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Abstract

Network flow models have proven to be an effective tool
in the analysis and optimization of networks. In addition,
with some work, they have been used to develop stable
and near-optimal distributed protocols. Critical to the
success of these models in multi-hop wireless networks
(MHWNSs) is an accurate estimation of the effect of inter-
ference. While the existing models capture coarse grained
estimates of interference, they do not account for the
substantial impact of MAC scheduling. On the other hand,
accurate models of throughput in CSMA networks exist.
However, their complexity and some of their underlying
assumptions make them unsuitable for use as part of a
network flow formulation, which must explore a large
number of candidate solutions. This paper contributes an
efficient and constructive model to estimate the effect of
scheduling on interfering links in general MHWN settings.
We integrate this approach with a network flow routing
model which works with aggregate estimates of capacity
to improve the quality of the solution. Simulation results
show that accounting for scheduling effects leads to large
improvements in the quality of the solution.

I. Introduction

Network Flow Models of Multi-Hop Wireless Net-
works have important applications. MHWNSs, includ-
ing mesh networks, ad hoc networks, and some sensor
networks, are emerging as important components of an
increasingly ubiquitous and wireless world. Network flow
models of MHWNS have recently been developed to allow
analysis of capacity and optimization of routing [1]-[3].
Such models can be applied to analyze how far existing
routing protocols, which are heuristic and greedy in nature,
are from near optimal routing obtained with global knowl-
edge and coordination among the connections. Further,

they can be directly applied to traffic engineering and
QoS for static MHWNSs. Moreover, such models have
been used in the context of wired networks (e.g., via
exploring the dual problem or using decomposition [4]) to
develop near optimal distributed protocols. Alternatively,
the insight gained from these models can be heuristically
used to better understand how to build effective protocols
for more dynamic MHWNSs.

However, existing models are limited, especially in
how they model interference. While the initial efforts
in this area make significant contributions, they make
simplifying assumptions that limit their ability in finding
effective solutions. Most important among the limitations
is the approach to modeling interference, which does
not take into account the effects that arise in a CSMA
(Carrier Sense Multiple Access) MAC protocol. Instead,
the existing models ignore the MAC effect or assume
the presence of an omniscient scheduler. We show in
Section III that MAC level interactions play an important,
sometimes defining, role in determining link capacity,
especially under high interference; ignoring their effect
leads to inaccurate characterization of solution quality,
which in turn produces inefficient solutions. Thus, the goal
of this work is to improve the interference models by
accounting for the MAC scheduling effects.

CSMA throughput models may offer a solution;
however, they are not suitable in this context because
of their high complexity and their iterative nature. The
problem of estimating throughput for CSMA networks is
well researched problem [5]-[9]. Available models typi-
cally estimate the link throughputs for a given network
configuration (including the routes). Thus, they may be
suitable for our purpose: as the solver considers candidate
solutions, each may be evaluated using the CSMA models.
Unfortunately, they are often computationally expensive,
making it difficult to use them as part of an iterative
optimization process that evaluates candidate solutions to
converge on near optimal routing configurations. Impor-
tantly, the models are iterative in nature, estimating the



performance, but not offering any insight into the processes
that go into determining it. As a result, the structure of
the problem is hidden and little insight into developing
effective protocols is provided. Finally, many of the models
use unrealistic simplifying assumptions. We discuss these
models in more detail in Section II.

The paper contributes a scheduling aware model
of interference and integrates it with network flow
formulations, significantly improving the quality of the
obtained solutions. The model, presented in Section IV is
lightweight and constructive, allowing much faster solution
time and making it feasible to integrate it with the network
flow optimization framework. Further, the model improves
on the scheduling component of the CSMA models in a
number of ways: it uses Signal to Interference and Noise
Ratio (SINR) physical model, rather than the simplified
protocol model assumed by existing works [10]; and it
does not use assumptions such as exponential distribution
on packet transmission. The integration of the scheduling
model with a network flow formulation provides for the
first time accurate accounting for the effect of interfer-
ence in network flow models (Section V). We show in
Section VI that the scheduling estimates are accurate, and
the derived routes from the integrated model achieve large
improvements in performance over the those from the
model using aggregate interference metrics only. Finally,
Section VII presents concluding remarks.

