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Abstract

Network flow models have proven to be an effective tool

in the analysis and optimization of networks. In addition,

with some work, they have been used to develop stable

and near-optimal distributed protocols. Critical to the

success of these models in multi-hop wireless networks

(MHWNs) is an accurate estimation of the effect of inter-

ference. While the existing models capture coarse grained

estimates of interference, they do not account for the

substantial impact of MAC scheduling. On the other hand,

accurate models of throughput in CSMA networks exist.

However, their complexity and some of their underlying

assumptions make them unsuitable for use as part of a

network flow formulation, which must explore a large

number of candidate solutions. This paper contributes an

efficient and constructive model to estimate the effect of

scheduling on interfering links in general MHWN settings.

We integrate this approach with a network flow routing

model which works with aggregate estimates of capacity

to improve the quality of the solution. Simulation results

show that accounting for scheduling effects leads to large

improvements in the quality of the solution.

I. Introduction

Network Flow Models of Multi-Hop Wireless Net-

works have important applications. MHWNs, includ-

ing mesh networks, ad hoc networks, and some sensor

networks, are emerging as important components of an

increasingly ubiquitous and wireless world. Network flow

models of MHWNs have recently been developed to allow

analysis of capacity and optimization of routing [1]–[3].

Such models can be applied to analyze how far existing

routing protocols, which are heuristic and greedy in nature,

are from near optimal routing obtained with global knowl-

edge and coordination among the connections. Further,

they can be directly applied to traffic engineering and

QoS for static MHWNs. Moreover, such models have

been used in the context of wired networks (e.g., via

exploring the dual problem or using decomposition [4]) to

develop near optimal distributed protocols. Alternatively,

the insight gained from these models can be heuristically

used to better understand how to build effective protocols

for more dynamic MHWNs.

However, existing models are limited, especially in

how they model interference. While the initial efforts

in this area make significant contributions, they make

simplifying assumptions that limit their ability in finding

effective solutions. Most important among the limitations

is the approach to modeling interference, which does

not take into account the effects that arise in a CSMA

(Carrier Sense Multiple Access) MAC protocol. Instead,

the existing models ignore the MAC effect or assume

the presence of an omniscient scheduler. We show in

Section III that MAC level interactions play an important,

sometimes defining, role in determining link capacity,

especially under high interference; ignoring their effect

leads to inaccurate characterization of solution quality,

which in turn produces inefficient solutions. Thus, the goal

of this work is to improve the interference models by

accounting for the MAC scheduling effects.

CSMA throughput models may offer a solution;

however, they are not suitable in this context because

of their high complexity and their iterative nature. The

problem of estimating throughput for CSMA networks is

well researched problem [5]–[9]. Available models typi-

cally estimate the link throughputs for a given network

configuration (including the routes). Thus, they may be

suitable for our purpose: as the solver considers candidate

solutions, each may be evaluated using the CSMA models.

Unfortunately, they are often computationally expensive,

making it difficult to use them as part of an iterative

optimization process that evaluates candidate solutions to

converge on near optimal routing configurations. Impor-

tantly, the models are iterative in nature, estimating the



performance, but not offering any insight into the processes

that go into determining it. As a result, the structure of

the problem is hidden and little insight into developing

effective protocols is provided. Finally, many of the models

use unrealistic simplifying assumptions. We discuss these

models in more detail in Section II.

The paper contributes a scheduling aware model

of interference and integrates it with network flow

formulations, significantly improving the quality of the

obtained solutions. The model, presented in Section IV is

lightweight and constructive, allowing much faster solution

time and making it feasible to integrate it with the network

flow optimization framework. Further, the model improves

on the scheduling component of the CSMA models in a

number of ways: it uses Signal to Interference and Noise

Ratio (SINR) physical model, rather than the simplified

protocol model assumed by existing works [10]; and it

does not use assumptions such as exponential distribution

on packet transmission. The integration of the scheduling

model with a network flow formulation provides for the

first time accurate accounting for the effect of interfer-

ence in network flow models (Section V). We show in

Section VI that the scheduling estimates are accurate, and

the derived routes from the integrated model achieve large

improvements in performance over the those from the

model using aggregate interference metrics only. Finally,

Section VII presents concluding remarks.

