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Abstract—The uncertainty of the wireless channel in realistic
wireless networks inhibits the effectiveness of the of the higher
level protocols and models to predict the effect of channel.
Measurement based models and protocols overcome this hurdle
by measuring the essential lower level parameters and use
these empirical data as an input for decision making at the
higher layers. Received signal strength and error rates are
two such measured parameters that are extensively used for
capturing the effect of randomness in the wireless channel.
Statistical characterization of the empirical data not only helps
to understand the randomness of their behavior but also benefit
the measurement based applications that base their judgment
on the observed values. In this paper, we analyze the empirical
values of received signal strength and error rates from IEEE
802.11 indoor wireless network. We methodically classify the
links based on their behavior, analyze their statistical distribution
and independence properties, and study the effect of fading for
varying packet sizes and standard modulation schemes. While
classifying links into discrete categories has been proposed before,
the statistical properties of each category and the mechanism to
recognize the category of the link remains uncertain. In this
paper we show that while all links do not exhibit a general
statistical behavior, the statistical behavior of each category can
be generalized. Each category has different behavior in terms of
statistical distribution, memory and the temporal variation of the
parameters. We observe that the error rates of strong and weak
links are more stable and predictable, while the effect of fading
introduces significant volatality in an average quality link.

I. INTRODUCTION

Recent years have seen a tremendous growth in the ap-
plications and the deployment of wireless data networks due
to its ability to enable pervasive applications. With such a
wide-spread demand for wireless access and sparse capacity of
wireless networks, predicting and optimizing the performance
of the applications operating in a wireless data networks
is a high-impact and a hard research problem. A perfect
characterization of wireless data networks is unrealistic since
the wireless links typically experience high error rate, large

channel variations and complex interference patterns. Existing
experimental studies [1], [2] have shown that simplistic as-
sumptions, that are often employed by simulators and models
to judge the performance of the network, deviate significantly
from the observed phenomenon.

In such an volatile environment, measurement based mod-
els [3]-[5] and protocols [6], [7] are being extensively used
to empirically measure the unpredictable parameters and use
these measured values for predicting or optimizing the appli-
cations at different layers of the network stack. Such Measure-
ment Based Applications (MBAs) employ a measurement phase
where measurement traffic is injected into the network for
measuring the necessary parameters. Then educated heuristics
are employed to predict or optimize the performance of the
protocol by using these measured parameters. They are more
susceptible to changes in network topology and traffic and
have shown outperform the non-measurement based counter-
parts by a large margin [6], [7].

One of the first steps in realizing the capability of MBAs
in realistic networks is to capture the important low-level
parameters by considering the practical limitations of the
wireless cards. A vast majority of the current wireless data
networks use IEEE 802.11 based cards which restrict the
altering and fetching all the low-level parameters. For example,
off-the-shelf Atheros based 802.11 cards provide allows to
fetch the Received Signal Strength Indicator (RSSI) and Noise
at the granularity of a packet. While it allows us to choose
transmission rate from a set of standard rates, it dictates
the modulation used for each rate. Received Signal Strength
(RSS), Signal-to-noise ratio (SNR) and the packet/bit error
rates (PER/BER) of a link are some of the primary measurable
parameters that are used by many higher layer protocols. For
example, a mixture of these parameters are used in several
higher layer protocols like: (1) AP association in WLANS [8];
(2) Transmission rate-control in WLAN and Multi-hop Wire-



less Networks (MHWNS) [6], [9]; (3) Access the quality of
the links for routing in MHWNSs [7]. We focus on the RSS
and the error rate parameters in this paper since SNR can be
derived directly from the measured RSS and noise values.

Based on the measurement period, MBAs can be graded
from static MBAs where values are measured once and used
forever to real-time MBAs where measurement is performed
periodically. While frequent measurement and dissemination
of these values to the neighboring nodes will enable better
performance of the MBAs, it drastically increases the mea-
surement overhead. For example, many routing protocols like
OLSR and ETX requires transmission of broadcast packets to
infer the link quality. Constant transmission of these control
packets results in humongous measurement overhead while
infrequent measurement is vulnerable to stale and unrepre-
sentative values. It is necessary to study the temporal varia-
tion of these primary parameters in order to optimize these
measurement window. In this paper, we first study the this
trade-off by analyzing the decay of the measured values with
respect to time for different variety of links. Specifically,
our analysis answers the following questions: (1) Do these
parameters vary over different quality of links and different
modulation schemes? If so, how? (2) How often should the
RSS be disseminated in the neighborhood such that they are
representative? Can this dissemination overhead be justified?
From these experiments, we conclude that the time-variation
of the parameters is strongly dependent upon the quality of
the link and dissemination of RSS values once in 2-5 seconds
is reasonable for a majority of the links.

Another important aspect for MBAs is the approximating
the variation of of the measured values within the measurement
period. A wide variety of assumptions are employed in char-
acterizing the variations of the primary parameters within the
measurement period which have not been thoroughly validated
by experiments. These parameters have been represented in
different forms in the literature. While some research work
assume these parameters as constants [5], [10], [11], oth-
ers approximate them as i.i.d. random variables from some
known statistical distribution [3], [12]. Many studies have even
pointed out that the RSS varies rapidly and randomly [2]
and it is hard to deterministically or statistically characterize
them. With such differing abstractions and conclusions about
these primary parameters, empirical study and characteriza-
tion not only provides insight into their behavior, but also
aids in the design of practical real-time models, network
planning/provisioning tools and design of efficient dynamic
protocols. The second contribution of the paper is to validate
the generality of these assumptions by analyzing the statistical
properties of RSS and error rates for different link qualities
and transmission rates. We find, as previously stated, that the
distribution of the RSS and PER values are strongly dependent
on the link quality. Strong links and weak links are separated
by alayer of transitional grey zone where fading of the channel
leads to unexpected and interesting distribution of the error
rates. We analyze the variation of error rates with respect to
different transmission rates. Finally, we use our conclusions

from the empirical study of these parameters to develop a
throughput model and show our model the results of the model
with the experimental values.

