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Abstract

The ability of a sensor node to determine its physical lo-
cation within a network (Localization) is of fundamental
importance in sensor networks. Interpretating data from
sensors is not possible unless the context of the data is
known; the context of the data is most often determined
by tracking its physical location and the sample time. Ex-
isting research has focused on localization in static sen-
sor networks where localization is a one-time or low fre-
quency activity. In contrast, this paper considers local-
ization for mobile sensors: when sensors are mobile, lo-
calization must be invoked periodically to enable the sen-
sors to track their location. Localizing more frequently
allows the sensors to more accurately track their location
in the presence of mobility. However, localization is a
costly operation since it involves both communication and
computation. In this paper, we propose and investigate
adaptive and predictive protocols that control the time of
localization based on sensor mobility behavior to reduce
the energy requirements for localization while bounding
the localization error. We show that such protocols can
significantly reduce the localization energy without sacri-
ficing accuracy (in fact, improving accuracy for most sit-
uations). Using simulation and analysis we explore the
tradeoff between energy efficiency and localization error
due to mobility for several protocols.

1 Introduction

Localization is the ability of a sensor to find out its physi-
cal coordinates; this is a fundamental ability for embedded
networks because interpreting the data collected from the
network will not be possible unless the physical context of
the reporting sensors is known. In addition, localization is
of importance in Mobile Ad hoc NETworks (MANETS):
several protocols utilize geographical information to im-
prove operation (e.g., [6]). Existing research has focused
on addressing the localization problem for static sensor

networks (sensors once deployed are stationary through-
out life-time).

Localization may be carried out in one of several ways.
If the node is equipped with a Global Positioning Sys-
tem (GPS) card, it can determine its coordinates by re-
ceiving signals from a number of satellites. Differen-
tial GPS requires that the node also receives signals from
nearby ground reference stations. GPS cards are often
too expensive and/or power hungry for embedded micro-
sensors and other low end mobile devices. In addition,
GPS does not work inside buildings where the Satellite
signals cannot be received. Alternative localization ap-
proaches have been proposed to allow nodes to learn their
location either from neighboring nodes or from reference
beacons [3, 10]. In these approaches, the node has to com-
municate to/from beacons and/or neighboring nodes. For
example, in one approach a node requiring localization
may broadcast a query to all beacons in range and then re-
ceive replies from each of them allowing it to compute its
location as the center of gravity of the beacon locations.
Since all these approaches require communication (either
sending, receiving or both), localization requires signifi-
cant energy.

In this paper, we consider energy-efficient dynamic lo-
calization protocols for mobile wireless sensor devices.
More specifically, we are concerned with the problem of
deciding when to invoke localization, regardless of the un-
derlying localization mechanism. Since there is an energy
cost involved in localization, we would like to minimize
the localization frequency. However, since the sensors are
mobile, localization must be carried out with a frequency
sufficient to capture the sensor location with acceptable
error tolerance. Although we focus primarily on sensors,
the proposed algorithms also apply to other mobile node
localization problems including those in MANETSs and
last hop networks.

Several applications utilize mobile sensors. For exam-
ple, ZebraNet is a habitat monitoring application where
sensors are attached to zebras and collect information
about their behavior and migration patterns [5]. In addi-



tion, applications where sensors are deployed on humans
(e.g., in cellular phones to measure reception quality and
help assess coverage) or vehicles have been suggested.
For such applications dynamic management of localiza-
tion is necessary to maintain energy efficient operation.

