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Abstract—Today, 360-degree video streaming has become a
popular Internet service with the rise of affordable virtual reality
(VR) technologies. However, streaming 360-degree videos suffers
from the prohibitive bandwidth demand. Existing bandwidth-
efficient solutions mainly focus on exploiting the inherent spatial
adaptability of 360-degree videos, delivering only video content
(spatially-cut tiles) in the viewer’s region of interest (ROI) with
higher quality. Temporal adaptability, which has been widely
leveraged in HTTP streaming, has not been well exploited
to select proper quality for video segments according to the
bandwidth variations. When these two dimensions of adaptability
are jointly considered, bitrate selection for the tiles become
more complicated and challenging. The importance of a tile
with a spatial coordination played at a specific time should be
quantified so that we can determine how to allocate bandwidth
for improving the viewer’s quality of experience. Furthermore,
viewer’s head orientation prediction is highly variable, which
makes the determination of important tiles highly dynamic. In
addition, network fluctuations are very common on the Internet.

To overcome these challenges, we propose Bi-Adaptive Stream-
ing for 360-degree videos (BAS-360◦). In BAS-360◦, both spatial
and temporal adaptabilities are explored in the bitrate selection
for different tiles. The objective is to minimize the bandwidth
waste by allocating bandwidth to more important tiles (the
tiles that are more likely to be watched). To tackle the high
variability of visual region prediction and the unpredictable net-
work fluctuations, we employ two features provided by HTTP/2:
stream termination and stream priority, to efficiently organize tile
delivery. Evaluation results show that BAS-360◦ outperforms
naive tile-based 360-degree video streaming strategies when
network fluctuations or errors in viewport predictions occur.

Index Terms—HTTP streaming; 360-degree video streaming;
HTTP/2;

I. INTRODUCTION

With the support of the rapidly developing virtual reality

(VR) techniques, streaming 360-degree videos is becoming

increasingly popular. When watching a 360-degree video, the

viewers can freely adjust their field of view (FoV) over the

scene rendered surrounding them, providing the viewers with

immersive watching experience. Many content providers, such

as Facebook [1] and YouTube [2], have started to provide 360-

degree videos to the public.

However, a significant challenge of 360-degree video

streaming is its prohibitive bandwidth demand. Compared to

traditional videos, 360-degree videos usually desire higher

resolution due to two reasons: 1) it encodes an omnidirectional

scene while a traditional video only encodes scene at a specific

direction; 2) compared to the traditional displays, the head-

mounted displays (HMDs) that play the 360-degree video

are worn much closer to the viewer’s eyes. Therefore, the

360-degree videos are commonly encoded with a 4K or 6K

resolution for a satisfactory watching experience. According to

a Netflix recommendation [3], streaming a 4K video requires

at least 25 Mbps, while the average broadband connection in

the USA is only 15.3 Mbps, according to another report from

Akamai [4]. This significantly constrains the viewers’ quality

of experience (QoE) when watching 360-degree videos online.

An intuitive solution is to reduce the bitrate of the 360-

degree videos. However, lowering the bitrate means degraded

visual quality. Instead, a potentially effective bandwidth saving

solution without deteriorating the viewers’ visual quality is

to exploit spatial adaptability. While watching a 360-degree

video, the viewer’s FoV only covers a portion of the full

360-degree scene. As a result, encoding and delivering the

invisible region of the rendered scene at a lower bitrate level

can hardly impact the visual quality of the 360-degree video. In

particular, a 360-degree video streaming system can project the

spherical scenes onto a 2D planar so as to be compatible with

the traditional codec, spatially cut the generated rectangular

frames into tiles and then only encode and deliver the visible

tiles at a high bitrate [5], [6], [7], [8], [9], [10], [11], [12],

[13], [14].

Since tiling focuses on the spatial dimension, intuitively

bitrate selection for the tiles can be done as follows: By

default all tiles are encoded at the lowest bitrate for rendering

a complete scene at the client side, while the bitrate of

visible tiles are opportunistically promoted if there is extra

bandwidth remaining. Furthermore, temporal adaptability can

be exploited as segment-based streaming, such as dynamic

adaptive streaming over HTTP (DASH) [15]. The quality of a

segment can be degraded when there is insufficient bandwidth.