II. Related work

In this section we overview related work, organized

into two areas: (1) network flow models for MHWNs,

and how our work improves on them; and (2) CSMA

models of MHWNs and why they are not directly usable

for improving network flow models.

A. Network Flow Models

Our work is motivated by recent MHWN network flow

models, which differ from wired network models in that

they account for interference [1]–[3]. These models are

useful in the analysis and optimization of MHWNs. In

addition, often the structure of the problem leads to the

development of optimal distributed protocols [4]. However,

existing models use inaccurate models of interference that

do not account for the complex scheduling effects that arise

in CSMA networks. The primary contribution of this work

is to develop more accurate characterization of link quality

under CSMA scheduling.

The goal of the formulations by Jain [1] and Kodi-

alam [2] is estimating the capacity of given scenarios. The

above models assume an optimal scheduler, without the

CSMA artifacts like hidden terminals. Further, their focus

is on optimizing the overall network performance with

cursory treatment to interaction between the connections.

For these reasons, we extend our previously developed for-

mulation which addresses these limitations [3]. It models

a multiple-connection network using a multi-commodity

flow framework, and allows derivation of near optimal

routes with regards to a user defined objective function.

However, like the other formulations, this model does not

account for the CSMA scheduling.

B. CSMAModels of MHWNs

Modeling the operation of a CSMA based medium

access protocol in a multi-hop wireless network is a

classical problem (e.g., [5], [6]) and remains an area of

active research (e.g., [7]–[9]). Existing models estimate

the throughput of a network with a given routing topology

–they cannot be used directly to derive routes. However,

they could apply them as a fitness function to test solutions

within an optimization problem that searches for effec-

tive routes. Unfortunately, the complexity of the existing

models make them extremely computationally demanding,

making the cost prohibitive. Thus, the goal of work is to

come up with light-weight approach to account for the

effect of scheduling.

Our approach builds on the classical model of the

network introduced by Boorstyn et al [5]. In this model,

groups of senders that can transmit concurrently are iden-

tified. A state model of the network is then constructed

where each state represents the set of currently active

senders. Throughput is computed based on the activation

of these states.

The early models use unrealistic assumptions such as

perfect capture (no collisions), Poisson traffic, packets are

discarded if the medium is busy, as well as others. They

also model a generic CSMA protocol that is quite different

from bi-directional protocols such as IEEE 802.11. Recent

studies [7]–[9] improve many aspects of the original model

and tailor them towards IEEE 802.11. These models pre-

dict the link quality by considering the available capacity

of the links and the scheduling effects. However, the core

of the approach remains an iterative solution. In addition,

some assumptions on the interference and traffic remain.

III. Motivation

CSMA protocols such as IEEE 802.11 are prone to

collisions due to the hidden terminal problem [11], [12].

When collisions occur, packets are lost, and backoff values

are increased, leading to underutilization of the chan-

nel. Since network flow formulations use coarse grained

estimates of interference (effectively a function of the

number of contenders), they ignore the impact of the
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Fig. 1. Source busy time vs. Throughput

scheduling effects (such as hidden terminals), and therefore

over-estimate the link quality. In this section, we use a

simulation study to demonstrate this effect. We also show

that the normalized efficiency (achieved throughput relative

to ideal throughput) correlates with the percentage of

collisions suffered by each link. This observation motivates

our approach, which estimates collision probability for

each link and uses the probability to moderate the busy-

time predicted capacity of the link.

We simulate different sets of 144 uniformly distributed

nodes with 25 arbitrarily chosen one-hop CBR connec-

tions. Since the analysis targets MAC level interactions

among interfering links, it does not require that the sce-

nario be made up of multiple-hop connections–we are

targeting link layer, rather than end-to-end phenomena.