A simple algorithm for localization is to do so at a fixed
frequency (for example, this is the algorithm used in the
ZebraNet habitat monitoring application [5]). However,
using a fixed frequency may be insufficient if the sen-
sor is moving faster than the localization frequency can
keep track of. Conversely, if the sensor is not moving
fast, the localization frequency may be overly aggressive,
leading to expensive unnecessary localization operations.
To address these effects we propose two new classes of
localization approaches: (1) Adaptive; and (2) Predic-
tive. Adaptive localization dynamically adjusts the local-
ization period based on the recent observed motion of the
sensor obtained from examining previous locations. This
approach allows the sensor to reduce its localization fre-
quency when it is moving slowly, and to increase it when
it is moving fast. In the second approach, we let the sen-
sors estimate their motion pattern and use this to project
their location in the future, without explicitly localizing.
If the prediction is accurate, which occurs when nodes are
moving predictably, estimates of location may be gener-
ated without localization, allowing us to further reduce the
localization period. We propose algorithms that fit the two
classes above and compare them to the base solution both
using simulation and analysis. We show that dynamic lo-
calization can significantly improve the energy efficiency
of localization without sacrificing accuracy in the location
estimation (improving accuracy in most situations).

The remainder of this paper is organized as follows.
Section 2 overviews related work. In Section 3 we define
the dynamic localization problem and present candidate
protocols for addressing it in Section 4. Section 5 presents
analysis of the performance of the protocols under special
conditions. In Section 6 we carry out an evaluation study
of the protocols. Finally, in Section 7 we present conclud-
ing remarks.

2 Related Work

Localization has received a lot of attention in the con-
text of static sensor networks. The protocols presented in
this paper are independent of the actual localization tech-
nique. However, we now mention some of the state-of-
the art techniques which can be used for localization. He
et. al [4] have classified existing localization techniques
into two categories: range-based and range-free.In range-
based techniques, information such as distances (or an-
gles) of a receiver are computed for a number of refer-

ences points using one of the following signal strength or
timing based techniques and then position of the receiver
is computed using some multilateration technique [12].
However, range-free techniques do not depend upon pres-
ence of any such information.

Localization techniques typically require some form
of communication between reference points (nodes with
known coordinates) and the receiver (node that needs
to localize). Some examples of communication tech-
nologies are RF-based and acoustic based communica-
tion. In RADAR system [1], RF-based localization is sug-
gested, where distance is estimated based on received sig-
nal strength. Cricket [10] uses concurrent radio and ultra-
sonic sounds to estimate distance. Some researchers have
used Time based techniques such as Time-of-Flight(TOA)
[12], Time-Difference-of-Arrival(TDOA) [10, 11] be-
tween reference point and the receiver node as a way to es-
timate distance. Niculescu et. al [8] proposed using angle-
of-arrival to estimate position. Recently He et. al [4] pro-
posed range-free techniques for localization.

A straightforward localization approach would make
use of Global Positioning System (GPS). Existing re-
search projects such as zebra-net [5] uses a GPS based
localization, where mobile sensors find out their location
every three minutes. He et. al [4] pointed out, GPS based
systems require specialized hardware for precise synchro-
nization with the satellite’s clock. GPS uses one-way
flight time information whereas other systems such as Lo-
cal Positioning System (LPS) [12] use round-trip-time to
avoid time synchronization.

Bulusu et. al [3] studied signal strength based and con-
nectivity based techniques for localization in outdoor en-
vironments. Recently Kumar et. al [7] proposed using
dead reckoning-Based Location services for mobile ad-
hoc networks. However, to the best of our knowledge this
paper is the first attempt to apply such predictive tech-
niques for localization in mobile sensor networks.

3 Problem Definition

At every localization point, the node invokes its local-
ization mechanism (e.g., using GPS, triangulation based
localization, or otherwise) to discover its current location
(z4,yi). The localization point vector is the sequence of
localization points collected by a sensor is denoted S;. We
assume that the localization mechanism estimates the cur-
rent position with a reasonable tolerance.

In the time duration between two consecutive localiza-
tion points, the error in the estimate of the location in-
creases as the node moves (on average) increasingly fur-
ther from its last location estimate. In order to control
this error, localization must be repeated with enough fre-



quency to ensure that the location estimate meets some
application-level error requirements (e.g., the estimate re-
mains within a prespecified threshold from the actual lo-
cation). However, carrying out localization with high fre-
quency drains the node’s energy. Solutions to this prob-
lem must balance the need to bound error with the cost of
carrying out localization. Exploring protocols that effec-
tively estimate location while minimizing the localization
operations is the problem we consider in this paper.

