

A MAC Interaction Aware Routing Metric in Wireless Networks

Saquib Razak ¹ *Vinay Kolar* ¹ Nael Abu-Ghazaleh ^{1,2}

¹Department of Computer Science
Carnegie Mellon University, Qatar

²Department of Computer Science
State University of New York, Binghamton

ACM MSWiM, 2010

Introduction

Routing in *Multi-Hop Wireless Networks* (MHWN) is becoming increasingly important:

- Mesh networks, Relay Networks, . . .

But, performance of routing is inefficient and unpredictable

- Complexity of wireless PHY and MAC
- Far below analytical limits

Motivation

There has been a vast number of routing metrics and protocols

- First generation: Hop-count based
- Second generation: Link-quality based (e.g., LQSR, ETT)

Current routing metrics

- Account for effect of interference at PHY layer
- At MAC layer? CSMA effects? Performance penalties?

CSMA protocols have many inefficiencies

- Different type of packet timeouts, exposed terminals, their impact ...

Contribution

Recent studies:

- A new approach that quantifies effect of interference at MAC layer
- Extended to study performance of **chains**.

We propose a routing metric that accounts for detailed CSMA MAC effects

Introduction

Introduction

Motivation and Contribution

Related Work

MAC Interactions

Interference in Chains

CSMA aware routing metrics

Self-interference based metric

Cross-chain interference based metric

Conclusions and Future work

Introduction

Introduction

Motivation and Contribution

Related Work

MAC Interactions

Interference in Chains

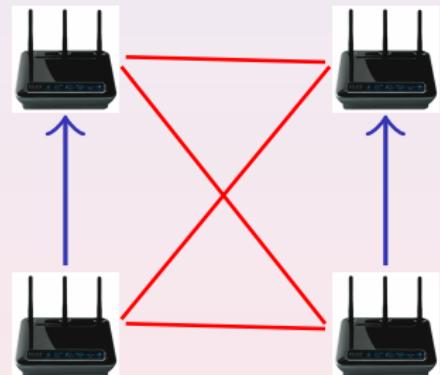
CSMA aware routing metrics

Self-interference based metric

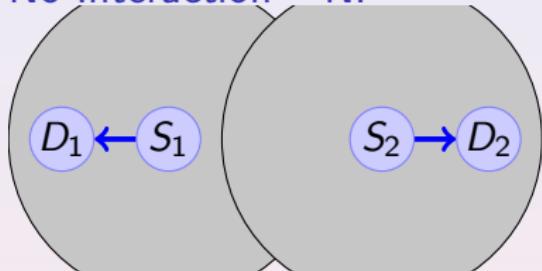
Cross-chain interference based metric

Conclusions and Future work

MAC interactions


Two-flows under CSMA/CA

Discrete number of interaction patterns:

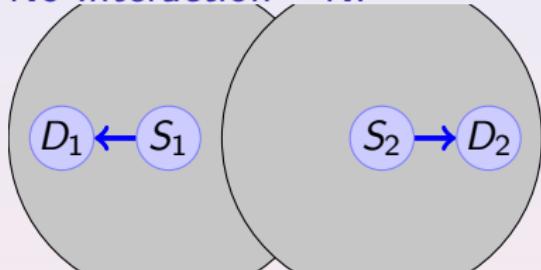

- 10 categories under SINR model

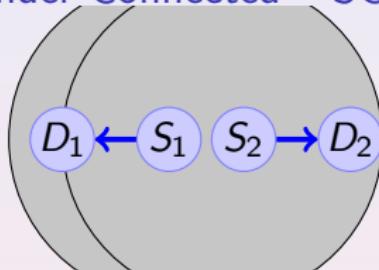
4 prominent categories:

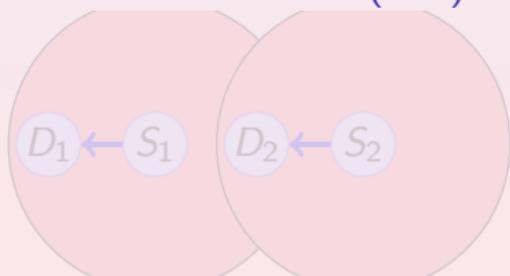
- No Interaction
- Sender Connected
- Classical Hidden Terminal
- Capture Effect