II. EXPERIMENTAL OBSERVATION

In this section, we analyze the statistical properties and the
behavior of RSS and error rates.

A. Measurement methodology

The experiments were conducted using laptops with NEC
Aterm WL54AG(S) wireless cards with MadWiFi driver [13].
These cards have Atheros chip-sets and a port for attaching
an external antenna. We have modified the driver to collect
the information of received packets. It also provides the
information about erroneous packets where only header was
received successfully and the rest of the packet failed the CRC
test. This allows us to log the information about the RSS,
transmission rate and time about the all the packets where only
header correctly received, thus providing a finer granularity
RSS measurement.

Unless mentioned, IEEE 802.11a with basic mode is used
in the experiments. IEEE 802.11a is used to avoid the external
interference in the 2.4GHz band. Spectrum analyzers are used
to ascertain the absence of external interference while the
experiment is in progress. Transmission rate-control modules
are disabled and fixed-rate is used to deterministically charac-
terize the behavior of the parameters under a known rate and
modulation scheme.

A CBR client and server application is used to generate the
broadcast and unicast traffic. Since the objective of the paper is
to measure and analyze physical layer parameters like RSS and
error rates, and not to study the effect of MAC protocols like
exponential back-off, we employ saturated broadcast traffic.
Atheros cards exhibit a transmission strategy where alternate
packets are transmitted at two different power-levels if the
source does not receive any form of acknowledgement (e.g. in
broadcast transmissions). The effect of this design anomaly in
Section I'V-B. But, for a majority of the paper, we analyze the
RSS by forcing the card to transmit all the packets at a single
power (as suggested by Giustiniano et al. [14]) since we are
interested in a more general case of capturing the effects of
wireless propagation without this anomaly.

B. Analysis of Received Signal Strength

In this section, we study the variation of RSS time-series
to conclude if we can approximate the RSS as a random
distribution over large time scale. This is also of critical
importance in many protocols and models that assume that
RSS values from a node is either known or communicated
to the neighboring nodes [11], [15]. If the RSS varies to a
large extent over fraction of seconds, then measurements have
to be taken in very small durations of time and thus adding
to a lot of measurement and control overhead. The analysis
also answers the question about how often to exchange the
RSS measurements. For the distributed protocols and models
which assume such a knowledge of RSS, it is important to



answer the important system designing questions like: (1) How
often should RSS values be disseminated to the neighbors
such that the protocols and analytical models will have a fairly
consistent view of the neighbors” RSS?; (2) Does the variation
of the RSS values depend upon the quality of the link? In this
section, we empirically analyze the RSS values to answer such
important questions.
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Fig. 1. Percentage of RSS that cause a BER variation of 0.0002 or less

1) How often should RSS information be disseminated:
We analyzed the RSS time-series for a number of links, both
having a line-of-sight in component (LoS links) and non-
line-of-sight (nLoS links), in an indoor office environment.
Similar to several existing studies [16] and for the clarity of
presentation we classify the links into three zones: (1) A Low-
loss zone where the links observe a very few packet losses; (2)
A High-loss zone where the link experiences very high rate of
packet errors; and (3) An intermediate Gray-zone where the
link quality fluctuates between low and high losses. We use
the term strong, average and weak link to refer to the link in
low-loss, gray and high-loss zone, respectively. We observed
that links can be classified into these zones with fair accuracy.
Due to space limitations, we present the results by choosing
one representative link in each zone. However, the conclusions
we derive are based on the analysis of all the links that were
measured.

Many protocols and models assume accurate value of the
RSS at the nodes. In reality, the correlation between the true
RSS and the measured RSS value decays over time. We
study the decay of the correlation between expected RSS and
observed RSS with respect to time. One approach of studying
the decay is to study the decrease in the auto-correlation
function (ACF) of the RSS time-series. However, this has
two drawbacks: (1) The Bit Error Rate (BER) does not vary
linearly with the RSS. Hence, a small difference of RSS for a
link in the low-loss zone has lesser effect on the performance
than the same difference for a gray-zone link; (2) As we will
see later, the distribution of the RSS varies widely depending
upon the quality of the link.

Our results indicate that comparing the decay of ACFs of

different distributions will not quantify the variance of RSS
over time. Hence, we use a more direct approach: We consider
a series of measured RSS values in the time interval 7" and
find its mean. We then calculate the empirical BER (by our
measurement data) for the mean RSS and predict the RSS
interval which causes a change of § in the BER. Then, we find
out the fraction of the RSS population that would have resulted
in the BER within § tolerance. Intuitively, this gives the
fraction of the RSS in an interval 7" that does not significantly
alter the BER. We conduct this experiment for different values
of T" to study how the fraction of the population deviates from
the expected BER.