We keep our analysis independent of the specific local-
ization mechanism used. Note that dynamic control of
localization is needed whether localization is carried out
on demand (i.e,, the node queries neighbors or fixed local-
ization nodes for localization information) or proactively
(e.g., by having localization nodes periodically transmit
localization beacons, or using GPS). If localization is
on-demand , the localization mechanism can be invoked
when needed. Alternatively, if the localization is done pe-
riodically without control of the sensor node, the node can
still control its localization frequency by deciding when to
start listening to the beacons. Since receiving packets or
GPS signals consumes significant energy, controlling the
localization frequency also applies for such schemes.

The primary tradeoff is between the observed localiza-
tion error and the energy consumed. The localization er-
ror stands for divergence of reported location from actual
location. We measure divergence in terms of euclidean
distance between actual and reported coordinates — we
term this the absolute error. We also consider a threshold
based error metric where we compare the absolute error to
an application defined tolerance distance (dist;oierance); @
localization error lower than tolerance distance is accept-
able to the application. We measure the percentage of the
time that the localization estimate is within the application
defined threshold.

4 Dynamic Localization Protocols

In this section, we introduce the proposed protocols
for dynamic sensor localization. We evaluate three ap-
proaches for dynamic localization: (1) Static localization:
the localization period is static; (2) Adaptive localization:
the localization period is adjusted adaptively, perhaps as
a function of the observed velocity which can be approx-
imated using the last two localization points; and (3) Pre-
dictive localization: in this approach, we use dead reck-
oning to project the expected motion pattern of the sensor
based on the recent history of its motion. In the remainder
of this section, we introduce our proposed protocols for
each of these approaches in more detail.

Static Fixed Rate (SFR): This is the base protocol where
localization is carried out periodically with a fixed time

period ¢. This protocol is simple and its energy expendi-
ture is independent of mobility; however, its performance
varies with the mobility of the sensors. Specifically, if a
sensor is moving quickly, the error will be high; if it is
moving slowly, the error will be low, but the energy effi-
ciency will be low.

Dynamic Velocity Monotonic (DVM): In this adaptive
protocol, a sensor adapts its localization as a function of
its mobility: the higher the observed velocity, the faster
the node should localize to maintain the same level of er-
ror. Thus whenever a node localizes, it computes its ve-
locity by dividing the distance it has moved since the last
localization point by the time that elapsed since the local-
ization. Based on the velocity, the next localization point
is scheduled at the time when a prespecified distance will
be travelled if the node continues with the same velocity.
This distance, for example, can be the application spec-
ified desired maximum error threshold. Thus, when the
node is moving fast, localization will be carried more of-
ten; when it moves slowly, localization will be carried out
less frequently.

In this protocol, there is a settable parameter « that rep-

resents the target maximum error. At every localization
point, the current estimated velocity is computed. Based
on this value we estimate the time that the target maxi-
mum error will be reached if the node continues with the
same velocity — the next localization point is scheduled at
that point. Note that this approach assumes that a node
is moving with a constant velocity between localization
points. This may not be always accurate — for example, if
a node was standing still for half the period, then started
moving at a velocity v, the estimated velocity will be %,
and we will end up with suboptimal localization (e.g., ex-
ceeding the error threshold for some time). Moreover, for
very low speeds the localization period may be computed
adaptively to be very large (e.g., a period of infinity would
be predicted if the node is standstill). Similarly, if the
speed is very high, the localization period may become
very low, wasting a lot of energy. To account for these
effects, we place an upper and a lower limit on the lo-
calization periods. The effect of these is explored in the
analysis section.
M obility Aware Dead Reckoning Driven (M ADRD):
This is a predictive protocol that computes the mobility
pattern of the sensor and uses it to predict future mobil-
ity. Depending on how well the mobility of the sensor
can be predicted, the localization frequency can be sign-
ficantly reduced using this approach. To the best of our
knowledge, this is the first paper to appy dead reckoning
for localization in mobile sensor network.