Modeling end-to-end effects such as chain self-interference

and pipelining effects is a topic of future improvement.

Intuitively, under an ideal scheduler, the throughput

of the link depends mainly on the available transmission

time. Figure 1 plots the busy time1 against the observed

throughput of the link under moderate to high interference

region. Its clear that link quality varies significantly for

links with similar busy time values. Thus, using measures

such as busy time result in inaccurate estimation of the

link quality.

Next, we show that the reason for the variation in

the observed link qualities for the same busy time is the

scheduling effects which lead to packet drops. Let ti be

the throughput achieved by an ideal scheduler, which is

proportional to the available transmission time. Let to be

the observed throughput in the CSMA based scheduler in

simulation. The ratio of to

ti

, called normalized throughput

provides a measure of the scheduling efficiency relative to

an ideal scheduler independently of the available transmis-

sion time. Figure 2 plots the normalized throughput against

the percentage of MAC level transmissions that experience

1Similar results were obtained with other metrics such as busy time
at destination and SINR at either source or destination. None of these
metrics measure the impact of scheduling.
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of MAC level timeouts.

timeouts (due to collisions). It can be seen that as the

fraction of frames experiencing timeouts increases, the nor-

malized throughput decreases linearly. Thus the reason for

variations in observed capacity from the nominal capacity

predicted by the interference metric are the scheduling

effects which lead to collisions/timeouts. As a result, our

goal is to predict the effect of the scheduling behavior and

use it to moderate the expected capacity obtained from

aggregate interference metrics such as busy time.

IV. Scheduling Effect in IEEE 802.11

In this section, we develop a lightweight model for

estimating the effect of MAC scheduling on link quality by

predicting the expected percentage of dropped packets. The

network is represented as a graph G(V, E) where V is the

set of all the nodes and E is the set of active links. Let the

gain matrix, (Θij) represent the signal strength observed
at node j for node i’s transmission. The gain matrix

can be obtained based geometric location of nodes or by

measurements [13]. Let TRX be the receiver sensitivity

and TSINR be the SINR threshold above which a signal

is captured. W is Gaussian white noise.

In the scheduling analysis, we assume the following: (1)

SINR physical layer model; (2) Transmissions are received

instantaneously (zero propagation delay); and (3) The

senders always have packets to send (saturated traffic). The

last assumption is made to estimate the worst case impact

of the scheduling. Note that this is not used directly as a

measure of the link quality; rather, it used in combination

with the coarse grained interference metric obtained from

the network flow formulation. The integrated formulation

can give appropriate weight for the effect of scheduling

depending on the degree of interference.

The proposed approach builds on the Boorstyn

model [5] which was reviewed in Section II. However,

it differs from this work and others in literature [7]–[9]

by considering a signal to interference and noise ratio



(SINR) model, as opposed to the idealized protocol model

where every source has a fixed interference range. As a

result, our model takes into account effects such as capture,

and cumulative interference from multiple transmitters.

Importantly, the model is also different because it is

constructive; in contrast, existing models express behavior

in terms of balance equations and solve them iteratively,

incurring high computational cost, and hiding the nature

of the processes that cause the observed performance.

We model the IEEE 802.11 protocol, with RTS-CTS.

Although RTS-CTS packets are optional, it represents the

more challenging case to model. We believe the approach

–identifying and modeling the occurrence of collisions–

generalizes to other MAC protocols. The problem is broken

into the following parts: (1) Constructing the State Model

via identification of the Maximal Independent Contention

Sets (MICS); (2) Estimating the collision occurrence

within each set; (3) Estimating the frequency of activation

of each set; and (4) Combining the above estimates into a

link quality estimate. In the remainder of this section, we

discuss these steps in detail.

A. Constructing the State Model

This portion of the model is similar to the classical

Boorstyn’s Markov state model construction, with the ex-

ception that it is link-based rather than source-based. More

specifically, each state in the original model represents the

set of sources that can be concurrently active; in our model,

states represent the links that can be concurrently active

under a SINR based propagation model.