No Interaction – NI

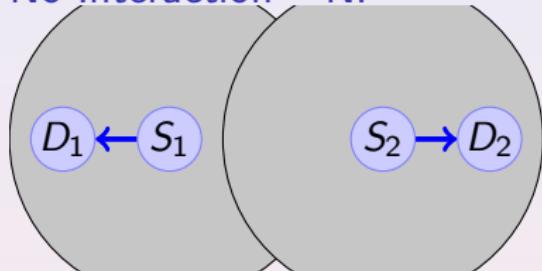
Sender Connected – SC

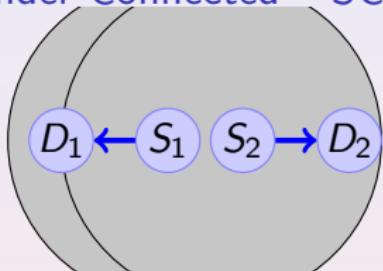

Hidden Terminal – HT (AIS)

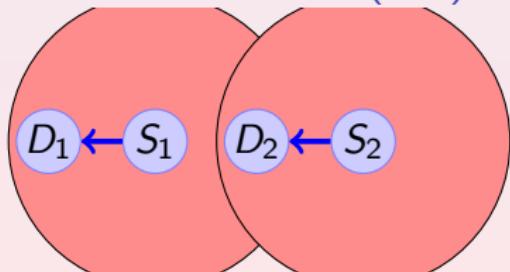

HT with Capture – HTC

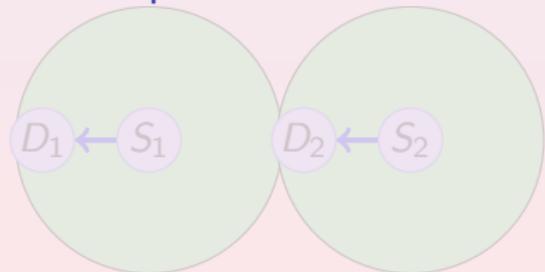

No Interaction – NI

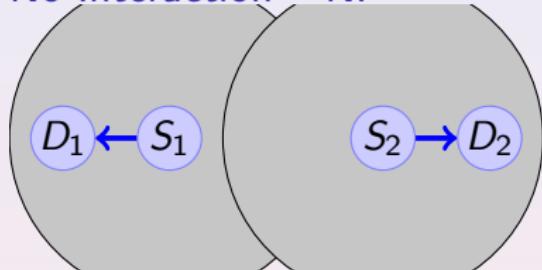
Sender Connected – SC

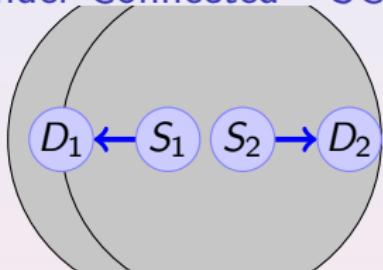

Hidden Terminal – HT (AIS)

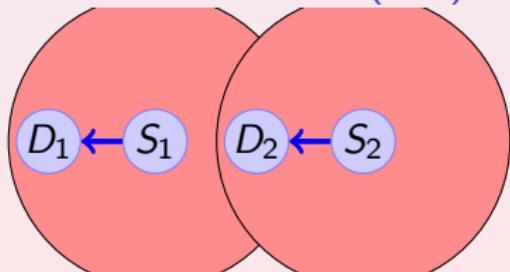

HT with Capture – HTC

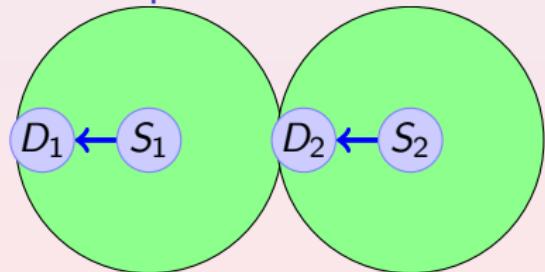

No Interaction – NI


Sender Connected – SC


Hidden Terminal – HT (AIS)