II. Related work

In this section we overview related work, organized
into two areas: (1) network flow models for MHWNS,
and how our work improves on them; and (2) CSMA
models of MHWNSs and why they are not directly usable
for improving network flow models.

A. Network Flow Models

Our work is motivated by recent MHWN network flow
models, which differ from wired network models in that
they account for interference [1]-[3]. These models are
useful in the analysis and optimization of MHWNs. In
addition, often the structure of the problem leads to the
development of optimal distributed protocols [4]. However,
existing models use inaccurate models of interference that
do not account for the complex scheduling effects that arise
in CSMA networks. The primary contribution of this work
is to develop more accurate characterization of link quality
under CSMA scheduling.

The goal of the formulations by Jain [1] and Kodi-
alam [2] is estimating the capacity of given scenarios. The
above models assume an optimal scheduler, without the
CSMA artifacts like hidden terminals. Further, their focus

is on optimizing the overall network performance with
cursory treatment to interaction between the connections.
For these reasons, we extend our previously developed for-
mulation which addresses these limitations [3]. It models
a multiple-connection network using a multi-commodity
flow framework, and allows derivation of near optimal
routes with regards to a user defined objective function.
However, like the other formulations, this model does not
account for the CSMA scheduling.

B. CSMA Models of MHWNSs

Modeling the operation of a CSMA based medium
access protocol in a multi-hop wireless network is a
classical problem (e.g., [5], [6]) and remains an area of
active research (e.g., [7]-[9]). Existing models estimate
the throughput of a network with a given routing topology
—they cannot be used directly to derive routes. However,
they could apply them as a fitness function to test solutions
within an optimization problem that searches for effec-
tive routes. Unfortunately, the complexity of the existing
models make them extremely computationally demanding,
making the cost prohibitive. Thus, the goal of work is to
come up with light-weight approach to account for the
effect of scheduling.

Our approach builds on the classical model of the
network introduced by Boorstyn et al [5]. In this model,
groups of senders that can transmit concurrently are iden-
tified. A state model of the network is then constructed
where each state represents the set of currently active
senders. Throughput is computed based on the activation
of these states.

The early models use unrealistic assumptions such as
perfect capture (no collisions), Poisson traffic, packets are
discarded if the medium is busy, as well as others. They
also model a generic CSMA protocol that is quite different
from bi-directional protocols such as IEEE 802.11. Recent
studies [7]-[9] improve many aspects of the original model
and tailor them towards IEEE 802.11. These models pre-
dict the link quality by considering the available capacity
of the links and the scheduling effects. However, the core
of the approach remains an iterative solution. In addition,
some assumptions on the interference and traffic remain.

III. Motivation

CSMA protocols such as IEEE 802.11 are prone to
collisions due to the hidden terminal problem [11], [12].
When collisions occur, packets are lost, and backoff values
are increased, leading to underutilization of the chan-
nel. Since network flow formulations use coarse grained
estimates of interference (effectively a function of the
number of contenders), they ignore the impact of the
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Fig. 1. Source busy time vs. Throughput

scheduling effects (such as hidden terminals), and therefore
over-estimate the link quality. In this section, we use a
simulation study to demonstrate this effect. We also show
that the normalized efficiency (achieved throughput relative
to ideal throughput) correlates with the percentage of
collisions suffered by each link. This observation motivates
our approach, which estimates collision probability for
each link and uses the probability to moderate the busy-
time predicted capacity of the link.

We simulate different sets of 144 uniformly distributed
nodes with 25 arbitrarily chosen one-hop CBR connec-
tions. Since the analysis targets MAC level interactions
among interfering links, it does not require that the sce-
nario be made up of multiple-hop connections—we are
targeting link layer, rather than end-to-end phenomena.
Modeling end-to-end effects such as chain self-interference
and pipelining effects is a topic of future improvement.