Figure 1 shows the population fraction that is within
BER £0.0002. The strong link does not have any variations
that cause the BER shift of more than 0.002. The RSS of
the average and weak link decays faster initially (upto around
2 seconds), but the the average link is prone to have greater
variation in the BER at time scales of 10’s of seconds. This is
intuitive since the average link is in the gray-zone where slight
alteration of RSS will lead to large variation in BER!. Hence,
BER is almost constant for strong links, stabilizes for the weak
link at around 2-3 seconds and the decay increases drastically
after 2-3 seconds for the average link. Hence, a choice of 1s
to 3s will be a reasonable period to disseminate RSS values
to the neighbors. Updating RSS values by overhearing the
beacon packets in single-hop wireless networks or HELLO
messages sent by certain routing protocols in multi-hop wire-
less networks” gives a fairly good estimation of RSS from the
neighbors. The measurement models and other protocols can
benefit from recording the RSS values of such control packets.

2) Distribution of RSS: The approximation of RSS as a
constant or a i.i.d. random variable from some distribution
has been extensively used in the literature [3], [10]. However,
the validity of these assumptions and the effect of such
approximations is not extensively tested, even though the
assumption of i.i.d. random variables has a large effect on
the effectiveness of the model. In this section, we analyze
the empirical RSS values to infer about the independence and
distribution of the RSS values.

The RSS time-line for each link is first divided into seg-
ments of duration 1.5 seconds each (approximately 750 RSS
values for 1460 byte sized packets) and the independence and
distribution-fitting tests are applied for each of these segments.

The measured RSS values for each packet is verified for
independence by plotting the Auto-correlation function (ACF).
ACF is a statistical metric for verifying if there is a repeating
pattern in the measured values, thus indicating the non-
randomness in the data. ACF is defined at various positive
integer points n (called as lags) and is a value between [0, 1]
at each lag. ACF at lag n denotes the correlation between

'BER variation of § = 0.0002 will approximately change the PER by 0.1
for a 512 byte sized packet under operating RSS values. Different reasonable
¢ values were experimented and it was concluded that the trend of the curves
remains the same.

2The default interval of HELLO messages in widely used routing protocols
like OLSR is around 2s.



the measurement point at time ¢ and ¢ + n. A perfect random
variable should have a ACF of 1 for lag 0 and ACF of 0 at
all the other lags.

For the distribution-fitting tests, we have to extrapolate the
histogram of discrete RSS values into a continuous variable
pdf by using an appropriate Kernel Density Estimation (KDE)
technique. This is because the actual RSS is a continuous
variable and the cards report only discrete values of RSS
(integer values of RSSI). Without KDE, the distribution fitting
tests fail to match any of the continuous distributions even
when there is a very high visual similarity in the PDF of the
measured RSS values. We then sample 100 values from this
extrapolated population and conduct distribution-fitting tests
using Kolmogorov-Smirnoff tests.

In order to summarize these tests for a large number of
samples, we use the box-plot notation. The box-plot summa-
rizes groups of data (e.g. ACF for each packet transmission
in Figure 6(a)) by a box (that bounds the upper and lower
quartiles of the data), a median (a horizontal line) and the
outliers (denoted by ’+  marks).

a) Histograms of RSS: Figure 2 shows the overall his-
tograms of the RSS for the strong, average and the weak links.
We can infer that strong links have very little variation of RSS
and as the link gets weaker, the variation of RSS increases.
To analyze the variation of RSS in a much shorter duration of
time, we analyzed the variation of RSS in 1.5 second interval.
The results indicate that the largest standard deviation was
found for the weak links (a value of approximately 2 dB) and
strong links exhibited almost no variation in such time interval.

b) Distribution fitting tests: Kolmogorov-Smirnov (KS)
test with significance level a = 0.05 was used to test the
distribution of the extrapolated RSS with standard distributions
and the results were randomly verified by visual matching of
the PDF, CDF and the Q-Q plots. Log-likelihood test were
also conducted to verify the conclusions. Certain tests like
Lillifor test for normality was conducted if KS test for normal
distribution resulted in a positive match. For succinctness, we
demonstrate the results of KS test in this paper.

Figures 3, 4 and 5 shows the outcome of the KS tests.
It can be inferred that distribution of the weak links can be
coarsely approximated as log-normal distribution. This was
true in a majority of the weak links which suggests that the
approach used by Qiu et al. [3] is valid for weak links. Strong
links do not follow any of the distribution. As the histogram
in 2(a), it was observed that RSS for the strong link is very well
approximated as a constant rather than a random variable from
a specific distribution. The average link in the gray zone match
normal distribution in approximately 50% of the cases (e.g.
Figure 4). However, the approximation is not very accurate. .

c) Independence of RSS: Figure 6 shows that most of the
RSS values in the time-period of 1.5 seconds are independent
since the ACF at lag 1 is approximately zero. However, strong
auto-correlation was observed for weak and average links as
the period was increased. This suggests that slow variation of
the channel over longer period.

In summary, from the histograms, distribution-fitting tests

and the independence tests, we conclude that: (1) Strong
links are best approximated as constant and the disseminated
RSS values can be used for a longer duration of time (ap-
proxmiately 10s of seconds); (2) Weak links can be coarsely
approximated as i.i.d random variables from a log-normal
distribution with appropriate parameters; (3) Average links are
independent random variables but their approximation as a
random variable from a specific distribution is not consistently
true. However, the variation of RSS is very small for a time-
frame of approximately 1.5 seconds. This also suggests that a
constant RSS approximation is reasonable for this time-frame.
3) Variance of RSS in different periods of time: The above
section specifies the average decay of the correlation of the
RSS values over time with a rough estimate of the tolerated
variance in RSS. However, it does not explicitly quantify the
amount of variance of RSS for different time intervals. It
also does not capture the short-term variation of RSS during
different time phases of the link where the RSS is inherently
low or high due to environmental effects. We now measure the
variation of the RSS in different time-intervals 7" and scenarios
to quantify the fluctuations of RSS over 7" and different time
phases. This experiment is conducted for two reasons:

o To examine the time intervals during which the RSS
can be assumed to be constant, thus aiding measurement
based models and protocols to set a precise intervals to
update the RSS data among the nodes.

o Establish empirical relationships between the short-term
and long-term RSS fluctuations. This helps to identify the
phases where RSS can be used as a stable link quality
estimator.