Using dead reckoning localization should be triggered
when the expected difference between the actual mobil-
ity and the predicted mobility reaches the error threshold.



This is in contrast to DVM where localization must be
carried out when the distance from the last localization
point is predicted to exceed the error threshold. Thus, if
the node is moving predictably, regardless of its velocity,
localization can be carried out at low frequency; if the pre-
dicted mobility pattern is perfect and holds for all future
time, no further localization would be necessary.

4.1 Predicted Mobility Pattern

The predicted mobility pattern will generally be imperfect
due to the following reasons: the developed model can be
inaccurate — the sampled points may not be sufficient to
discover the mobility pattern. Furthermore, we may as-
sume an inapporpriate mobility model (e.g., assuming that
the node is moving at constant velocity when it has an ac-
celeration component). In addition, since the localization
mechanism introduces some error in the computed local-
ization points, even if we have sufficient samples and the
assumed model matches the true mobility pattern we will
end up estimating mobility inaccurately due to the error
in the localization points. Finally, sensors will typically
not follow a predictable model — for example, there may
be unpredictable changes of directions or pauses that will
cause the predicted model to go wrong. For all these rea-
sons it is necessary to continue localization periodically
to detect deviations from the predicted model. If dead
reckoning is carried out aggressively, then a change in the
mobility pattern (for example, a standstill node starting
to move) can cause large errors as the node continues to
predict location based on past behavior.

Thus, there are a number of different protocols that
can be constructed with these properties. Specifically,
these protocols may differ in how they construct the pre-
dicted mobility pattern (e.g., a first order model that as-
sumes constant velocity between points, or a second or-
der model that assumes a velocity and acceleration com-
ponents). Moreover, they may differ in how often they
localize to detect variations between the predicted and ac-
tual mobility patterns. We do not explore the full range
of such protocols. Instead, we select a simple instance of
dead reckoning protocols that works as follows.

Accounting for differences between the predicted
model and the actual mobility of the sensor, including er-
rors due to changes in the mobility pattern that occur after
or during dead-reckoning estimation is almost impossible.
In practice, we use the following approach. Like DVM,
and for similar reasons, we define maximum and mini-
mum localization periods. Moreover, we score the per-
formance of our prediction at every localization point by
comparing the predicted location to the actual location. If
the prediction is erroneous (larger than a prespecified rate
of divergence), we move towards a low confidence state

err>thresh

err<=thresh
err>thresh err>thresh

err<=thresh
err<=thresh
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err<=thresh

Figure 1: State Diagram for Dead Reckoning

and become more aggressive in localization. The intuition
is that the mobility pattern is changing, and more localiza-
tion is needed to capture the new mobility pattern as well
as to bound the localization error. However, if the predic-
tion is accurate, our confidence in the predictor increases
and we increase the localization period.

A state diagram for MADRD is shown in Figure 1. In
this diagram, HC refers to the high confidence state where
the predictor is scoring well and localization period is in-
creased. LC refers to the low confidence state where the
predictor is not scoring well and the period is decreased.
Erroneous predictions move the predictor towards the LC,
while correct predictions move it towards HC. States S1
and S2 provide some hysterisis between LC and HC.

5 Analysis for Special Cases

In this section, we evaluate SFR and MADRD under the
following special conditions: (1) constant velocity with a
turn; and (2) constant velocity with periods of no motion.

5.1 Change of Direction Scenario

Bnaded

(it sfr, Yot

Figure 2: Error if deviation of 6 degrees is taken

We consider the case where the node taking a turn of
0 degrees. Let the distance at which the node takes the
deviation be d meters after the localization point (z;, y;).
The time at which the deviation occurs is greater than time
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Figure 3: Errors in SFR and MADRD

tand lesser than t+¢,¢,. Figure 2 shows the movement of
the node. The distance z+y signifies the distance covered
in time t, ¢, with constant velocity v.