Intuitively, under an ideal scheduler, the throughput
of the link depends mainly on the available transmission
time. Figure 1 plots the busy time' against the observed
throughput of the link under moderate to high interference
region. Its clear that link quality varies significantly for
links with similar busy time values. Thus, using measures
such as busy time result in inaccurate estimation of the
link quality.

Next, we show that the reason for the variation in
the observed link qualities for the same busy time is the
scheduling effects which lead to packet drops. Let ¢; be
the throughput achieved by an ideal scheduler, which is
proportional to the available transmission time. Let ¢, be
the observed throughput in the CSMA based scheduler in
simulation. The ratio of i—j, called normalized throughput
provides a measure of the scheduling efficiency relative to
an ideal scheduler independently of the available transmis-
sion time. Figure 2 plots the normalized throughput against
the percentage of MAC level transmissions that experience

!'Similar results were obtained with other metrics such as busy time
at destination and SINR at either source or destination. None of these
metrics measure the impact of scheduling.
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Fig. 2. Normalized Throughput vs. Percentage
of MAC level timeouts.

timeouts (due to collisions). It can be seen that as the
fraction of frames experiencing timeouts increases, the nor-
malized throughput decreases linearly. Thus the reason for
variations in observed capacity from the nominal capacity
predicted by the interference metric are the scheduling
effects which lead to collisions/timeouts. As a result, our
goal is to predict the effect of the scheduling behavior and
use it to moderate the expected capacity obtained from
aggregate interference metrics such as busy time.

IV. Scheduling Effect in IEEE 802.11

In this section, we develop a lightweight model for
estimating the effect of MAC scheduling on link quality by
predicting the expected percentage of dropped packets. The
network is represented as a graph G(V, E') where V' is the
set of all the nodes and E is the set of active links. Let the
gain matrix, (©,;) represent the signal strength observed
at node j for node ¢’s transmission. The gain matrix
can be obtained based geometric location of nodes or by
measurements [13]. Let Trx be the receiver sensitivity
and Tgrnyr be the SINR threshold above which a signal
is captured. W is Gaussian white noise.

In the scheduling analysis, we assume the following: (1)
SINR physical layer model; (2) Transmissions are received
instantaneously (zero propagation delay); and (3) The
senders always have packets to send (saturated traffic). The
last assumption is made to estimate the worst case impact
of the scheduling. Note that this is not used directly as a
measure of the link quality; rather, it used in combination
with the coarse grained interference metric obtained from
the network flow formulation. The integrated formulation
can give appropriate weight for the effect of scheduling
depending on the degree of interference.

The proposed approach builds on the Boorstyn
model [5] which was reviewed in Section II. However,
it differs from this work and others in literature [7]-[9]
by considering a signal to interference and noise ratio



(SINR) model, as opposed to the idealized protocol model
where every source has a fixed interference range. As a
result, our model takes into account effects such as capture,
and cumulative interference from multiple transmitters.
Importantly, the model is also different because it is
constructive; in contrast, existing models express behavior
in terms of balance equations and solve them iteratively,
incurring high computational cost, and hiding the nature
of the processes that cause the observed performance.

We model the IEEE 802.11 protocol, with RTS-CTS.
Although RTS-CTS packets are optional, it represents the
more challenging case to model. We believe the approach
—identifying and modeling the occurrence of collisions—
generalizes to other MAC protocols. The problem is broken
into the following parts: (1) Constructing the State Model
via identification of the Maximal Independent Contention
Sets (MICS); (2) Estimating the collision occurrence
within each set; (3) Estimating the frequency of activation
of each set; and (4) Combining the above estimates into a
link quality estimate. In the remainder of this section, we
discuss these steps in detail.