However, in practice, prediction of the visible region (based

on viewer’s head orientation) in a 360-degree video streaming

session is only valid in the near future (< 1s) [14], [16]. At

the same time, it is not always possible to predict bandwidth

accurately. These make optimal bitrate allocation to tiles

complicated and challenging. For instance, if the bandwidth

budget allows promoting quality of only a limited number of

tiles, how do we determine the right tiles to promote among

candidates potentially belong to different temporal segments

to maximize viewer’s QoE. More importantly, the probabilities

of a viewer watching at different directions keep changing

along the playback. Furthermore, modern streaming systems



are often HTTP based while a HTTP streaming service

can suffer from unpredictable bandwidth fluctuations as the

HTTP session cannot be easily cancelled in practice. Thus,

to efficiently explore two-dimensional (temporal and spatial)

adaptability in 360-degree video streaming, we need to answer

the following questions: 1) how to determine the importance

of a tile and 2) how to react to the high variability of visual

region prediction and the unpredictable network fluctuations.

To overcome these challenges, in this paper, we propose Bi-

Adaptive Streaming for 360-degree videos (BAS-360◦). BAS-

360◦ is a tile-based streaming solution that jointly explores

spatial and temporal adaptabilities. For spatial adaptation,

BAS-360◦ follows the principle to arrange high quality for

visible tiles and low quality for invisible tiles. Addition-

ally, BAS-360◦ selectively separates the visible region into

a focal area and a few peripheral areas to further exploit

the spatial adaptability. For temporal adaptation, BAS-360◦

carefully selects the quality for tiles without exceeding the

predicted bandwidth budget. In addition, we develop a metric

called bandwidth waste expectation, which is determined by

both the probability of being watched and the visual quality

of a tile, to characterize the importance of a tile and to

allocate the available bandwidth to the different tiles. All of

these considerations are captured by an integer linear pro-

gramming (ILP) problem, in which two-dimension adaptation

is represented as the constraints and the bandwidth waste

expectation is considered in the optimization objective. To

deal with the variability of the visual region prediction and

the unpredictable network fluctuations, stream priority and

stream termination features of HTTP/2 are employed. If it

is determined that a tile in unsuitable for current network or

viewport conditions is being delivered, we can use the stream

termination feature to cancel it in a timely manner. Stream

priority can help pipeline tile transmissions, eliminating the

overhead of multiple HTTP requests, and adjust the quality

of the tile that has not been downloaded yet at anytime.

Furthermore, by organizing the tile transmissions in the order

of their bandwidth waste expectation, the user’s QoE in terms

of visual quality can be preserved even if the bandwidth

encounters unpredictable drop. It is worth noting that in this

paper, we aim at developing a general framework for 360-

degree video streaming. We are not focusing on specific

prediction methods for either the viewer’s head orientation or

the future bandwidth. Any prediction method can be integrated

into our streaming framework.

The rest of the paper is organized as follows. Section II

discusses background and related work. Section III presents

the design of our work. Section IV describes the prototype

implementation and the results of evaluation are reported in

Section V. Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

In this section, we discuss some background and related

work that motivated our research.

A. Human Visual System (HVS) and 360-degree video

Usually a 360-degree video is presented as a sphere sur-

rounding the viewer’s head, and the Field of View (FoV) can

be described as a rectangle warped on the surface of the sphere.

This region is ∼ 180◦ horizontally and ∼ 135◦ vertically right

before the human eyes. This region will expand by ∼ 30◦

on both axes due to the eye rotation. In the visible region,

there are generally two types of areas, the central area and the

peripheral area. The peripheral vision is considered weak in

HVS at distinguishing the detail, color, and shape. Figure 1

shows the HVS horizontally.

Fig. 1. Human Visual System

B. Spatially Adaptive Streaming

Naturally, the spatial adaptability can be exploited in the

360-degree video streaming to save bandwidth since ususally

only portions of the rendered frames are viewed by the user.

One of two widely adopted means to save the bandwidth

is to arrange more pixels for the visible region than the

invisible region during projection before encoding. Corbillon

at el. [17] proposed to generate the video representations

characterized not only by their bit-rate but also by different

Quality Emphasis Center (QEC), around which higher quality

is provided. Similar methods are also used in Facebook’s

pyramid mapping [18] and offset cubic mapping [19], [20]. All

of these projection-based methods need to generate separate

versions of the video for a potential viewer’s head orientation,

and more versions are needed if they are to be integrated into

the DASH-like streaming systems.

The alternative means is to spatially cut the video into tiles.

Only the tiles overlapping with the user’s FoV are delivered

with a higher quality and the other ones are either transmitted

with a lower quality or are simply discarded. DASH [15] and

one of its amendment, SRD [21], are the major techniques used

by many tile-based streaming schemes [5], [6], [7], [8], [9],

[10], [11], [22]. In addition to DASH, Layered Video Coding

(LVC) is another method to distinguish the quality between

tiles [13]. Sreedhar et al. [23] proposed to encode the views

from a same video in individual layers, wherein the complete

view is encoded with low quality and the view at the direction

watched by the user is encoded with high quality. Zare et

al. [12] suggested to further improve the bandwidth efficiency

by taking advantage of motion-constrained tile sets (MCTS).