Similar to the experiments in the previous section, the effect
of variance in indoor scenario with LoS and nLoS scenarios
are measured. However, a saturated CBR traffic with a smaller
packet (64 bytes including the MAC, IP and CBR headers) is
selected. This enables us to receive an RSSI value for every
132 microseconds and hence measure the fluctuation with a
finer granularity.

A time interval T’ is selected and the variation of the RSSI
value over T is measured. During each interval the mean and
variance of the RSS values are collected. Since the mean RSS
over T' varies over longer time frame, the mean RSS values
are divided into different bins and the variance of the RSS
in that bin is measured. This enables us to measure the RSS
variance as a function of the fluctuation of across different time
intervals 7T'. The time interval 1" was selected from 5ms to 3s.
Figures 7 and 8 show the variance of RSS for different LoS
and nLoS scenarios. The error bar plots the 95% confidence
intervals for RSS variance. As a general trend, it can be seen
that:

o The variance generally decreases as the RSS values
increases, reaches minimum at a point (which is the long-
term mean of the RSS), and slightly increases or remains
the same. Hence, the variation of short-term RSS are
highly unstable if their values are much lower than the
long-term average.
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The variation of the RSS variance, as given by the error
bars, indicates the fluctuation of variance of RSS values.
A larger fluctuation indicates that RSS variance fluctuates
significantly when the mean RSS is smaller. The error
bars are very high when the mean RSS is low, reaches
minimum at around the long-term mean of the RSS,
and slightly increases thereafter. This suggests that the
accuracy of using the short-term average RSS values will
be ineffective in predicting link quality when the short-
term average RSS is significantly lower than the long-
term average of RSS.

The variance of RSS for stronger links does not vary
significantly over time scales. For example, the difference
between the variance curves for the strongest LoS link
(Figure 7(a)) is much lesser than that of the strong LoS
link(Figure 7(c)). Hence, stronger links can be updated
with lesser frequency while the weaker links should be
updated with higher frequency.

The variance of the RSS does not fluctuate significantly
even at 3s intervals (around 1.2 dBm in the worst case).
Hence, RSS dissemination by beacons and control mes-
sages of the routing protocols is a viable option to keep
track of RSS. Very frequent updates of RSS values (order
of fraction of seconds) which causes extreme overhead,

Distribution

(b) K-S Test: KS Statistic

] Log normal Gamma
Distribution

(c) K-S Test: P-value

Gamma

Distribution of RSS: Strong link

especially in the multi-hop wireless networks, is not
necessary.

C. Error rate analysis

In this section, we study empirical Packet Error Rate (PER)
and Bit Error Rate (BER), other important parameters that
are important to predict the performance of the link. In this
section, we first study the PER with RSS values which gives
a rough estimate of the PER with respect to the observed
signal strength. We then perform an in-depth analysis to isolate
the effect of fading and state the mechanisms for identifying
the gray-zone links where the link error rates are extremely
volatile. We then test if PER can be assumed as an i.i.d.
random variable and analyze the results of distribution fitting
for the PER values. This is useful to validate the assumptions
of many models which assume PER as either constant or as
an i.i.d. random variable from some distribution. Finally, we
observe the effect of different packet sizes and transmission-
rates on PER.

1) Error rate as a function of RSS: Figure 9(a) shows the
Packet Error Rate (PER) against the measured RSS values
with the error bars capturing the [12.5%,87.5%] percentiles.
It also plots the theoretical PER calculated for BPSK under
AWGN and Rayeigh fading channels. As in the specification of
802.11a broadcast packets, we used the theoretical curves were
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calculated for BPSK modulation with convolutional codes. We
used Rayleigh fading since we are more interested in indoor
environments where line-of-sight path is not readily available.
The PER is calculated assuming that the BER values observed
during the packet transmission time are constant and

PER =1 - (1 —- BER)? (D)

where D is the size of the complete packet (including PHY
and MAC headers). This equation is often used while modeling
the MAC layer throughput to abstract the PHY level details
like modulation and coding. Hence, we computed the BER
curves for the combination of the protocol (802.11a/b/g) and
the allowed transmission rate and use it as a basis for MAC
layer modeling.

The division of PER into three piecewise zones can be
clearly identified by observing the experimental PER curves:
(1) A low-loss zone with low and constant PER with small
variance; (2) A gray zone where PER varies widely (from 0.2
to 0.9); and (3) A high-loss zone where PER approaches 1
with acceptable variation. It can be observed that irrespective
of the link type (strong LoS link or strong nLoS link), the
RSS can be directly mapped to an almost constant value in
the low-loss zone. In the gray zone, we observe that aggregate
metrics of mean PER is not sufficient to capture the error rate

!
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Gamma Weibull Log normal Gamma Weibull

!
Distribution
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Distribution of RSS: High-loss link

due its huge variation. Section II-C2 investigate this region in
detail.