A. Constructing the State Model

This portion of the model is similar to the classical
Boorstyn’s Markov state model construction, with the ex-
ception that it is link-based rather than source-based. More
specifically, each state in the original model represents the
set of sources that can be concurrently active; in our model,
states represent the links that can be concurrently active
under a SINR based propagation model.

The first step in constructing the state model is to
identify the set of edges that can be active concurrently,
i.e which we call Independent Contention Sets (ICS). The
sources of the edges in an ICS cannot hear to each others’
transmission and hence, can initiate parallel transmissions.
A Maximal ICS (MICS) is an ICS to which no other
edge can be added without breaching independence of the
sources (a maximal set of ICS).

Identifying all the MICS is an instance of the Maximal
Independent Sets problem in graph theory and is known
to be NP-hard. However, efficient approximate techniques
exist for unit-disc graphs which arise in MHWNs [14]. We
used an iterative heuristic [1] for finding independent sets.
The states in the Markov model of the network consist of
the power sets of the MICS.

Figure 3 shows a scenario of 4 one-hop connections.
The MICS diagram is shown in the same figure. Each node
in the figure represents an active edge in the scenario. The
hidden terminals that cause packet timeouts are shown by
a directed arrow. For example, in the above figure links
(A, B), (G, H) and (E, F') are in the same MICS (denoted
by MICS-1); and, (G, H) is a hidden terminal for the link
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Fig. 3. An example of MICS

(E, F) in MICS-1.
B. Estimating Timeouts in each MICS

The saturation traffic assumption allows us to focus on
the MICS states, rather than all the states in the model
(eliminating, ICS that are not MICS). Collisions occur
due to interactions within an MICS; transmissions across
different MICS’ are prevented by the protocol, with the
exception of concurrent transmissions that arise due to two
sources sensing the medium to be idle and transmitting
concurrently. Truly concurrent collisions are a minor effect
in randomized protocols (less than 3% of collisions in
our experiments (Section VI-A)); moreover, such collisions
cannot be prevented by the routing protocol, so they are
immaterial for our purposes.

In this component, we consider each MICS separately
and attempt to estimate the packet timeout percentage
given the physical layer model. In an 802.11 RTS/CTS
handshake, the source may perceive a packet collision
when: (1) it does not receive a CTS from the destination
(an RTS timeout); or (2) it fails to get an ACK for the
DATA frame (an ACK timeout).

1) Identifying RTS Timeouts: An RTS timeout occurs
for one of three reasons: (1) an RTS collision; (2) a receiver
not responding to the RTS due to its physical or virtual
carrier sensing being active; or (3) a CTS collision. In
IEEE 802.11, CTS collisions are improbable since the
channel at the sender is idle before the RTS, and because
CTS gets priority over other transmissions by virtue of a
shorter inter-frame separation period before transmission.
Hence, we focus on the first two causes.

We denote the set of links that can cause an RTS timeout
to a given link (s,d) during the activation of MICS C
as U, ;. In a given MICS C, an unsafe link (s1,dy)
for a link (s,d) is a link whose transmission at source
(s1) may create a busy channel at the receiver d (the first
condition of Equation 1) or cause an RTS collision (the
second condition). These two cases correspond to the two



causes for RTS timeouts discussed above.
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2) Identifying ACK Timeouts: ACK timeouts, which
are caused by collisions affecting DATA or ACK packets,
are costly because they indicate the loss of the potentially
long DATA packet. For the same reasons that CTS losses
are improbable, ACK losses are also improbable. ACK
timeouts are mostly due to DATA packet collisions.

The basis for modeling ACK timeouts is to determine
the links (s1, dy) that can corrupt an ongoing DATA packet
by a transmission from s; to d; (RTS or DATA packets)
or from d; to s; (CTS or ACK packets). DATA collisions
due to interfering DATA packets are rare since such trans-
missions only happen after successful RTS-CTS exchange.
The CTS and ACK transmission have to be considered
separately as the CTS transmission happens after sensing
that the channel is not busy (Clear Channel Assessment
(CCA)), whereas the ACK transmission happens without
a CCA.