HT with Capture – HTC

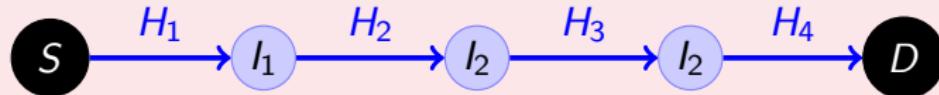

No Interaction – NI


Sender Connected – SC

Hidden Terminal – HT (AIS)

HT with Capture – HTC

Interference in Chains


CSMA interactions affect chain performance

Self-interference

- End-throughput does NOT depend on the interactions
- Network efficiency depends on the interactions

Cross-chain interference

- Efficiency and vulnerability of a chain depends on
 - Type of interaction: NI > SC > HTC > AIS
 - Location of interaction: Interactions nearer to sources matter the most

Introduction

Introduction

Motivation and Contribution

Related Work

MAC Interactions

Interference in Chains

CSMA aware routing metrics

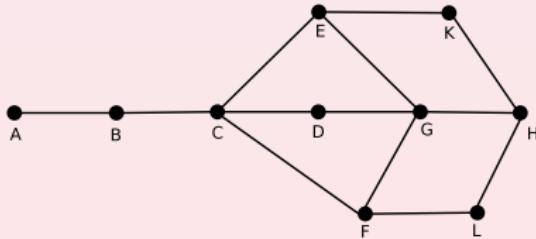
Self-interference based metric

Cross-chain interference based metric

Conclusions and Future work

CSMA aware routing metrics

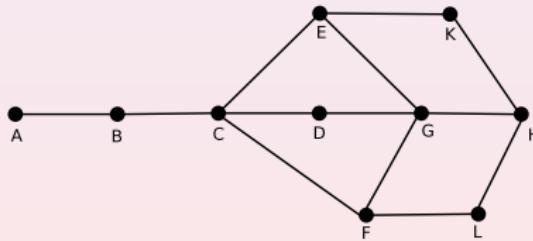
We propose two metrics


- MIAR-Self
 - Uses self-interference to assign weights
- MIAR-Cross
 - Considers interactions between all links in all chains

Recall: Chain efficiency depends on (*type, location*) of interactions

Idea: Assign route metric based on the type- and location- of its constituent links

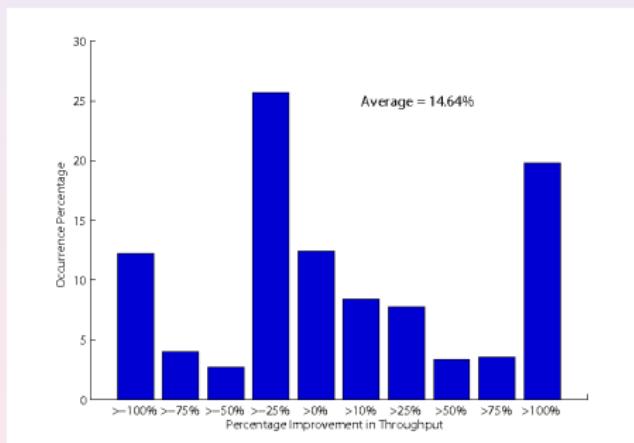
Approach:


- **Type-cost:** NI=0; SC=0; HTC=1; AIS=1.25
- **Location-cost:** 1st hop=1, 2nd = $\frac{1}{2}$, 3rd= $\frac{1}{4}$, ...
- $\text{MIAR-Self(ABCD)} = T_{AB}L_{AB} + T_{BC}L_{BC} + T_{CD}L_{CD}$