Identifying the relation between RSS and BER (instead
of the PER) is useful for modeling and protocol design of
the wireless networks where varying packet sizes are often
transmitted. Since the BER depends upon the type of the
channel and the card specifications, accurate measurement
of the BER is infeasible for dynamic applications. Hence,
we derive the BER from the easily measured PER values.
Figure 9(b) shows BER curve and compares it with the
theoretical BER curve, with and without fading. From the
Figure 9(b), we infer that: (i) In the low-loss zone, constant
BER assumption is a better approximation than the fading
models; (ii) In the gray-zone the BER is significantly deviates
from the regularly observed trends while Rayleigh fading
approximation is good in some areas; and (3) In high-loss
zones, the measured BER approaches 1 more rapidly than
predicted by theoretical models as the RSS value is lowered.
The observed illustrates the need for using empirical BER
values in protocols and models that predict higher layer
performance in wireless networks with standard wireless cards.

2) Determining the cross-over RSS values: Figure 9(a)
discussed the variation of PER with RSS for three types of
links. In this section, we answer another important question for
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measurement based models and protocols: “How to infer the
zone in which a given link operates?”. Based on the inference,
protocols and the models can tune their BER/PER curves to
estimate the link quality.

Different links cross-over from the low-loss zone to gray-
zone at different ranges of RSS due to the variation of the
channel between the nodes of different links. The RSS value
for which a strong outdoor line-of-sight link crosses from the
low-loss zone to the gray-zone is different from the cross-over
point for an indoor non-line of sight link due to the varying
effect of fading. Hence, absolute cross-over points cannot be
dictated for estimating the quality of the link. Secondly, as
shown in Section II-B2 (Figure 2), the RSS has an almost
similar distribution for links in all the zones: a small variation

9 78 77 76 75
RSS (in dBm)

(b) nLoS 2: Medium

74 73 72 88 8 -84 82 80 78 76 74 72
RSS (in dBm)

(c) nLoS 3: Weak

Mean vs. Variance in nLoS links

and the histogram is unimodal for links in all the zones. Hence,
sole measurement of RSS per link will not suffice to decide
the cross-over points of PER.

We now analyze the gray-zone of the PER for inferring
the cross-over ranges. This is a critical area of the PER
curve where PER changes dramatically and follows unintuitive
trends. For example, figure 9(a) shows that average PER
dramatically increases instead of decreasing as the RSS is
increased at around -74 dBm in our measurements. We study
detailed PER measurements for analyzing and answering the
trends in this region.

Figure 10 plots the histograms of the PER and the RSS
values in an experimental setup where the links do not have
a line of sight. We vary the transmit power at the sender
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and observe its effect on PER and RSS. Figure 10(a) shows
that the PER is high and has a nice unimodal distribution
when the transmit power is low. At high transmit powers,
a low PER with a similar unimodal distribution is observed
(Figure 10(c)). Intuitively, we expect the PER histogram to
shift from high to low (with probably decreased variance) as
we increase the transmit power. However, Figure 10(b) shows
that at a certain intermediate RSS value, the PER histogram
dramatically differs from the expected one. As shown in
Figure 10(b), the PER fluctuates dramatically between low
and high values over a very small RSS range (even on a time
scale of fraction of seconds). It becomes bimodal with a large
separation between the two modes. This is clearly an effect
of fading [17]. In addition, Figures 10(d), 10(e), 10(f) also
see that there is no significant difference in the shape of the
RSS histograms for these transmit powers. The histogram of
the measured PER plots indicates the presence of the link
in the gray-zone. The cross-over points can be computed by
measuring PER for various transmission powers.

We observe that this tipping point varies depending upon
the quality of the channel between the transmitter and the
receiver. Hence, generalizing the tipping point based only
on the observed RSS values leads to false estimates. This
indicates that a link should not only be aware of the RSS
values, but also the precise nature of the channel between
them. Disseminating or measuring the channel information
(e.g. the PER for a large range of RSS values) is valuable
when there is a high probability that link operates in this
gray-zone. However, as seen in Figure 9(b), RSS value can be
directly mapped to the PER or BER values for links in other
zones. Hence, disseminating the RSS information is sufficient
for predicting the link behavior when the link is not operating
in the gray-zone. A vast majority of the links operate in high-
loss or low-loss zones because the limited range of RSS which
causes such behavior. Moreover, strong and relatively stable
PER links are preferred by wireless nodes in WLAN and
multi-hop wireless networks.

3) Can PERs be approximated as i.i.d. random variables?:
In existing MAC layer modeling, PER is computed from
the measured RSS values. Some studies conclude PER as a
random variable from a given distribution since RSS was as-
sumed to be from a specific distribution (e.g. Qiu et al assume
RSS and error rate to be log-normally distributed [3]). Other
research studies derive it from a constant RSS value (or an
average of many measurements) (e.g. [5]). We have shown in
Section II-C2 that the PER has a peculiar bi-modal distribution
in gray-zones and unimodal distributions elsewhere. In this
paragraph, we statistically analyze the empirical PER values
in all the zones to check if they can be assumed to be i.i.d.
random variables.