We define a set of links in a MICS C' that can corrupt
the DATA transmission of the link (s,d) by initiating
an RTS, CTS or ACK by A(Cs’d). These set of links are
derived in a fashion similar to derivation of the unsafe
links. Capturing the DATA packet collisions in a given
MICS requires additional consideration of other intricate
effects such as eliminating the links that experience hidden
terminals, accounting for the “Virtual Carrier Sensing
(VCS)”. A detailed derivation of the ACK timeout estimate
and related metrics is omitted due to space; it can be found
in the technical report [15].

A DATA packet can also be dropped due to cumulative
interference from multiple links (the longer duration of
DATA packet transmission creates a higher possibility of
such drops). We are able to detect this effect due to the
SINR physical model we use; other models use a fixed
interference range and cannot capture this effect [5], [8],

[91.
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C. Estimating the Probability of MICS Activation

In this step of the model, we need to estimate the
frequency of activation of each MICS. From the previous
step, we have a ranking of each link for each MICS it
belongs to. Thus, we use the MICS probability to create
a weighted average of the rating of each link across the
MICS to which it belongs.

We use the saturation assumption to focus on MICS. Let
mc represent the probability that a MICS C' is currently
active. We observe experimentally that the relative MICS
activation frequency correlates with the number of sources

that belong to the MICS. The intuition is that with more
contending sources, a MICS has a higher chance of one of
the sources becoming active first and as a result, blocking
MICS to which the active link does not belong from
contention. Thus, we approximate the probability of the
MICS activation by Equation 2. Informally, the amount of
time a MICS will be active is proportional to the number of
sources present in the MICS. However, with collisions and
IEEE 802.11 backoff mechanism, the precise calculation
of m¢ is challenging. Refining this probability estimate
is an area of future refinement of the model discussed in
Section IV-E.

¢
ZC'GM |O/|

where |C| notation is used to represent the number of links
in MICS C.
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D. Quantifying Link Quality

In this paragraph, we use the estimates developed in the
previous sections to quantify the susceptibility of the links
to RTS timeouts and ACK timeouts.

1) RTS Timeout Metric: Recall from Section IV-B.1
that the unsafe links cause RTS timeouts by two primary
events: an RTS collision or a busy channel at the receiver.
It can be seen that both these events are mainly caused
by the DATA transmission from an unsafe link (we ignore
the effect of smaller sized RTS/CTS/ACK packets). If the
unsafe link has not yet started its DATA transmission, then
an RTS timeout will not occur. Also, a larger number of
unsafe links will result in higher chances of RTS timeout.
Hence, the above two conditions — the ordering of the link
transmissions and the number of unsafe links — need to be
accounted for calculating RTS timeout metric.

We define p,(k) to be the probability that at least
one of the k unsafe links of the given link (s,d) will
initiate transmission before (s,d). It can be shown that
pu(k) = 77 S (=) (B) ( please refer to techni-
cal report [15] for derivation).

The probability of an RTS Timeout for the link (s, d) in
a MICS (' is the conditional probability of the unsafe links
transmitting before the given link (pu(|U(C;7 1)), given that
the MICS C' is active The RTS Timeout metric of a link
(s,d) is the sum of such conditional probabilities over all
the MICS C' that the link belongs (Equation 3). Note that
mc is the probability of occurrence of MICS C.

Reay= Y pullUG pl)me 3)
CceM,(s,d)eC

2) ACK Timeout Metric: An estimate for the amount
of ACK Timeouts is obtained by accounting for the links
that corrupt DATA packet by RTS, CTS and ACK. ACK



Timeouts due to cumulative interference is also accounted
by estimating the interference by multiple links of the same
MICS. Let V(CS D be the probability that the interference
from the links of the MICS C corrupts the DATA packet.
We calculate the ug D based on observing the cumulative
noise from the sources of the MICS (not shown due to
space; please refer to the technical report [15]).