The first step in constructing the state model is to

identify the set of edges that can be active concurrently,

i.e which we call Independent Contention Sets (ICS). The

sources of the edges in an ICS cannot hear to each others’

transmission and hence, can initiate parallel transmissions.

A Maximal ICS (MICS) is an ICS to which no other

edge can be added without breaching independence of the

sources (a maximal set of ICS).

Identifying all the MICS is an instance of the Maximal

Independent Sets problem in graph theory and is known

to be NP-hard. However, efficient approximate techniques

exist for unit-disc graphs which arise in MHWNs [14]. We

used an iterative heuristic [1] for finding independent sets.

The states in the Markov model of the network consist of

the power sets of the MICS.

Figure 3 shows a scenario of 4 one-hop connections.

The MICS diagram is shown in the same figure. Each node

in the figure represents an active edge in the scenario. The

hidden terminals that cause packet timeouts are shown by

a directed arrow. For example, in the above figure links

(A, B), (G, H) and (E, F ) are in the same MICS (denoted
by MICS-1); and, (G, H) is a hidden terminal for the link

Scenario

A-B E-F

G-H

C-D

A-B

MICS-1 MICS-2

Active Links
Interactions

that lead to

timeouts

MICS Representation

A

B

C

D

E

F

G
H

Fig. 3. An example of MICS

(E, F ) in MICS-1.

B. Estimating Timeouts in each MICS

The saturation traffic assumption allows us to focus on

the MICS states, rather than all the states in the model

(eliminating, ICS that are not MICS). Collisions occur

due to interactions within an MICS; transmissions across

different MICS’ are prevented by the protocol, with the

exception of concurrent transmissions that arise due to two

sources sensing the medium to be idle and transmitting

concurrently. Truly concurrent collisions are a minor effect

in randomized protocols (less than 3% of collisions in

our experiments (Section VI-A)); moreover, such collisions

cannot be prevented by the routing protocol, so they are

immaterial for our purposes.

In this component, we consider each MICS separately

and attempt to estimate the packet timeout percentage

given the physical layer model. In an 802.11 RTS/CTS

handshake, the source may perceive a packet collision

when: (1) it does not receive a CTS from the destination

(an RTS timeout); or (2) it fails to get an ACK for the

DATA frame (an ACK timeout).

1) Identifying RTS Timeouts: An RTS timeout occurs

for one of three reasons: (1) an RTS collision; (2) a receiver

not responding to the RTS due to its physical or virtual

carrier sensing being active; or (3) a CTS collision. In

IEEE 802.11, CTS collisions are improbable since the

channel at the sender is idle before the RTS, and because

CTS gets priority over other transmissions by virtue of a

shorter inter-frame separation period before transmission.

Hence, we focus on the first two causes.

We denote the set of links that can cause an RTS timeout

to a given link (s, d) during the activation of MICS C

as UC
(s,d). In a given MICS C, an unsafe link (s1, d1)

for a link (s, d) is a link whose transmission at source
(s1) may create a busy channel at the receiver d (the first

condition of Equation 1) or cause an RTS collision (the

second condition). These two cases correspond to the two



causes for RTS timeouts discussed above.

UC
(s,d) =

{

(s1, d1) | (s1, d1) ∈ C,

Θs1d ≥ TRX − W or
Θsd

Θs1d + W
< TSINR

}

(1)

2) Identifying ACK Timeouts: ACK timeouts, which

are caused by collisions affecting DATA or ACK packets,

are costly because they indicate the loss of the potentially

long DATA packet. For the same reasons that CTS losses

are improbable, ACK losses are also improbable. ACK

timeouts are mostly due to DATA packet collisions.

The basis for modeling ACK timeouts is to determine

the links (s1, d1) that can corrupt an ongoing DATA packet
by a transmission from s1 to d1 (RTS or DATA packets)

or from d1 to s1 (CTS or ACK packets). DATA collisions

due to interfering DATA packets are rare since such trans-

missions only happen after successful RTS-CTS exchange.