For the sake of simplicity, we demonstrate the distribution
of the PER by choosing three types of links based on their
link quality: strong links in low-loss zone, average links in
gray zone and weak links in high-loss zone. Each source
broadcasts saturated UDP traffic with packet size of 1460 bytes
(including MAC headers). We measure PER once in every

50ms (approximately 30 packets). Since we are interested
in analyzing PER distribution in one measurement period,
we group the PERs in one measurement period (which is
approximately 1.5 seconds as analyzed in Section II-B1) and
perform distribution fitting tests on the data. The histograms
of the PER were already analyzed in Section II-C2. To
summarize, (i) in the low-loss zone, the PER has a unimodal
histogram with very small variance. (ii) In the high-loss zone,
the histogram is still unimodal, but the variance is larger.
(iii) Gray-zone links have a bi-modal distribution with widely
varying PER values. Experiments on different type of links
(strong/weak, LoS/nLoS) links also revealed similar shapes of
the histograms. Hence, it is reasonable to assume that the PER
is constant for strong links, and not for average and weak links,
within a measurement period.

a) Distribution tests for PER: In this paragraph, we
explain the results of distribution fitting tests to conclude the
distribution of the PERs. Figures 11, 12 and 13 show the re-
sults of the Kolmogorov-Smirnov tests (K-S Test) for the PERs
in each measurement period. The summary is represented by
the H-value of the K-S Test. The results demonstrate that
the strong link does not fit into any distribution (it is near
constant) while the distribution of the high-loss links is well-
approximated by Log-normal, Beta or Weibull distributions.
As we have seen earlier, the gray-zone links are bi-modal.

b) Independence of PER: In this paragraph, we verify if
the PER can be considered as independent random variables.
Figure 14 shows the box-plot of the auto-correlation function
of the links. It can be seen that the ACF of the low-loss link
alternates with a very high probability. However, most of the
PER values for strong links are near-constant with very little
variance and they an be assumed as constant. The ACF of
the gray-zone link, gradually decreases to droops indicating
the effect of the fading of the channel over time. Hence, PER
of the gray-zone links have memory and cannot be assumed
as independent random variables. The ACF of the weak links
drops to near zero values at the first-lag, thus showing that the
PER an be assumed as independent variables.

In summary, observing the results of independence and the
distribution of PER in the time-frame of seconds, we can infer
that: (i) PER of strong links should be best approximated
as a constant; (ii) PER of gray-zone links are unpredictable,
have memory and are bi-modally distributed; and (iii) PER of
the high-loss links can be approximated by i.i.d from a Log-
normal, Beta or Weibull distributions.

4) Effect of packet size: Figure 15(a) shows the variation of
the observed PER for different packet sizes for one representa-
tive link. It shows that the cross-over values are approximately
the same for a given link with varying different packet sizes in
the low-loss zone. The mean PERs are also similar in the grey
zone, but the amount of variation differs for different packet
sizes.

The effect of packet size on the observed error rate is one
of the primary factors to access the measurement mechanism.
If the observed BER (which is empirically calculated from
Equation 1) for different packet sizes deviates significantly
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from each other, then the MBAs has to replicate the empirical
PER measurement for different packet sizes to infer the BER
curve for a dynamic and realistic traffic that consists of
varying packet sizes. This adds an overwhelming measurement
overhead, thus making the measurement procedure infeasible
for realistic application. Figure 15(b) shows that a BER can be
assumed as independent of packet sizes for the strong links.
However, the BER curves deviate in the grey and high-loss
zones.

5) Effect of modulation and rate control: In the previous
sections, we analyzed the PER for different links with varying
transmission power, but by fixing a standard transmission
rate and modulation scheme. This was done in order to
study the relationships between the RSS and the PER and
the distribution of the PER. In this section, we fix the link
and analyze the results the for different modulation schemes.
This is helpful the analyze the effect of standard modulation
and transmission rates, which are vital for the widely used
rate-control modules. Each transmission rate uses a specific
modulation scheme with a fixed set of parameters in 802.11.
Hence, altering the transmission rate invariably alters the mod-
ulation. Measurements were carried out for all the specified
transmission rates and a representative subset was chosen to
illustrate the effect in a simple and uncluttered manner.

Gamma
Distribution

(b) K-S Test: K-S Statistic

Beta Log normal Weibull

Distribution

(c) K-S Test: p value

Gray-zone link It does not make sense putting this here. We know that it is bi-modal

Figure 16(a) studies the effect of transmission rate (or
modulation scheme) on the observed PER for a subset of
802.11 transmission rates. An interesting point to be noted
is the general trend that as the transmission rate is increased
(by using more complex modulation schemes), the cross-over
point from low-loss zone to the gray-zone happens at lower
SNR. This is counter-intuitive since stable modulation schemes
like BPSK should yield lesser error rates when compared to the
more advanced modulation schemes like 64-QAM. Consistent
with the result observed in Figure 8, the traces indicated that
there is no large variation in RSS * when the link is in
transitional stage. Hence, we conjecture that this observation
is due to the fact that higher modulation schemes transmit
the packet in much smaller time than the lower modulation
schemes since the transmission rates are much higher. Hence,
modulation schemes like BPSK (which take approximately
2ms to transmit a 1460 byte size packet at 6Mbps) is more
vulnerable to deep fading of the channel when compared to the
64-QAM (which takes approximately 0.2ms using 54Mbps).

Finally, we focus on the cross-over points that were ob-

3A large number of packets were received with correct headers but CRC
with errors. In 802.11a, the PLCP header is always transmitted using a more
stronger BPSK modulation at 6Mbps for all the values of data transmission
rates. Hence, we observe a large number of erroneous packets with correct
headers at higher transmission rates.
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(b) BER study

Effect of packet size on error rates

Tx-Rate (in Mbps)
Cross-over (in dBm)

6
-69.5

9
-69.1

12
-70.1

18

-68.2

24
-74.1

36
-73.6

43
74.8

TABLE I
CROSS-OVER POINTS FOR DIFFERENT TRANSMISSION RATES
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served on our simulations for different modulation schemes.
Figure 16(b) focusses on the low-loss zone and cross-over
points. This also points to the trend that higher transmission
rates with complex modulation schemes generally have cross-
over points at a lesser RSS than the lower transmission rates
with simple and robust modulation. Table I shows the cross-
over points that were measured for a link in our testbed. The
cross-over points for 48Mbps and 6Mbps is separated by over
5 dB.