Yu et al. [24] formulated the choice of representation in the

tile-based streaming as a multi-dimensional, multiple-choice

knapsack problem, maximizing the coding efficiency under

resource constraints. As tile-based methods are more storage

efficient compared to the projection-based methods, BAS-360◦

is built upon tile-based streaming.

C. HTTP/2

HTTP/2 [25] inserts an additional interpreted layer below

the original HTTP/1.1 semantics, which breaks the HTTP

requests and responses into frames. One HTTP session is

associated with one stream. There are a few frames used to

implement the HTTP/1.1 features, like the HEADERS frames

delivering the HTTP header information and the DATA frames

being the vehicle of the request/response data. More frames

are defined to attain some prominent features only in HTTP/2,

like stream termination, stream priority, and etc.

Stream termination: Stream termination is achieved by send-

ing a specific RST ST REAM frame, either from the client or

the server. When an endpoint receives a RST ST REAM frame,

the active stream delivering that frame is then closed.

Stream priority: An HTTP/2 stream holds two flags repre-

senting its priority weight and parent stream. The flags can

be setup or updated by the HEADERS frames or the specific

PRIORITY frames. An HTTP/2 stream starts its transmission

only if all streams that it depends on have been closed. For

the HTTP/2 streams depending on the same parent stream,

the bandwidth is allocated according to their priority weights,

wherein more bandwidth is allocated to the stream with a

higher priority weight. If an HTTP/2 stream sets the exclusive

flag, it becomes the only child of its parent stream and the

original children streams now depend on the exclusive stream.

III. BAS-360◦ DESIGN

In this section, we will present the design details of BAS-

360◦. BAS-360◦ organizes the network delivery based on

macro-streaming units, which convey meaningful visual parts

in the 360-degree video. Bitrate selection for tiles in macro-

streaming units is formalized as an integer linear program-

ming problem for maximizing the expected visual quality.

Spatial adaptability and temporal adaptability are exploited

by imposing the constraints concerning continuous playback,

quality arrangement, and smooth tile transition. A transmission

sequence is generated as long as all involved tiles are arranged

with a bitrate. In order to approach the optimal transmission

sequence in linear time, an algorithm is then proposed. In

the last part, we illustrate how to employ stream termination

and stream priority of HTTP/2 to realize the variable optimal

transmission sequence.

A. Macro-streaming Units

BAS-360◦ spatially cuts a video composed of the projected

rectangular frames into tiles. Every tile is then chunked into

segments of fixed duration, and these segments are further

encoded at multiple bitrates for HTTP streaming. As a result,

a tile t can be identified as a three-tuple 〈i, pos,b〉, where the

tile belongs to the ith segment, pos represents its position in

the original frame, and b is its bitrate.

However, scheduling network transmissions in the unit

of tile is problematic. Rendering only one or two tiles is

hardly a satisfying watching experience for viewers. So we

organize tiles into macro-streaming units during the network

transmission according to HVS described in Section II-A. A

macro-streaming unit consists of a set of tiles representing

a meaningful visual part while rendering. A straightforward

organization considers tiles overlapping the visible region

as a macro-streaming unit, and so does the remaining ones

inside the invisible region. The organization policy can be

extended as needed. For example, spatial adaptability can be

further exploited by organizing the invisible tiles as multiple

macro-streaming units. The furthest invisible macro-streaming

units to the visible region can be discarded while the other

invisible macro-streaming units are delivered with low quality

in case that the viewer turns his/her head. Focusing on the

principles of our design, we will organize only two categories

of macro-streaming units, representing the visible region and

the invisible region.

The visible region is determined by a given head direction

ω , derived from yaw and pitch. A macro-streaming unit can

be formally denoted as

V(ω, i) = {t(i, pos,b) | Proj(pos) overlaps the visible region}

to represent a visible region, where Proj(·) is the projection

function that projects the tile from the 2D rectangular frame

to the rendered sphere, or

I(ω, i)= {t(i, pos,b) |Proj(pos) resides in the invisible region}

to represent an invisible region. For generality, we will use

M(ω, i) to represent the macro-streaming unit if the type is

not the concern. Figure 2 shows an example of all macro-

streaming units for a video segment while there are only two

probable head orientations in opposite directions.
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Fig. 2. All four macro-streaming units of a video segment if there are two
possible head orientations in opposite directions. The macro-streaming units
marked by 1 and 3 represent two possible invisible regions. The macro-
streaming units marked by 2 and 4 represent the possible visible regions.