The fraction of ACK timeouts depend upon the proba-
bility of the link (s, d) winning the contention (represented
by w(s,qy). This can be directly derived by considering the
set of all MICS that (s, d) belongs. Equation 4 represents
the rating that a link (s,d) is susceptible to an ACK
timeout considering the above factors.

1 S, S,
D(s,a) = > (mc pu(JAG?)) +V(c’d)> “)

W(s,d) yoem
We henceforth refer to the timeout ratings (R and D)
as Interaction based Link Rating (IBLR) metrics. IBLR
metrics along with the unsafe links (U and A) will be used
in the routing model to identify and constrain destructive
link interference.

E. Discussion

A limitation of the current formulation is that we do not
account for the effect of RTS timeouts due to the virtual
carrier sense (VCS) being set at the receiver. Empirical
evaluation in Section VI-A shows around 17% of observed
timeouts were due to this effect. Modeling this effect
requires estimating: (1) Packet capture ability of the node
under a given MICS (which cannot be assumed to be a
constant “reception threshold” as done in Protocol Model
of interference); (2) Distinguishing the timeouts due to
“False VCS” where an RTS packet turns on the VCS at
a node and fails to followup with the DATA packet (due
to RTS timeout). This effect is referred as “Gagged Node
Situation” in [16]. A deeper study of VCS related effects
is an area of extension of the model. We also note that
for cases when RTS/CTS is not enabled, this effect is
not present, and more accurate modeling of the quality
is possible.

Precise formulation of probability of occurrence of a
MICS (mc) is a challenging problem due to the dynamic
nature of MICS activation which depends on several fac-
tors.We are pursuing a more accurate constructive model
of MICS probabilities based on the probability of link acti-
vation. However, a more accurate model is more complex;
the current approximate solution allows faster searching of
the optimization space.

V. Scheduling-aware Routing Formulation

Algorithm 1 Algorithm for SAR

1: while iterationCount <MAX_ITER AND constraintsAdded
= true AND Interference metric is acceptable do

2: Calculate routes by Network Flow (Netflow routes)

3: Calculate Interference metric for ALL the routes

4: Evaluate the routes by IBLR metric

S:  Calculate Link quality metric link qualities considering
routing behavior

6:  constraintsAdded = Check for mutual excluding of con-

flicting links and add constraints
7:  CIM = Weighted measure of Interference metric and Link
quality metric
8: if Netflow routes is the best route seen then
9: best_routes = Update the best routes
10:  end if
11: end while
12: return best_routes

In this section, we integrate the scheduling model into
our previously developed multi-commodity network flow
formulation [3]. Algorithm 1 briefly explains how the
integrated framework works. We use the network flow
model to provide an initial interference aware routing
configuration, which we refer to as Interference-Aware
Routes (IAR). The scheduling component evaluates these
routes and finds poor quality links, and the links which
cause them to have collisions (line 5 in Algorithm 1). This
information is fed back into the network flow model in
the form of additional constraints, allowing the solver to
avoid using conflicting links (line 6 in Algorithm 1). The
updated network flow problem is solved to obtain another
candidate configuration (Netflow routes) and the procedure
is repeated.

At each iteration, the overall quality of this routing
configuration Configuration Interaction Metric (CIM) is
computed. CIM serves as the fitness function of each
configuration, which can be compared against other routing
configurations. To compute CIM, the route quality obtained
from the network flow optimization problem are combined
updated with the scheduling derived link quality metric to
obtain the overall quality. In addition, since drops at links
closer to the destination are more costly than drops closer
to the source, we bias the link quality to attempt to select
more stable links as we get closer to the destination.