The CTS and ACK transmission have to be considered

separately as the CTS transmission happens after sensing

that the channel is not busy (Clear Channel Assessment

(CCA)), whereas the ACK transmission happens without

a CCA.

We define a set of links in a MICS C that can corrupt

the DATA transmission of the link (s, d) by initiating

an RTS, CTS or ACK by A
(s,d)
C . These set of links are

derived in a fashion similar to derivation of the unsafe

links. Capturing the DATA packet collisions in a given

MICS requires additional consideration of other intricate

effects such as eliminating the links that experience hidden

terminals, accounting for the “Virtual Carrier Sensing

(VCS)”. A detailed derivation of the ACK timeout estimate

and related metrics is omitted due to space; it can be found

in the technical report [15].

A DATA packet can also be dropped due to cumulative

interference from multiple links (the longer duration of

DATA packet transmission creates a higher possibility of

such drops). We are able to detect this effect due to the

SINR physical model we use; other models use a fixed

interference range and cannot capture this effect [5], [8],

[9].

C. Estimating the Probability of MICS Activation

In this step of the model, we need to estimate the

frequency of activation of each MICS. From the previous

step, we have a ranking of each link for each MICS it

belongs to. Thus, we use the MICS probability to create

a weighted average of the rating of each link across the

MICS to which it belongs.

We use the saturation assumption to focus on MICS. Let

mC represent the probability that a MICS C is currently

active. We observe experimentally that the relative MICS

activation frequency correlates with the number of sources

that belong to the MICS. The intuition is that with more

contending sources, a MICS has a higher chance of one of

the sources becoming active first and as a result, blocking

MICS to which the active link does not belong from

contention. Thus, we approximate the probability of the

MICS activation by Equation 2. Informally, the amount of

time a MICS will be active is proportional to the number of

sources present in the MICS. However, with collisions and

IEEE 802.11 backoff mechanism, the precise calculation

of mC is challenging. Refining this probability estimate

is an area of future refinement of the model discussed in

Section IV-E.

mC =
|C|

∑

C′∈M |C′|
(2)

where |C| notation is used to represent the number of links
in MICS C.

D. Quantifying Link Quality

In this paragraph, we use the estimates developed in the

previous sections to quantify the susceptibility of the links

to RTS timeouts and ACK timeouts.

1) RTS Timeout Metric: Recall from Section IV-B.1

that the unsafe links cause RTS timeouts by two primary

events: an RTS collision or a busy channel at the receiver.

It can be seen that both these events are mainly caused

by the DATA transmission from an unsafe link (we ignore

the effect of smaller sized RTS/CTS/ACK packets). If the

unsafe link has not yet started its DATA transmission, then

an RTS timeout will not occur. Also, a larger number of

unsafe links will result in higher chances of RTS timeout.

Hence, the above two conditions – the ordering of the link

transmissions and the number of unsafe links – need to be

accounted for calculating RTS timeout metric.

We define pu(k) to be the probability that at least
one of the k unsafe links of the given link (s, d) will
initiate transmission before (s, d). It can be shown that

pu(k) = 1
k+1

∑k

i=1 (−1)
(i−1)(k

i

)

( please refer to techni-

cal report [15] for derivation).

The probability of an RTS Timeout for the link (s, d) in
a MICS C is the conditional probability of the unsafe links

transmitting before the given link (pu(|UC
(s,d)|)), given that

the MICS C is active The RTS Timeout metric of a link

(s, d) is the sum of such conditional probabilities over all
the MICS C that the link belongs (Equation 3). Note that

mC is the probability of occurrence of MICS C.

R(s,d) =
∑

C∈M,(s,d)∈C

pu(|UC
(s,d)|)mC (3)

2) ACK Timeout Metric: An estimate for the amount

of ACK Timeouts is obtained by accounting for the links

that corrupt DATA packet by RTS, CTS and ACK. ACK



Timeouts due to cumulative interference is also accounted

by estimating the interference by multiple links of the same

MICS. Let ν
(s,d)
C be the probability that the interference

from the links of the MICS C corrupts the DATA packet.