So we need to schedule the transmissions of the macro-

streaming units from K temporal segments, which starts at the



i0th segment. The transmission sequence can be represented

as

Seq = {M j(ω, i) | ω ∈Ω, i = i0, . . . , i0 +K−1, j = 1,2, . . . ,N}

where Ω contains all possible head orientations, j reflects the

delivering order, and N is the number of macro-streaming units

involved. When generating the transmission sequence Seq,

our optimization objective is to maximize the visual quality

without consuming all the available bandwidth.

1) Projection in BAS-360◦: The projection functions can

be equirectangular [26], polyhedron-based [19], [18], etc. For

example, the equirectangular projection can be presented as

{(yaw, pitch) | yaw=(x/w−0.5) ·360, pitch=(0.5−y/h) ·180}

where w/h is the width/height of the 2D plane, and (x,y)
represent the coordinates of a projected pixel on the plane.

It is worth noting that BAS-360◦ will not be affected by any

specifically employed projection method because it aims at

providing a general streaming framework weighting the video

content by its relative position to the viewer before projection.

B. Problem Formalization

1) Objective Function: In order to allocate bandwidth re-

sources to the tiles that are more likely to be watched in high

priority, we want to define bandwidth waste from both unused

bandwidth and bandwidth allocated to deliver invisible tiles.

Minimizing the former component improves the overall video

quality, and reducing the second component helps promote the

quality of visible tiles. So in our system, the objective function

is

minimize : (B−∑
Seq

S)+∑
Seq

E[M] (1)

where B is the available bandwidth resources, S represents

the size of a macro-streaming unit and E[·] is the bandwidth

waste expectation of a macro-streaming unit. B and S can be

calculated as

B =
∫ (i0+K−1)D

t0

B(t)dt and S(ω, i) = ∑
M(ω,i)

bD

where t0 is the timestamp of now, D is the segment duration,

B(t) is the predicted bandwidth function of time and b

represents the corresponding bitrates of segments belonging

to the macro-streaming unit M(ω, i). Tian et al. in a previous

study [27] suggest using historical information for the best

prediction. The bandwidth waste expectation of a macro-

streaming unit is denoted as

E[M(ω, i)] = (1−P(ω, i)) ·S(ω, i) (2)

where P(ω, i) is the probability of the viewer watching the ith

segment at the direction ω . In practice, this probability can

be carried out by the Bayes-based method like
|Ni(ω)∩Ni0

(ω0)|

|Ni0
(ω0)|

,

where Ni(ω) is the population whose watching direction is ω

at the ith segment, ω0 is the watching direction now.

2) Constraints in Spatial Dimension: To exploit the spatial

adaptability in 360-degree video, we need to formalize how to

select bitrate for tiles inside the visible region and the invisible

region. We follow distinct rules for different types of macro-

streaming units as the visible region is more important to the

user’s QoE in terms of visual quality.

Visible region: According to HVS described in Section II-A,

there are three rules for the visible region: 1) the visible region

should either be fully occupied or consist of no tiles – a visible

region can be composed of no tiles because more than one

visible regions are considered in our streaming system, 2) the

quality of tiles in an area, e.g., the central area, should be the

same, and 3) tiles in the central area should be allocated equal

or higher quality than the ones in the peripheral areas, and the

quality difference of neighboring areas should be at most one

bitrate level.

Specifically, if a tile is encoded into n different bitrate levels,

the available bitrates are denoted as b= {b0,b1, . . . ,bn}, where

b0 is a special bitrate level that represent an undelivered tile.

A visible region is denoted as V =
⋃

Ai, i = 1,2, . . ., where

Ai represents the areas residing in the visible region, and

the increasing subscripts means further peripheral areas. A1

always means the central area. Then the previously described

rules can be formally represented as

V(ω, i) = {t(i, pos,b) | Proj(pos) overlaps the visible region

∧ ∀t : b = b0∨∀t : b! = b0

∧ ∀t ∈ A j : b = b′,b′ ∈ b

∧ ∀b j ∈ A j,∀b
k ∈ Ak, j = k−1,

b j = bm : bk ∈ {bm,bm−1}}

Invisible region: Since the invisible region hardly affects the

visual quality, the corresponding tiles should be delivered

with the lowest quality or not delivered at all. The quality

arrangement rule for the invisible region can be represented

as

I(ω, i) = {t(i, pos,b) | Proj(pos) resides in the invisible region

∧ ∀t : b = b0∨∀t : b = b1}

For a macro-streaming unit containing N tiles, there are in

total |b|N tile quality arrangement possibilities. By imposing

the rules presented aforementioned, only a limited number of

the quality arrangements are legal. Figure 3 shows an example

where there are two available bitrate levels for a tile and a

visible region contains one central area and one peripheral

area. In this example, only limited (4) tile quality arrangements

need to be considered. So for one type of the macro-streaming

unit, we can generate all possible quality arrangements offline

and store them in a quality arrangement array. While the

stored quality arrangements are sorted according to the sum of

the bitrates, an upgrade operation is defined as choosing the

neighboring quality arrangement with higher bitrate sum, and

a degrade operation is scaling down the quality arrangement.