The iterative routing and link quality estimation process
terminates when either no constraints can be added (since
all the links have the IBLR rating lesser than a given
threshold) or when the quality of the interference based
metrics alone drops below a certain threshold (currently
we use 20%) of the initial IAR routes. The configuration
with the best CIM is chosen to derive the Scheduling-
Aware Routes (SAR).
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VI. Simulation study

We use the QualNet simulator [17], which is a com-
mercial simulator with state of the art physical propagation
and MAC models. We modify the simulator to account for
the SINR Threshold propagation model. The transmission
power and receiver sensitivity is set to 24.5 dB and -73
dB respectively. The data rate is set to 2 Mbps and the
standard IEEE 802.11 MAC parameters are used. We first
validate the scheduling formulation, in terms of accuracy
and complexity, and then evaluate the performance of
Scheduling-Aware Routing (SAR) formulation.

A. Empirical analysis of scheduling model

Detailed simulation results are used to empirically
analyze the causes of the timeouts, which also aids in
validating certain assumptions made during the derivation
of RTS and CTS timeouts. Later, we evaluate the success
of IBLR metrics in estimating timeouts. We use a scenario
with random placement of 144 nodes in a 1600m x 1600m
area with 25 one-hop connections. We use 10 different
scenarios for a total of 250 active links.

Figure 4 compares the simulation results of the causes
for packet timeouts to the average number of instances.
RTS-A and RTS-I stands for the RTS packet collision
during the arrival and intermediate stage of the RTS
packet (DATA-A and DATA-I are similarly defined). CTS-
PCS and CTS-VCS denotes the CTS packet not being
sent by the destination as a result of physical and virtual
carrier sensing , respectively. Intra-MICS and Inter-MICS
are interactions observed within a MICS and between two
MICS, respectively. As our assumptions stated, Inter-MICS
collisions are quite rare (2.67% in our results) with most
occurring in the RTS-A and RTS-I stage. It can be also ob-
served that DATA packets generally experience collisions
at intermediate reception stage and foreign transmissions

Interference | Busy
R Level Time SINR
R | 0.819 -0.121 0.655 | -0.059
p | 0.872 0.183 0.529 | -0.404

TABLE I. Correlation of RTS Timeouts

Interference | Busy

D Level Time SINR
R | 0916 -0.071 0.262 | -0.061
p | 0.899 0.110 0.320 | -0.558

TABLE Il. Correlation of ACK Timeouts

conflicting with DATA packet are not initiated in between
the CTS transmission and the DATA reception (since
DATA-A is approximately zero). These results validate
a majority of the of the assumptions in capturing the
occurrence of timeouts; a significant proportion that is not
captured is the CTS-VCS (around 17% of the timeouts).

~& IBLR model
0~ CSMA-G model

9 ——* CSMA-G model
. was terminated
beyond this point

Time taken to solve (in s)

5 10 15 20 25 30 35 40 45 50

Number of links

Fig. 5. Timing comparison

Tables I and II use correlation (R) and Spearman’s
Rank Coefficient (p) to measure how successfully different
interference metrics predict timeouts 2. We evaluate the
IBLR RTS Timeout (R) and ACK Timeout (D) along
with the aggregate metrics in Tables I and II. Interference
Level was computed by measuring the interference at the
destination of each link by all the active sources. The Busy
Time is calculated as the amount of time the destination
of a link was busy due to interfering traffic (measured
in simulation). The ratio of the signal strength to the
cumulative interference by all the other sources was used
to calculate SINR metric. There is a strong correlation

2Correlation(R) is a statistical technique to measure the relationship
between a pair of variables. Spearman’s Rank Coefficient (p) is used
to measure the ranking order correlation which is especially helpful in
the absence of a linear relationship. R and p can take any real values
between —1 and 1. A value of 1 indicates a perfect correlation and a
value of O indicates independence of the two values. Negative values
indicate inverse relationship.



between IBLR and simulation result while the aggregate
interference metrics which are used in existing models [1]-
[3], correlate poorly; they cannot predict the effect of
scheduling.