We calculate the ν
(s,d)
C based on observing the cumulative

noise from the sources of the MICS (not shown due to

space; please refer to the technical report [15]).

The fraction of ACK timeouts depend upon the proba-

bility of the link (s, d) winning the contention (represented
by w(s,d)). This can be directly derived by considering the

set of all MICS that (s, d) belongs. Equation 4 represents
the rating that a link (s, d) is susceptible to an ACK
timeout considering the above factors.

D(s,d) =
1

w(s,d)

∑

∀C∈M

(

mC pu(|A
(s,d)
C |) + ν

(s,d)
C

)

(4)

We henceforth refer to the timeout ratings (R and D)
as Interaction based Link Rating (IBLR) metrics. IBLR

metrics along with the unsafe links (U and A) will be used
in the routing model to identify and constrain destructive

link interference.

E. Discussion

A limitation of the current formulation is that we do not

account for the effect of RTS timeouts due to the virtual

carrier sense (VCS) being set at the receiver. Empirical

evaluation in Section VI-A shows around 17% of observed

timeouts were due to this effect. Modeling this effect

requires estimating: (1) Packet capture ability of the node

under a given MICS (which cannot be assumed to be a

constant “reception threshold” as done in Protocol Model

of interference); (2) Distinguishing the timeouts due to

“False VCS” where an RTS packet turns on the VCS at

a node and fails to followup with the DATA packet (due

to RTS timeout). This effect is referred as “Gagged Node

Situation” in [16]. A deeper study of VCS related effects

is an area of extension of the model. We also note that

for cases when RTS/CTS is not enabled, this effect is

not present, and more accurate modeling of the quality

is possible.

Precise formulation of probability of occurrence of a

MICS (mC) is a challenging problem due to the dynamic

nature of MICS activation which depends on several fac-

tors.We are pursuing a more accurate constructive model

of MICS probabilities based on the probability of link acti-

vation. However, a more accurate model is more complex;

the current approximate solution allows faster searching of

the optimization space.

V. Scheduling-aware Routing Formulation

Algorithm 1 Algorithm for SAR

1: while iterationCount ≤MAX ITER AND constraintsAdded
= true AND Interference metric is acceptable do

2: Calculate routes by Network Flow (Netflow routes)
3: Calculate Interference metric for ALL the routes
4: Evaluate the routes by IBLR metric
5: Calculate Link quality metric link qualities considering

routing behavior
6: constraintsAdded = Check for mutual excluding of con-

flicting links and add constraints
7: CIM = Weighted measure of Interference metric and Link

quality metric
8: if Netflow routes is the best route seen then
9: best routes = Update the best routes
10: end if
11: end while
12: return best routes

In this section, we integrate the scheduling model into

our previously developed multi-commodity network flow

formulation [3]. Algorithm 1 briefly explains how the

integrated framework works. We use the network flow

model to provide an initial interference aware routing

configuration, which we refer to as Interference-Aware

Routes (IAR). The scheduling component evaluates these

routes and finds poor quality links, and the links which

cause them to have collisions (line 5 in Algorithm 1). This

information is fed back into the network flow model in

the form of additional constraints, allowing the solver to

avoid using conflicting links (line 6 in Algorithm 1). The

updated network flow problem is solved to obtain another

candidate configuration (Netflow routes) and the procedure

is repeated.

At each iteration, the overall quality of this routing

configuration Configuration Interaction Metric (CIM) is

computed. CIM serves as the fitness function of each

configuration, which can be compared against other routing

configurations. To compute CIM, the route quality obtained

from the network flow optimization problem are combined

updated with the scheduling derived link quality metric to

obtain the overall quality. In addition, since drops at links

closer to the destination are more costly than drops closer

to the source, we bias the link quality to attempt to select

more stable links as we get closer to the destination.