3) Constraints in Temporal Dimension: From the temporal

perspective, video playback should be continuous when select-

ing the quality of the tiles. Continuous playback means at least
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Fig. 3. An example quality arrangement array for a macro-streaming unit of
16 tiles

one visible region should be delivered for each segment. There

might be two reasons that make the transmission illegal: 1) no

visible region is scheduled for a segment, which means b0 is

selected for all corresponding tiles, or 2) the bandwidth budget

does not allow delivering the regions before their playback,

which can be validated by

S j(ω, i)≤
∫ (i−1)D

t0

B(t)dt−
j−1

∑
n=1

Sn(ω, i), j = 1,2, . . . ,N

C. Transmission Sequence Determination

With the selected bitrates, generating the transmission se-

quence is nontrivial. We want to organize the transmissions

in the order of increasing bandwidth waste expectation. This

helps preserve the visual quality if a sudden bandwidth drop

is encountered. It is also not necessary to deliver all involved

tiles in the macro-streaming units due to region overlapping.

The same tiles existing in multiple regions can be deduplicated

for bandwidth saving.

In our scheme, we propose to firstly generate a inner-

segment transmission sequence for each temporal segment

where duplicate tiles appear, then merge them into a inter-

segment transmission sequence.

Inner-segment transmission sequence: The inner-segment

transmission sequence is selected from the permutation of all

involved but not yet delivered macro-streaming units of one

segment. In a particular transmission sequence, we sequen-

tially apply tile deduplication to remove redundant tiles. Partic-

ularly, if we have three marco-streaming units M1, M2 and M3.

The macro-streaming units are sorted by their bandwidth waste

expectation, leading to a preliminary sequence {M1,M2,M3}.
We first remove tiles existing in both M1 and M2 from M2,

then tiles existing in either M1 and M3 or M2 and M3 from

M3. Then, the trimmed inner-segment transmission sequences

are ready to be merged to a unifying one.

Inter-segment transmission sequence: The inter-segment

transmission sequence, or the resulting transmission sequence,

is generated by merging all K inner-segment transmission

sequences into one. Since we can not adjust the order among

inner-segment units due to the deduplication operations, we

need to carefully merge the K sequences. The merge algorithm

is shown in Procedure 1. The basic idea of our algorithm

is to sort the inter-segment macro-streaming units according

to their bandwidth waste expectation while still retaining the

transmission order of the inner-segment units.

Procedure 1 Merge K inner-segment transmission sequences

Input: Seqs[K], E[·]
⊲ Seqs[K] stores the K inner-segment transmission se-

quences

while There are elements in Seqs do

min← ∞

for i in 1 . . .K do

if E[Seqs[i][0]]< min then

min← Seqs[i][0]
min idx← i

Push min to the tail of Seqout

Remove the head of Seqs[min idx]
if The size of Seqs[min idx] is 0 then

Remove Seqs[min idx] from Seqs

return Seqout

D. Approaching the Optimal Sequence

Generating the optimal transmission sequence from all pos-

sible ones are time consuming. The computation complexity

for searching the optimal sequence is O((|Ω|!)K |arr||Ω|·K),

where arr is the quality arrangement array described in

Section III-B2. The time to search for the solution increases

exponentially with the increasing number of temporal seg-

ments, K, and the number of possible user head orientations.

This makes our method impractical in a streaming session

where the determination should be made in a few seconds.

We notice that when degrading a macro-streaming unit in

a transmission sequence, the value of the objective function

always increases because the bandwidth resources freed are

greater than the reduced bandwidth waste expectation by

degradation (E(M) = (1−P) · S < S). So if we degrade the

macro-streaming unit in a transmission sequence that increases

the objective function the least, we can successfully approach

the optimal solution. Our approaching algorithm is presented

in Procedure 2. The idea of this algorithm is to first setup

all involved tiles at the highest quality. Then we repeatedly

degrade the quality of one selected macro-streaming unit if the

transmission sequence demands the bandwidth resources ex-

ceeding the budget. The criteria of selecting the victim macro-

streaming unit is the minimum bandwidth waste increment

resulting from the corresponding degrade operation. In the

algorithm, dedup() means the tile deduplication described in

Section III-C and merge(), which is presented in Algorithm 1,

is used to merge inner-segment transmission sequences. size()

calculates the size of corresponding macro-streaming unit.

isLegal() checks if the resulting sequence consumes bandwidth



resources under the budget, which has been discussed in Sec-

tion III-B3, and degrade() has been defined in Section III-B2.