An important inference from the result observed in this
section is that rate-control modules have to be sensitive to
the loss zone of the link. If the link is in the gray-zone region,
which can be inferred from bi-modal PER due to the effect
of fading, then it is reasonable to attempt using a higher
transmission rate to reduce the probability of deep fade. This
will not only result in lower and stable PER, but also lead to
a drastic improvement in throughput because of the increase
in transmission rate. This property makes it effective for both
real-time applications with smaller packet size and data traffic
with larger packet size. As far as our knowledge, none of
the existing rate-control modules use this inference. Majority
of the rate-control modules switch to a lower rate when the
greater packet errors are observed.

III. RELATED WORK

This paper presented an empirical analysis of the RSS and
error rates by focusing on the requirements for the MBAs
deployed in a IEEE 802.11 based networks that are susceptible
to fading. Several studies have analyzed the data gathered from
such networks. For the sake of clarity, we divide this section
by studying the related work which analyzes distribution and
the temporal stability of RSS and PER and the effect of fading
on them.

A. Temporal stability

Fixing the order of time to analyze the temporal stability is
obviously a vital step before capturing the temporal stability.

In this aspect, very few research work has focussed on quan-
tifying the time range that is reasonable for a MBA to assume
that the measured value is representative. Wide-ranging con-
clusions has been drawn by studying the experimental traces
of RSS under different environments. Some studies conclude
that RSS fluctuates rapidly over fraction of seconds [18]. Other
studies [4], [19], [20] concur with out observation that the RSS
values remains representative in the order of seconds which
confirms our observation. Research studies on the temporal
stability of the error rates are also inconclusive. Unlike the
above papers, we measure the stability of RSS in more detail:
we show the variation of the RSS for different categories of
links and map the stability of the RSS with respect to the
empirical error rate and the zone of the link. We believe that
this is of direct use in the design of MBAs.

B. Inference of statistical distribution

A discord about the distribution of the RSS and PER is
prevalent seen in the literature. Shrivastava et al. [19] observe
that the distribution of RSS has a very large variation. Qiu et
al. [3] observe a log-normal distribution of the RSS and
use it to model the link throughput. Reis et al. [4] and
Srinivasan et al. [20] observe very low variation of the RSS.
We conjecture that flat distribution [19] of RSS in static
networks are due to external interference or unexpected design
of Atheros chipset to enable transmit diversity [14] and not
due to the propagation effects. In addition to comparing the
RSS to several distributions and performing tests to check the
independence, our contribution in this paper unifies the other
conflicting conclusions by observing that the distribution of
RSS can follow constant or log-normal behavior based on the
operating zone of the link. We also study the statistical tests
to infer the independence and distribution of the PER which
is assumed as constant [10], as a log-normal or normal i.i.d.
random variable [3], [12].



C. Effect of fading and grey zone

Existing studies [4], [16] have observed a specific pattern
where errors rates jump between high, low and a transitional
zone. However, detailed effect of fading and the bimodal
distribution of PER in this region is observed by Zuniga et
al. [16] and Awoniyi et al. [17]. However, both these studies
do not show the effect of different modulation schemes on
the observed PER which is vital for MBAs like rate-control
modules. Moreover, the study in [17] is simulation based and
Zuniga et al. [16] measure using sensor motes which does not
use IEEE 802.11 protocol.

In summary, the paper contributes to the existing measure-
ment based research by analyze the statistical properties of
RSS and error rate for (1) different links where channel state
might be different; (2) different transmission powers over a
single link which isolates the effect of widely varying channel;
and (3) Effect of transmission rate which is not.

IV. DISCUSSION
A. Analysis of RSS at smaller time-scale

In this section, we verify the statistical properties of the
received signal strength at a microsecond granularity. The
spectrum analyze is configured to scan the channel at a very
low time granularity (once every 10 microseconds). The
observed RSS values are analyzed for two main properties:
(1) Independence; and (2) Distribution.

a) Independence of RSS values: The measured RSS
values for each packet (around 200 consecutive measurement
points) is first verified for independence by plotting the Auto-
correlation function (ACF). ACF 1is a statistical metric for
checking if there is a repeating pattern in the measured values,
thus indicating the non-randomness in the data. ACF is defined
at various positive integer points n (called as lags) and is a
value between [0, 1] at each lag. ACF at lag n denotes the
correlation between the measurement point at time ¢ and ¢t +n.
A perfect random variable should have a ACF of 1 for lag 0
and ACF of 0 at all the other lags. Figure 17(a) shows the box-
plot of the ACF for the RSS values measured for the packets
when the source and the spectrum analyzer were separated
by around 2m distance. The box-plot summarizes groups of
data (e.g. ACF for each packet transmission in Figure 17(a))
by a box (that bounds the upper and lower quartiles of the
data), a median (a horizontal line) and the outliers (denoted
by ’+  marks). It can be seen that a vast majority of the ACF
drops to almost 0 at lag 1, thus indicating the randomness of
the received signal strength. Similar ACF values are also seen
when the distance between source and the spectrum analyzer
is altered, thus indicating that RSS can be assumed to be a
random variable at a microsecond time granularity.