The iterative routing and link quality estimation process

terminates when either no constraints can be added (since

all the links have the IBLR rating lesser than a given

threshold) or when the quality of the interference based

metrics alone drops below a certain threshold (currently

we use 20%) of the initial IAR routes. The configuration

with the best CIM is chosen to derive the Scheduling-

Aware Routes (SAR).
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VI. Simulation study

We use the QualNet simulator [17], which is a com-

mercial simulator with state of the art physical propagation

and MAC models. We modify the simulator to account for

the SINR Threshold propagation model. The transmission

power and receiver sensitivity is set to 24.5 dB and -73

dB respectively. The data rate is set to 2 Mbps and the

standard IEEE 802.11 MAC parameters are used. We first

validate the scheduling formulation, in terms of accuracy

and complexity, and then evaluate the performance of

Scheduling-Aware Routing (SAR) formulation.

A. Empirical analysis of scheduling model

Detailed simulation results are used to empirically

analyze the causes of the timeouts, which also aids in

validating certain assumptions made during the derivation

of RTS and CTS timeouts. Later, we evaluate the success

of IBLR metrics in estimating timeouts. We use a scenario

with random placement of 144 nodes in a 1600m×1600m
area with 25 one-hop connections. We use 10 different

scenarios for a total of 250 active links.

Figure 4 compares the simulation results of the causes

for packet timeouts to the average number of instances.

RTS-A and RTS-I stands for the RTS packet collision

during the arrival and intermediate stage of the RTS

packet (DATA-A and DATA-I are similarly defined). CTS-

PCS and CTS-VCS denotes the CTS packet not being

sent by the destination as a result of physical and virtual

carrier sensing , respectively. Intra-MICS and Inter-MICS

are interactions observed within a MICS and between two

MICS, respectively. As our assumptions stated, Inter-MICS

collisions are quite rare (2.67% in our results) with most

occurring in the RTS-A and RTS-I stage. It can be also ob-

served that DATA packets generally experience collisions

at intermediate reception stage and foreign transmissions

@
@@

R
Interference Busy

SINR
Level Time

R 0.819 -0.121 0.655 -0.059

ρ 0.872 0.183 0.529 -0.404

TABLE I. Correlation of RTS Timeouts

@
@@

D
Interference Busy

SINR
Level Time

R 0.916 -0.071 0.262 -0.061

ρ 0.899 0.110 0.320 -0.558

TABLE II. Correlation of ACK Timeouts

conflicting with DATA packet are not initiated in between

the CTS transmission and the DATA reception (since

DATA-A is approximately zero). These results validate

a majority of the of the assumptions in capturing the

occurrence of timeouts; a significant proportion that is not

captured is the CTS-VCS (around 17% of the timeouts).
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Fig. 5. Timing comparison

Tables I and II use correlation (R) and Spearman’s

Rank Coefficient (ρ) to measure how successfully different

interference metrics predict timeouts 2. We evaluate the

IBLR RTS Timeout (R) and ACK Timeout (D) along
with the aggregate metrics in Tables I and II. Interference

Level was computed by measuring the interference at the

destination of each link by all the active sources. The Busy

Time is calculated as the amount of time the destination

of a link was busy due to interfering traffic (measured

in simulation). The ratio of the signal strength to the

cumulative interference by all the other sources was used

to calculate SINR metric. There is a strong correlation

2Correlation(R) is a statistical technique to measure the relationship
between a pair of variables. Spearman’s Rank Coefficient (ρ) is used
to measure the ranking order correlation which is especially helpful in
the absence of a linear relationship. R and ρ can take any real values
between −1 and 1. A value of 1 indicates a perfect correlation and a
value of 0 indicates independence of the two values. Negative values
indicate inverse relationship.



between IBLR and simulation result while the aggregate

interference metrics which are used in existing models [1]–

[3], correlate poorly; they cannot predict the effect of

scheduling.