To the end, the computation complexity of the approaching

algorithm is O(|arr| · |Ω|2K2).

Procedure 2 Optimal Sequence Approaching Algorithm

Input: Seqs[K], E[·], size(·), dedup(·), merge(·), isLegal(·),
Degrade(·)

Arrange all tiles in Seqs with the highest quality

while Seqs is degradable do

for i in 1 . . .K do

for j in 1 . . .Seqs[i].size do

for k in 1 . . . j−1 do

Seqsdedup[i][ j]← dedup(Seqs[i][ j], Seqs[i][k])

Seqout ← merge(Seqsdedup)

if isLegal(Seqout ) then

break

MinDi f f ← 0

for i in 1 . . .K do

for M in Seqs[i] do

M′← Degrade(M)

WasteDi f f←size(M)−size(M′)−E[M]+E[M′]
if WasteDi f f < MinDi f f then

MinDi f f ←WasteDi f f

Md ←M

Degrade(Md)

return Seqout

E. Transmission Reprioritization and Termination

Recent studies [16], [14] have shown that long-term predic-

tion of the user head movement is error-prone and short-term

prediction is more accurate and is highly correlated to the cur-

rent user head orientation, implying the volatile probabilities

applied in Equation 2. On the other hand, although historical

bandwidth information can be used to improve the bandwidth

prediction [27], several abrupt and unexpected network fluctu-

ations can appear during a streaming session. The variability

of visual region prediction and the unpredictable network

fluctuations lead to frequently varied optimal transmission

sequence. Traditional HTTP/1.1-based streaming system is

incapable of agilely tailoring the transmission sequence due to

the lack of mechanisms to terminate the ongoing HTTP session

and prioritize the network transmissions. To efficiently realize

the variable optimal transmission sequence, we switch the

streaming vehicle from HTTP/1.1 to HTTP/2, which features

stream priority and stream termination.

In particular, BAS-360◦ monitors the viewer’s head orienta-

tion after one video segment has been watched and generates

the optimal transmission sequence from the newly calculated

probabilities. Existing transmission sequence is updated by

adding, removing, and changing order of the tile transmissions

according to the new sequence. The manipulation is imple-

mented at the HTTP/2 layer, and more details can be found in

Section IV. Furthermore, if the measured bandwidth has sig-

nificantly deviated from the predicted value, we will terminate

all active tile transmissions and prepare for rescheduling.

IV. BAS-360◦ IMPLEMENTATION

We implement an HTTP/2-based streaming system which

includes a 360-degree video player equipped with BAS-360◦

in C++, an HTTP/2 client on which the player operates,

and an HTTP/2-based server handling the requests for stored

video tiles. Both the client and the server are built upon

nghttp2 [28], which is a widely deployed HTTP/2 library

in C. The architecture of our implemented streaming system

is depicted in Figure 4. As shown in the figure, there are

five major modules we implement to support BAS-360◦: The

bandwidth predictor predicts the future bandwidth from the

historical information recorded by the bandwidth monitor,

and the specific method used is presented in DASH2M [29].

The basic idea of the bandwidth prediction method is to

average the historical bandwidth measurements, which are in

advanced weighed by their temporal distance to now. The head

orientation monitor collects current user head orientation. The

ILP solver (Integer linear programming solver) generates the

optimal transmission sequence as long as a macro-streaming

unit is downloaded. The predicted bandwidth, current user

head orientation combined with the user head orientation

distribution, which in practice can be collected by the server

and sent to the client, are fed as input to the ILP solver. Both

the ILP solver and the bandwidth monitor are able to direct

the HTTP/2 client on what to request from the server. The ILP

solver manipulates the order of tile delivery to comply with

its output transmission sequence, and the bandwidth monitor

tears down all active transmissions as long as the measured

bandwidth has significantly deviated from the predicted one.

Retrieved video tiles are filled into the playback buffer. The

playback of a 360-degree video in this player continues only

if all tiles within the user’s viewport exist, and it stops as long

as any visible tiles are missing. When playing, the tile with

the highest available quality at a given position is rendered.

To manipulate tile delivery, we need the adding, deleting

and reprioritizing operations. All the operations are imple-

mented in the HTTP/2 layer. For the adding operation, a

tile transmission can be easily added by establishing a new

HTTP/2 stream and then sending the corresponding HTTP

request. To delete an active tile transmission, we send the

RESET frame over its HTTP/2 stream. The reprioritizing

operation is implemented by the stream priority feature in

HTTP/2. A tile transmission can be reordered at any time

by informing the server with a PRIORITY frame, where the

stream dependency field represents another specific HTTP/2

stream (another tile transmission) that should be completed

before its delivery, and the exclusive flag is always set to

disable the transmission multiplexing among HTTP/2 streams.