b) Distribution estimation: After inferring that the RSS
values can be assumed as independent random variables, we
now estimate the distribution of the RSS at a small time
scale. We first compared the observed RSS values with more
than 40 classical distributions and inferred that the family of
distributions that denote bell-shaped curves. The skewness was

also observed to be very low. We then carried out an extensive
comparison of measured RSS with four standard distributions
that were indicated as good fits: Normal, Log-normal, Gamma
and Weibull distribution. We use the Kolmogorov-Smirnov
test (K-S test) to estimate the best-fitting distribution to the
measured RSS values. K-S test performs a goodness-of-fit test
for the empirical distribution of the measured value (RSS,
in our case) with the cumulative distribution for a specified
distribution. The K-S test is performed for a given significance
level (o)) and will output four metrics based on which we
either reject or do not reject the hypothesis that the measured
values belong to a given distribution. Figures ?? and ?? shows
the box-plot of the p-value and K-S statistic of the measured
RSS values. The hypothesis that the observed empirical data
belongs to the compared distribution is rejected if the p-value
is lesser than a and the K-S statistic value is greater than the
critical value (that is taken from a standard table). From the
figures, we can see that the observed RSS values are a good-fit
for the chosen distributions and the Normal distribution best
fits the RSS values. The Shapiro-Wilk test also provided strong
positive result that ascertains that data fits Normal distribution.
We do not describe those tests due to the lack of space.

As we show in Section ??, another important quantity that
is required for the derivation of Bit-error rate (BER) is the
type of modulation used. Theoretically, BER is approximated
as a closed form function of received signal strength and noise
for different modulation scheme. However, these functions are
complex and it is analytically intractable to derive the distri-
bution of the BER from approximating the RSS as a random
variable. Hence, we numerically estimate the distribution of
the BER from the measured RSS.

c¢) RSS: Constant or Random Variable: The data from the
spectrum analyzer shows that RSS can be approximated as a
normally distributed independent random variable. However,
the lowest granularity of the received signal strength that can
be obtained from the realistic wireless cards is a single value
of the Received Signal Strength Indicator (RSSI) per packet.
This value is measured when the preamble of the packet is
received. RSSI can be converted to an actual received signal
strength (RSS) through standard conversion techniques [4].
We now evaluate if per-packet RSS information is sufficient
to represent the fluctuations of RSS over packet transmission
time. Specifically, we empirically analyze the answers to the
following questions: (1) Does the RSS measured during the
preamble be a good indicator of the mean RSS during the
packet transmission?; (2) The effect of approximating the RSS
as constant.

Previous paragraph argued that the RSS is well-
approximated as a random normally distributed variable. While
the per-packet RSS can be taken as the expected value of this
random variable, the complete distribution cannot be inferred
since other critical parameters like standard deviation are not
reported. In order to have an accurate and realistic model
that can be used in standard wireless nodes, we evaluated
the dependency of the mean and standard deviations from the
distribution fitting tests that we conducted.
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Thus, we have used the detailed measurement using the
spectrum analyzer to derive a realistic model based on the
data obtained from the commercial wireless cards.

However, spectrum analyzer results cannot be used for long-
term RSS analysis since:

o Analysis of long-term data using spectrum analyzer pro-
duces inconsistent data since the spectrum analyzer will
pause for a long duration (around 200 ms) after each
sweep cycle (approximately 20 ms in our setting) to log
the collected data. Increasing the sweep cycle time is
not feasible since it reduces the accuracy of the signal
measurement.

Protocols and analytical models that run on the node will
have direct access to the RSS obtained from the Atheros
cards.

B. Anomalies on Atheros chipsets

In this paragraph, we measure the RSS of a saturated
broadcast transmission. The measurements reveals an unex-
pected and interesting effect. As shown in Figure 18(a), the
broadcasted packets toggle between two significantly differing
power-levels. The effect of such alternating power-levels has a
drastic influence on the performance of the network since the
difference in alternating RSS is very high (with a difference
of around 6 dBm). Since the Atheros based card provides the
Linux kernel with per-packet RSSI values, the receiving node
is able to monitor the alternating effect of RSS (as observed
in Figure 2?).

This effect of alternating RSS was also recently reported by
Giustiniano et al. [14] and is attributed to the antenna transmit
diversity. The authors concluded that the firmware switches
transmitting each packet using a different antenna when it is
not able to since it is unable to infer any feedback on the
transmitted broadcast packets. success, the card switches to
transmit each packet using a different antenna. This paper
extends this observation by: (1) producing a more detailed
spectrum-analyzer traces; (2) statistical analysis of the effect of
such alternation; and (3) throughput modeling and analysis of
its effects on network performance under such default scheme.
Transmit diversity anomaly in Atheros cards

Mean RSS (MRSS) values are computed for each packet
from the data obtained from the spectrum analyzer and the

Gamma
Distribution

(b) K-S test for RSS: p-value

Beta Weibull Gamma

Distribution

Log normal

(c) K-S test for RSS: K-S Statistic

Broadcast traffic analyzed at smaller time scale

variation of these are observed. We first infer if the MRSS
values are independent. Figure 19(a) shows the ACF of the
MRSS values. It is clearly seen that the consecutive MRSS
values are negatively correlated, thus indicating that MRSS are
not independent and it alternates (as observed in Figure 18(a)).
Figure 19(b) shows the histogram of the observed RSS values.
The bimodal distribution of RSS with two peaks separated
by around 8 dBm can be clearly seen; a sharper and better
MRSS that corresponds to the “stronger” antenna diversity
transmission scheme and a more flat and weaker MRSS
that corresponds to the packet reception from the “weaker”
scheme.
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