The argument against using using existing accurate

CSMA models for estimating the impact of scheduling

is their high run-time. Figure 5 compares the time taken

to evaluate a given network by the IBLR formulation

and a recent accurate CSMA throughput model proposed

by Garetto et al [9] (CSMA-G). CSMA-G estimates the

expected throughput of each link using an iterative numer-

ical process. As a result, its runtime grows very quickly

with the size of the problem (note that the y-axis is

log-scale). CSMA-G model was terminated if it failed to

complete within 2 hours. In contrast, IBLR computation is

lightweight, making it suitable for use in a network flow

optimization framework.

B. Scheduling Aware Routing (SAR) evaluation:

In the next experiment, we evaluate the effectiveness

of scheduling aware routes (SAR) obtained using the

approach proposed in this paper. First, we compare SAR

against the routes obtained by a conventional routing

protocol (DSR [18]). Since SAR uses static routes, to

provide a fair comparison that eliminates routing overhead

and dynamic effects such as false disconnections [19],

we allowed DSR to use static routes (selecting the most

commonly used route found by DSR). We refer to such

routes as S-DSR. This main objective of this evaluation is

to demonstrate the vulnerability of Interference-only-aware

routing models (IAR) and the effectiveness of SAR under

IEEE 802.11. The scheduling-unaware IAR formulation

is prone to RTS/ACK timeouts, thus leading to poor

performance, while SAR has to pick the links that is both

interference-aware and scheduling-aware.

We first demonstrate the effectiveness of SAR in a

10×10 grid topology in a 1000×1000 area. The transmis-
sion range is around 390m. Two connections are placed

on the opposite edges of the grid.

Figure 6(a) compares the average throughput of the con-

nection for varying packet sending rates. The scheduling

effects play a less important role under lower traffic as

concurrent transmission between unsafe links is less likely.

Under high packet sending rates, it can be observed that the

throughput of the scheduling aware scheme is significantly

higher than the other schemes. The average throughput

of the S-DSR is lesser than the IAR and SAR routes.

The throughput of the DSR and S-DSR fluctuates widely

over different seeds. In around 30% of the cases, the best

routes from S-DSR performed better than the IAR routes.

DSR treats packet drops (after 4 ACK timeouts, or 7 total

timeouts for the same packet) as an indication of broken
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Fig. 7. Effect of multiple connections

path and switches to another path. Thus, the most used

path in S-DSR are likely to have relatively few timeouts

which will allow them to be used for a long time without

packet drops.

In this regular setting, SAR found routes with no

destructive scheduling interactions, leading to zero packet

timeouts (Figure 6(b)). An improvement of around 50%

was observed in end-to-end delay.

Next, we analyze the effect of cross connection interfer-

ence. The number of connections in the above grid topol-

ogy is increased, thus increasing the number of competing

links. Although SAR cannot find a routes with perfect

scheduling, it chooses the routes with low scheduling

conflicts while maintaining interference separated routes.

The normalized throughput is shown in the Figure 7.
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Fig. 8. Throughput study in random scenarios

We now examine the performance of these schemes

in 10 random scenarios with 64 nodes placed in

1000m×1000m area. Six connections were randomly se-
lected such that the source and destinations are approxi-
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Fig. 6. Study of connection parameters v/s packet sending rate in a Grid topology

mately 3 or 4 hops away. Figure 8 shows the throughput

improvement of SAR over other protocols (normalized

with respect to IAR throughput). An improvement of 33%

over IAR and a greater improvement over the DSR proto-

col under high loads was observed. Notable improvements

in other metrics like end to end delay and packet drops

were also observed. Detailed results is available in the

technical report [15].

VII. Concluding Remarks

Aggregate metrics of link capacity such as channel

busy time do not account for the effect of scheduling.

It is known that in CSMA networks, scheduling plays

a critical role in how interference is manifested. Thus,

it is desirable to avoid links that experience mutually

destructive interaction. We used this observation to develop

a methodology for rating link quality based on their

interactions with other links. We show that these estimates

correlate strongly with packet drops. We integrate the

developed model in a network flow formulation of traffic

engineering in static MHWNs. We show that capturing

the scheduling effects leads to considerable improvement

in performance of the derived routes. Our future work

includes continued refinement of the model, which uses

coarse approximations in several points.
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