Fig. 4. Architecture of BAS-360◦ Prototype

V. BAS-360◦ EVALUATION

We evaluate BAS-360◦ by comparing its performance with

naive tile-based streaming methods built upon HTTP/1.1. In

the evaluation, we actively manipulate the network conditions

to observe how different schemes react to the network fluctua-

tions. We also simulate both failed and successful user vision

predictions to assess the streaming performance of different

schemes.

A. Experiment Setup

In addition to BAS-360◦, we also implement two naive

tile-based streaming methods for 360-degree video streaming.

That is, the all-download scheme that downloads all tiles

in all directions and the on-demand scheme that expects to

only download the tiles in the user’s vision according to the

prediction result. Both naive schemes will choose the same

bitrate for all involved tiles without exceeding the predicted

bandwidth budget. We choose to compare BAS-360◦ against

these two schemes that represent the most conservative and

the most aggressive tile-based streaming methods.

All of our experiments are conducted on a Linux machine

with a 64-bit Intel Pentium CPU 2.8 GHz dual core, 6 GB

memory, 2× 32 KB L1 caches, 2× 256 KB L2 caches and

shared 3 MB L3 cache. The installed operating system is

Ubuntu 12.04 with Linux kernel 3.13.0-66-generic. The video

file is first split spatially into tiles by ffmpeg [30], and the tiles

are further segmented temporally by the MP4Box tool [31].

We use tc as the network shaping tool impose shaping rules on

IP packets that have 8080 as either dst port or src port. Such

a setting is to eliminate the impact of other uncertainties so

that we can get a more accurate assessment of our scheduling

method.
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Fig. 5. Requested segment bitrate

B. Streaming Performance vs. Network Fluctuations

At first, we want to evaluate if BAS-360◦ can promptly

react to the network fluctuations as stream termination is used.

We compare the streaming performance of BAS-360◦ with the

naive streaming schemes. The 360-degree video we used in

this experiment is two-minute long, encoded with H.264/AVC

after the equirectangular projection. We split the video into 16

(4×4) tiles, and each tile is further chunked into segments of 2

seconds duration. To make the experimental result more clear,

each tile is encoded into four constant bitrate levels, which are

400 kbps, 200 kbps, 100 kbps and 40 kbps. We set 4 possible

user head directions as yaw is one of 0◦,90◦,180◦,270◦ and

pitch is always 0◦, covering 8 tiles as the visible region for

each.

To eliminate the impact from failed head movement pre-

dictions, on-demand and our proposed scheme always know

the user’s head directions during the playback. And we set the

probability for the user abruptly turning back as 0.05 for every

segment. In the on-demand and the all-download schemes, we

select the highest bitrate for the tiles of the next segment with-

out exceeding the predicted bandwidth. For our scheme, we

invoke the scheduling algorithm and arrange the corresponding

requests if a macro-streaming unit is downloaded. The naive

scheduling schemes send requests as long as the buffer length

drops below the critical value, which is set as 12 seconds, and

stop requesting new segments if the buffer length reaches 20

seconds. In all schemes, we download all tiles at the lowest

bitrates for the first 3 segments to start the video playback and

request for the visible tiles of the next segment with the lowest

quality as long as the playback buffer is empty. We first check

the streaming performance if the bandwidth can be accurately

predicted. We manually introduce bandwidth variation in the

following sequence — 6150, 2850, 1450, 6150, 2850, 1450

kbps. The bandwidth varies every 20 seconds. The RTT is

set to be 20 ms all the time. In this experiment we preset

the bandwidth information in all schemes. After that, we also

conduct experiment as the bandwidth can not be accurately

predicted. In the second experiment, the bandwidth variation

is set to follow the sequence — 2850, 1450, 2850, 1450 kbps.
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Fig. 6. Video quality variations with preset bandwidth information
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Fig. 7. Video quality variations without preset bandwidth information

Figure 5 shows the timing of requests during the playback

for both experiments. The x-axis is the time when the requests

are sent, and the y-axis is in log-scale, representing the bitrate

of the tiles requested in kbps. The bandwidth variation is

plotted as a solid line in the figures. From Figure 5(a), all

schemes can promptly react to bandwidth variations because

of accurate bandwidth estimation. The all-download scheme

always chooses a lower quality compared to on-demand and

BAS-360◦ because the number of tiles required to be down-

loaded doubles. Different from the naive schemes, our scheme

also downloads tiles in the invisible region with the lowest

quality if the bandwidth resources are abundant (750 kbps

duration). In Figure 5(b), in spite of abrupt bandwidth drops

at the 30th second and the 90th second, all the schemes can

detect network fluctuations and scale down the requested tile

quality. Our scheme has the same level network adaptability

as HTTP/1.1 based streaming schemes equipped with short

segment duration because of the adopted stream termination

feature. In addition, our scheduling method can combine

different tiles of different bitrates in a frame under the same

bandwidth budget, providing better users’ QoE compared to

the naive streaming schemes.