The argument against using using existing accurate
CSMA models for estimating the impact of scheduling
is their high run-time. Figure 5 compares the time taken
to evaluate a given network by the IBLR formulation
and a recent accurate CSMA throughput model proposed
by Garetto et al [9] (CSMA-G). CSMA-G estimates the
expected throughput of each link using an iterative numer-
ical process. As a result, its runtime grows very quickly
with the size of the problem (note that the y-axis is
log-scale). CSMA-G model was terminated if it failed to
complete within 2 hours. In contrast, IBLR computation is
lightweight, making it suitable for use in a network flow
optimization framework.

B. Scheduling Aware Routing (SAR) evaluation:

In the next experiment, we evaluate the effectiveness
of scheduling aware routes (SAR) obtained using the
approach proposed in this paper. First, we compare SAR
against the routes obtained by a conventional routing
protocol (DSR [18]). Since SAR uses static routes, to
provide a fair comparison that eliminates routing overhead
and dynamic effects such as false disconnections [19],
we allowed DSR to use static routes (selecting the most
commonly used route found by DSR). We refer to such
routes as S-DSR. This main objective of this evaluation is
to demonstrate the vulnerability of Interference-only-aware
routing models (IAR) and the effectiveness of SAR under
IEEE 802.11. The scheduling-unaware IAR formulation
is prone to RTS/ACK timeouts, thus leading to poor
performance, while SAR has to pick the links that is both
interference-aware and scheduling-aware.

We first demonstrate the effectiveness of SAR in a
10x 10 grid topology in a 1000x 1000 area. The transmis-
sion range is around 390m. Two connections are placed
on the opposite edges of the grid.

Figure 6(a) compares the average throughput of the con-
nection for varying packet sending rates. The scheduling
effects play a less important role under lower traffic as
concurrent transmission between unsafe links is less likely.
Under high packet sending rates, it can be observed that the
throughput of the scheduling aware scheme is significantly
higher than the other schemes. The average throughput
of the S-DSR is lesser than the IAR and SAR routes.
The throughput of the DSR and S-DSR fluctuates widely
over different seeds. In around 30% of the cases, the best
routes from S-DSR performed better than the IAR routes.
DSR treats packet drops (after 4 ACK timeouts, or 7 total
timeouts for the same packet) as an indication of broken
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path and switches to another path. Thus, the most used
path in S-DSR are likely to have relatively few timeouts
which will allow them to be used for a long time without
packet drops.

In this regular setting, SAR found routes with no
destructive scheduling interactions, leading to zero packet
timeouts (Figure 6(b)). An improvement of around 50%
was observed in end-to-end delay.

Next, we analyze the effect of cross connection interfer-
ence. The number of connections in the above grid topol-
ogy is increased, thus increasing the number of competing
links. Although SAR cannot find a routes with perfect
scheduling, it chooses the routes with low scheduling
conflicts while maintaining interference separated routes.
The normalized throughput is shown in the Figure 7.
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We now examine the performance of these schemes
in 10 random scenarios with 64 nodes placed in
1000mx 1000m area. Six connections were randomly se-
lected such that the source and destinations are approxi-
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mately 3 or 4 hops away. Figure 8 shows the throughput
improvement of SAR over other protocols (normalized
with respect to IAR throughput). An improvement of 33%
over IAR and a greater improvement over the DSR proto-
col under high loads was observed. Notable improvements
in other metrics like end to end delay and packet drops
were also observed. Detailed results is available in the
technical report [15].

VII. Concluding Remarks

Aggregate metrics of link capacity such as channel
busy time do not account for the effect of scheduling.
It is known that in CSMA networks, scheduling plays
a critical role in how interference is manifested. Thus,
it is desirable to avoid links that experience mutually
destructive interaction. We used this observation to develop
a methodology for rating link quality based on their
interactions with other links. We show that these estimates
correlate strongly with packet drops. We integrate the
developed model in a network flow formulation of traffic
engineering in static MHWNs. We show that capturing
the scheduling effects leads to considerable improvement
in performance of the derived routes. Our future work
includes continued refinement of the model, which uses
coarse approximations in several points.
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