The error in localization between time ¢ and ¢+t ¢, can
be split up into two parts. The first part is error before the
deviation occurs and the second one is after the deviation.
Let n be any point on the expected line of motion that the
node would have travelled if it had not taken the deviation.
If the node would have travelled a distance of n along
expected straight line, it will travel the same distance after
deflection because of constant velocity. Let n = 0 at the
point of deviation and increases along the straight line.

511 SFR protocol

Let the node use SFR protocol for localizing. The the
error at point n will be the length of line es ¢, shown in
Figure 2. The equation for e, fr is given by Equation 2.

¢ n X sin f )
anqg = —————
(z+n x cosb)
n X sin f
Esfr = p (2)
sin o

Figure 3 shows the graph of error against n . As n in-
creases from 0 to y, the e, s, varies as shown in the graph
in Figure 3. We can see that for n > 0, the curve is not
linear. This can be seen clearly in the case where § = 135.

As the angle of deflection increases from 0 degrees to
90 degrees, the error in SFR decreases because the line of
motion will be nearer to (z;, y;) when 6 increases. For an-
gles greater than 90 degrees and lesser than 180 degrees.
The error decreases as node moves towards (z¢,y;) and
then starts increasing.

At 0 = 180 degrees, the error touches zero after the
node has covered z distance and then the error starts in-
creasing linearly. Now the error vector is in other direc-
tion than the earlier error vector. Graph in Figure 3 shows
the absolute value of the error.

5.1.2 MADRD protocol

®3)

The length of the line e, 444 in Figure 2 shows the the er-
ror in MADRD protocol. It increases linearly as the n in-
creases. This is given by the equation 3. Graph in Figure 3
shows the comparison of MADRD protocol with SFR for
different angles. We observe for acute angles, MADRD
protocol performs better than the SFR. However, if 6 is
between 90 degrees and 270 degrees, SFR starts per-
forming better. This is because the node is moving away
from the predicted motion line and e,y, is smaller than
the €madrd-

€madrd = 2 X M X sin 3

5.2 Pause Scenario

In this case, the node comes to a standstill after being in
motion with velocity v. Let the distance at which the node
stops be d meters after the localization point (z¢,y;), but
before the next localization point. In this case, the error
in SFR increases linearly until d, when it stops increasing.
Conversely, the error in MADRD starts at 0 while the node
maintains the speed of v. However, when it stops moving,
the error in MADRD starts increasing proportionately to
v since the predictor assumes that the node continues in
motion. Interestingly, if the node is standstill but suddenly
starts moving with velocity v, SFR and MADRD will be-
have identically until the next localization point (which
may be different for each). The reason is that SFR’s uses
the implicit prediction that the node remains at the point
of the last localization. In this scenario, MADRD uses the
same predictor since the node actually was not moving at
the last localization point.

Figure 4(a) shows the behavior of MADRD when a turn
occurs. In this case, the MADRD estimate continues pre-
dicting motion in the original direction. Moreover, even
when localization occurs, the average velocity computed
as a predictor for the next period will be off as well (it rep-
resents the weighted average of the original as well as the
new velocities). A similar trend is observed in Figure 4(b)
where a node pauses after being in motion at a constant
velocity. In this case, the MADRD estimate overshoots
the node along the old trajectory when it pauses.

6 Experimental Results

In this section we present the results of our experiments
with the proposed protocols. In order to analyze the proto-
cols, we use the ns-2 discrete event simulator [9]. We use
a simulation area of 300 by 300 meters, with sensor trans-
mission range of 100 meters using IEEE 802.11. We use
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Figure 5: Instantaneous Error for Speed (4-5 m/s).

36 equally spaced beacon nodes for localization and 24
mobile nodes carrying out localization. Each simulation
was run for 900 seconds. We use a query based localiza-
tion mechanism: a node that is interested in localization
broadcasts a request — beacons that receive the request re-
ply with their location which can then be used to trian-
gulate the nodes own location. The beacons are placed
such that at least three, and sometimes four, beacons are
able to answer each query. Please note that our results
are not dependent on this localization model: we measure
the energy in terms of number of localization operations,
regardless of how the localization is carried out.