Figure 6 and Figure 7 show the played video quality and

the downloaded video quality in both experiments. The x-

axis is the playback time in seconds and the y-axis is quality

summation of the played tiles (left) and the downloaded tiles

(right), indicating the proportion of bandwidth allocated to

deliver the actually viewed content. We can observe that even

though the all-download scheme downloads tiles with the

same quality summation as the on-demand scheme, the played

quality summation is much lower because half of the tiles

are downloaded but not watched. With accurate knowledge

of the future bandwidth, our scheme can fully exploit the

bandwidth resources to improve visual quality, whose average

downloaded quality summation is 2865 kbps and the average

played quality summation is 2245 kbps. Both of the metrics

are higher than all-download (the average played quality

summation is 1026 kbps and the average downloaded quality

summation is 2052 kbps) and on-demand (the average played

quality summation is 2111 kbps and the average downloaded

quality summation is 2127 kbps). When the future bandwidth

is unpredictable, the visual video quality of our scheme

will not be impaired even the delivery sequence was deter-

mined by the misleading bandwidth prediction. The average

played/downloaded video quality summation of our scheme

in the experiment without preset bandwidth information is

2259/3193 kbps. Our scheme performs as good as on-demand

(2286/2302 kbps), which promptly reacts to the bandwidth

variation due to the short segment duration. The average

played/downloaded video quality summation of all-download

in the second experiment is 972/1944 kbps.

C. QoE vs. Head Orientation Prediction

To evaluate how viewport prediction accuracy affects the

viewer’s QoE across all schemes, we also conducted an

experiment using a simulator implemented in C++. In the

simulation, the video length is 1 minute long. For the naive

scheduling methods, the critical buffer level is set as 6 sec-

onds. To eliminate the impact of bandwidth variation, we

set the bandwidth as a fixed value during the simulation,

which is selected from {1800,2850,6150} kbps. We ran-

domly generate the user’s head orientation for each run of

the simulation as follows: 1) The probability distribution of

head orientation are generated for each segment. The distribu-

tion is selected from {0.75,0.1,0.1,0.05}, {0.4,0.4,0.1,0.1},
{0.3,0.3,0.3,0.1} and {0.25, 0.25,0.25,0.25}, which repre-

sents that the user wants to simultaneously watch 1, 2, 3 or

all 4 directions. 2) The user’s actual watching directions are

then generated according to the distributions. And 3) for the

on-demand scheme only, the player predicts the user’s vision

for a segment by choosing the direction that holds the highest

probability. All other experimental parameters are the same as

those described in Section V-B. We run the simulation 5000

times for each combination of the scheduling scheme and the

chosen bandwidth.



TABLE I
USERS’ QOE STATISTICS

Bandwidth all-download on-demand BAS-360◦

Average Stalling Time (s)

1800 kbps 0.00±0.00 8.24±0.06 7.83±0.08

2850 kbps 0.00±0.00 6.03±0.09 3.88±0.10

6150 kbps 0.00±0.00 2.98±0.04 0.02±0.00

Average Played Quality (kbps)

1800 kbps 770±0 1066±9 810±9

2850 kbps 770±0 1057±14 1254±14

6150 kbps 1507±0 1991±16 1977±5

Table I lists the statistical results of the simulation with

95% confidence interval. We can observe that all-download

has the stalling time of 0 second all the time since all tiles are

downloaded without any head movement prediction. However,

all-download has the lowest average played quality, which are

770 kbps and 1507 kbps, respectively. Our scheme always

has less stalling time compared to on-demand because of the

prioritization operations. The all-download scheme and the on-

demand scheme cannot ramp up the video quality when the

bandwidth increases from 1800 kbps to 2850 kbps because

of the unifying tile quality arrangement strategy. Our scheme

can effectively take advantage of the increased bandwidth to

improve the video quality and reduce the average stalling time.

VI. CONCLUSION

In this paper, we present BAS-360◦, a tile-based 360-degree

video streaming solution, in which the bitrate selection for tiles

is formulated as an integer linear programming problem. The

ILP aims at minimizing the bandwidth waste while several

constraints are developed to exploit the spatial and temporal

adaptabilities simultaneously. BAS-360◦ also leverages the

stream termination and stream priority features of HTTP/2.

Evaluation results show that BAS-360◦ outperforms naive tile-

based 360-degree streaming strategies when there are network

fluctuations or error-prone predictions.
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