

To support 360-degree live streaming, researchers have proposed
solutions for improving stitching performance and encoding perfor-
mance. For example, Chen et al. designed LiveTexture that uses an
event-driven stitching algorithm for tiled 360-degree video stream-
ing [18], and Lee et al. proposed foveated 360-degree video stitch-
ing [30]. Ballard et al. proposed RATS that uses GPU-based hard-
ware encoder for encoding tiled 360-degree videos [16]. Midoglu et
al. proposed a framework that leverages RATS for evaluating 360-
degree video streaming performance [34]. These works focus on
improving the stitching and encoding performance, while we focus
on improving the quality of user-observed views by transforming
and transmitting 360-degree video frames in adaptive representa-
tions.

Recently, Shi et al. proposed Freedom to support bandwidth-
e�cient delivery of VR content, including 360-degree videos, from
nearby mobile edge cloud (MEC) servers [40]. To save bandwidth,

the MEC server generates and encodes Visible Area with Margin
(VAM) frames on the GPU. These VAM frames contain only part of
an omnidirectional frame, meaning that portions of the user view
outside of the VAM will not be rendered correctly.

7 CONCLUSION
360-degree video allows a more-immersive experience compared to
the traditional video format. However, delivering 360-degree video
requires signi�cant network bandwidth. In the real-time setting,
any approach to mitigate this high-bandwidth requirement must
be applied within the real-time latency constraints.

SphericRTC applies a novel approach to allow e�cient, content-
adaptive 360-degree video communication within real-time limi-
tations. The system demonstrates that multiple components, view
orientation feedback, o�set direction/magnitude selection, and fast
frame transformation can be e�ectively integrated within a single
practical system. The SphericRTC approach is validated by its per-
formance: the median Viewport-PSNR in SphericRTC is 2.25 dB
higher than that of the baseline system.
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