MIAR-Self Protocol

A distributed approach to compute and propagate routing metric

$$\begin{aligned}\text{MIAR-Self(ABCD)} &= T_{AB}L_{AB} + T_{BC}L_{BC} + T_{CD}L_{CD} \\ &= T_{AB} + \frac{T_{BC}}{2} + \frac{T_{CD}}{4} \\ &= T_{AB} + \frac{\text{MIAR-Self(BCD)}}{2}\end{aligned}$$



Propagate routing metric using traditional schemes (RREP, periodic broadcasts)

Performance of MIAR-Self

500 scenarios, 2-chains

- Average improvement=15%
- Network efficiency: Lesser network load in 80% of scenarios
- **Self-interference is insufficient**
 - Poor performance in 45% of scenarios
 - Cross-chain interactions

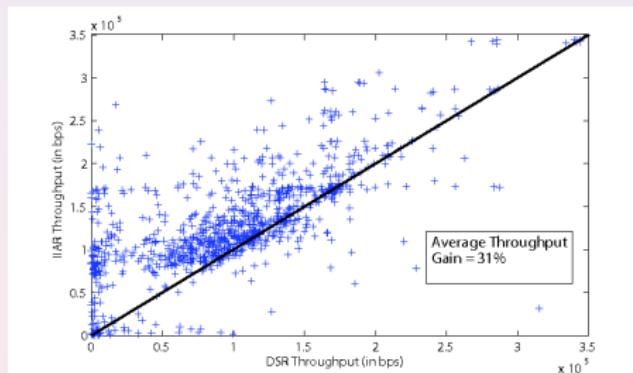
MIAR-Self

Cross-chain interference has large impact

But, direct extension of MIAR-Self is not scalable

- Requires computing of $(type, location)$ tuples for all link-pairs
- e.g., two 4-hop chains: 10^{16} combinations!

We empirically learn from simulating large number of scenarios


- Assign weight to each $(type, location)$ tuple
- Map the weighted sum of each chain to throughput
- Solve the system of equations

Centralized MIAR-Cross

- ① Assign random min-hop (ETX) route to each connection
- ② Evaluate MIAR-Cross for one chain, assume others constant
- ③ Iterate step 2 until convergence

Performance of MIAR-Cross

- Two and four 4-hop chains
- Average improvement=31%
- Throughput improves in 80% of scenarios

Improvement of MIAR-Cross

Introduction

Introduction

Motivation and Contribution

Related Work

MAC Interactions

Interference in Chains

CSMA aware routing metrics

Self-interference based metric

Cross-chain interference based metric

Conclusions and Future work

Conclusions and Future work

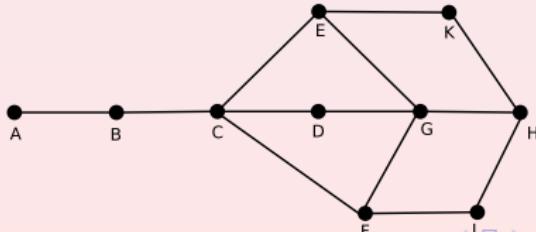
- Proposed two metrics that evaluate CSMA effectiveness in routes
 - Self-interference in a chain
 - Cross-chain interference
- Significantly improves throughput of weak chains

Future Work

Quantifying interference above MAC layer is complex, but important

- Statistical properties of metric that accounts for CSMA interactions
- Distributed MIAR-Cross protocol

Thank you.


For further information, please contact:
Saquib Razak: srazak@cmu.edu
Vinay Kolar: vkolar@cmu.edu

MIAR-Self in example chain

Node <i>B</i>		Node <i>A</i>	
Route	MIAR-Self	Route	MIAR-Self
BCEKH	1.25	ABCEKH	2.0
BCEGH	0.0	ABCEGH	1.25
BCDGH	0.0	ABCDGH	0.0
BCFGH	0.0	ABCFGH	1.0
BCFLH	1.25	ABCFLH	1.75

Table: Route metric at nodes *B* and *A*.

(AB, EK), (AB,EG), (BC,KH) and (BC,LH) have AIS interactions, and pairs (AB, FL) and (AB,FG) have HTC