The assumed mobility model has significant implica-
tions on the performance of the localization protocols. We
consider first the random waypoint model, widely used in
the mobile ad hoc network community. In this model, a
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Figure 6: Localization Frequency as a function of mobility and pause time.

node picks a random location in the simulated area and
starts moving to it with a controllable average velocity.
When the node reaches the destination, it pauses for some
fixed pause time. The model is predictable while the node
is moving, or for the duration of the pause but not during
the period where it pauses or when it starts moving. Fur-
ther, if the pause time is zero, the model is unpredictable
when the node reaches its destination, then picks another
randomly and starts moving towards it. We can control
how predictable the model is by manipulating the average
speed and the pause time — if the pause times are short, the
node has more unpredictable behavior. Finally, we present
some limited results with Gaussian Markovian mobility
pattern which does not lend itself well to prediction using
a constant velocity model as we do in MADRD. We used
BonnMotion tool [2] to generate the various scenarios.
Figure 5 shows the Instantaneous error for random way-
point mobility model with speed uniformly distributed be-
tween 4-5 m/sec. The SFR period in this case was chosen
to be 2 seconds — the node invokes localization once ev-
ery two seconds. Note that in the case of SFR and DVM
the node assumes that the last measured localization point
is its current location. Therefore Errorr,s:, continues
to grow between two successive localization points as the
node moves away from its last localization point. Fig-
ure 5 shows the instantaneous error for SFR, DVM and
MADRD protocols. In the case of SFR, sensor 0 localizes
approximately at times 0.6, 2.6. As one can see upon lo-
calization the error lies within the localization mechanism
error range (which we picked to be uniformly distributed
between 0 to 0.5 meters). In between the two localization
points, the error increases linearly up to 8 meters. In the
case of DVM, a similar trend is seen again, however due to
adaptive localization intervals, the magnitude of the error

is lower than that of SFR; DVM was able to discover that
it needs to localize more often than once every 2 seconds.
In the case of MADRD protocol, the ability to predict the
current location gives rise to very low error since the node
actually follows the prediction. This graph clearly shows
the strength of dead-reckoning proctors due to their pre-
diction capability.

Figures 6(a), 6(b) and 7 show the number of localiza-
tion operations for three different average velocities nor-
malized to the number needed by SFR. The number of lo-
calization operations correlates directly with localization
energy since the average cost of localization is constant
for most localization schemes. This fact is highlighted
in Figure 8 which shows the energy expenditure for the
same scenarios as in Figure 7 — the shapes of the figures
are very similar. In the case of low mobility 6(a), DVM
and MADRD localize less often than SFR. However, as
the speed increases, the energy expenditure of DVM and
MADRD grow more than that of SFR. Note that since
these protocols are adaptive, even for high speeds they
adapt well with the increase in pause time thereby spend-
ing less energy than SFR when pause time is high.

Figure 9(a) shows the absolute error as a function of
mobility for the four protocols for two different pause
time values. The primary observation here is that the
error for SFR grows linearly with the average velocity
while both DVM and MADRD manage to adapt their lo-
calization and maintain an error that does not grow sig-
nificantly with the velocity. Note that under high mobil-
ity, this requires more localization operations than SFR
as was reflected in the localization frequency diagram for
high speeds and low pause time. Figure 9(b) shows the
effect of pause time for one velocity. Since pauses affect
the prediction of DVM and MADRD, their advantage in
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terms of error relative to SFR is highest with no pause
time. At very high pause times, all three protocols per-
form well. An alternative measure of localization effec-
tiveness is to monitor the fraction of the simulation time
where the localization estimate was within an application
specified threshold (in this case 5 meters). Figure 9(c)
shows the accuracy as a function of mobility for two pause
times. Again, the same trend observed in error is observed
here — DVM and MADRD perform much better than SFR,
especially as mobility grows. Figure 9(d) shows the accu-
racy for one average velocity as the pause time is varied.

Recall that to protect against inaccuracies in the predic-
tion model or unexpected changes in the mobility model
MADRD must limit the maximum period between local-
izations (upper query threshold). Figure 10 shows the ef-
fect of this tradeoff — we vary the upper query threshold

and observe the effect on the accuracy, error and localiza-
tion energy. If the threshold is raised, this allows MADRD
to aggressively predict location without forcing localiza-
tion operations to ensure that the predictions are accurate.
Thus, at high thresholds, higher energy savings are possi-
ble, but the expected error grows. A good value for the up-
per threshold must balance these two effects. Finally, we
can use backtracking as explained in the protocol section
to recover from some erroneous localization estimates.

Finally, in Figure 11(a) and Figure 11(b) we evaluate
the algorithms using the Gaussian mobility model from
an energy and error perspective. The Gaussian model
is quite different from the assumed monotonic velocity
model that underlies both DVM and MADRD; thus, this
represents one of the worst case scenarios for these proto-
cols. Nonetheless, they continue to perform comparably
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to SFR (better in most cases), even for this inappropri-
ate mobility model. In practice, we expect each node to
have multiple predictors and continue to score them. At
each time, the predictor which has recently been scoring
highest would be used to generate the next localization
period.

7 Concluding Remarks

In this paper, we explored approaches and tradeoffs to
the problem of dynamically managing the Localization
period for mobile devices. Localization has several appli-
cations both in Sensor Networks and Mobile Ad hoc Net-
works; for example, accurate localization is necessary to
effectively interpret sensor data collected by mobile sen-
sors. A basic localization scheme would simply localize
periodically, with a fixed period. However, since the pe-
riod is not sensitive to the actual mobility of the node, the
selected period may be too aggressive (wasteful) or insuf-
ficient to localize accurately.

We explored two algorithms for dynamic localization:
(1) DVM: an adaptive algorithm that matches the local-
ization period to the observed velocity of the node; and
(2) MADRD: a predictive algorithm that uses dead reck-
oning to estimate the location of a node assuming it is
following its recently tracked trajectory. We character-
ized the performance of these algorithms for two mobility
patterns under different velocities and pause times. Both
proposed approaches significantly outperform static local-
ization both from an energy and accuracy perspectives. In
particular, MADRD performance was excellent in almost
all situations that were studied; however, it is best suited to

mobility patterns that are predictable and this result may
not generalize to other mobility scenarios.

In all three types of protocols, especially the adaptive
and predictive ones, unexpected mobility behavior of the
nodes can cause erroneous localization. If such situations
are to be minimized, highly aggressive (and inefficient)
localization would be needed. Conversely, if some er-
rors can be tolerated, we can adapt the localization period
more aggressively resulting in significant energy savings.
We propose a technique called backtracking to allow tem-
porary recovery from errors. Specifically, once localiza-
tion is carried out we may discover that the measured lo-
cation is far from the expected one. In this case, it is pos-
sible to update the location estimate after the fact (e.g.,
using linear interpolation between the last two points).
This is straightforward for samples that have not been sent
yet. However, for data that has already been sent, this re-
quires sending a correction signal. Since this signal costs
energy, we should still strive to minimize the amount of
backtracking needed by the protocols. Another future ap-
proach to address the same problem is to use feedback
from motion sensors (e.g., an accelerometer). If such a
device is available, it can be used to interrupt the primary
protocol when a change in the mobility pattern is sus-
pected, causing it to drop back to training mode to capture
the new mobility pattern.

In the future we would like to implement these proto-
cols on existing sensor prototypes (eg. Motes) and study
their performance. The Zebranet project has developed a
simulator for studying systems tradeoffs in wild-life track-
ing environment in a realistic setting. We would like to
port our protocols from ns-2 to ZNetSim [5] and study the
performance for an existing application. At present our
work is limited to individual mobility models; but in the
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Figure 11: Characterizing protocol behavior for Gaussian Mobility Model.

future we will also explore group mobility models. For
military scenarios for example we can imagine a group
of soldiers moving together to achieve certain goal. We
would like to evaluate the protocols proposed in this pa-
per for such scenarios and suggest some improvements.
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