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Abstract—The uncertainty of the wireless channel in realistic
wireless networks inhibits the effectiveness of the of the higher
level protocols and models to predict the effect of channel.
Measurement based models and protocols overcome this hurdle
by measuring the essential lower level parameters and use
these empirical data as an input for decision making at the
higher layers. Received signal strength and error rates are
two such measured parameters that are extensively used for
capturing the effect of randomness in the wireless channel.
Statistical characterization of the empirical data not only helps
to understand the randomness of their behavior but also benefit
the measurement based applications that base their judgment
on the observed values. In this paper, we analyze the empirical
values of received signal strength and error rates from IEEE
802.11 indoor wireless network. We methodically classify the
links based on their behavior, analyze their statistical distribution
and independence properties, and study the effect of fading for
varying packet sizes and standard modulation schemes. While
classifying links into discrete categories has been proposed before,
the statistical properties of each category and the mechanism to
recognize the category of the link remains uncertain. In this
paper we show that while all links do not exhibit a general
statistical behavior, the statistical behavior of each category can
be generalized. Each category has different behavior in terms of
statistical distribution, memory and the temporal variation of the
parameters. We observe that the error rates of strong and weak
links are more stable and predictable, while the effect of fading
introduces significant volatality in an average quality link.

I. INTRODUCTION

Recent years have seen a tremendous growth in the ap-

plications and the deployment of wireless data networks due

to its ability to enable pervasive applications. With such a

wide-spread demand for wireless access and sparse capacity of

wireless networks, predicting and optimizing the performance

of the applications operating in a wireless data networks

is a high-impact and a hard research problem. A perfect

characterization of wireless data networks is unrealistic since

the wireless links typically experience high error rate, large

channel variations and complex interference patterns. Existing

experimental studies [1], [2] have shown that simplistic as-

sumptions, that are often employed by simulators and models

to judge the performance of the network, deviate significantly

from the observed phenomenon.

In such an volatile environment, measurement based mod-

els [3]–[5] and protocols [6], [7] are being extensively used

to empirically measure the unpredictable parameters and use

these measured values for predicting or optimizing the appli-

cations at different layers of the network stack. Such Measure-

ment Based Applications (MBAs) employ a measurement phase

where measurement traffic is injected into the network for

measuring the necessary parameters. Then educated heuristics

are employed to predict or optimize the performance of the

protocol by using these measured parameters. They are more

susceptible to changes in network topology and traffic and

have shown outperform the non-measurement based counter-

parts by a large margin [6], [7].

One of the first steps in realizing the capability of MBAs

in realistic networks is to capture the important low-level

parameters by considering the practical limitations of the

wireless cards. A vast majority of the current wireless data

networks use IEEE 802.11 based cards which restrict the

altering and fetching all the low-level parameters. For example,

off-the-shelf Atheros based 802.11 cards provide allows to

fetch the Received Signal Strength Indicator (RSSI) and Noise

at the granularity of a packet. While it allows us to choose

transmission rate from a set of standard rates, it dictates

the modulation used for each rate. Received Signal Strength

(RSS), Signal-to-noise ratio (SNR) and the packet/bit error

rates (PER/BER) of a link are some of the primary measurable

parameters that are used by many higher layer protocols. For

example, a mixture of these parameters are used in several

higher layer protocols like: (1) AP association in WLANs [8];

(2) Transmission rate-control in WLAN and Multi-hop Wire-



less Networks (MHWNs) [6], [9]; (3) Access the quality of

the links for routing in MHWNs [7]. We focus on the RSS

and the error rate parameters in this paper since SNR can be

derived directly from the measured RSS and noise values.

Based on the measurement period, MBAs can be graded

from static MBAs where values are measured once and used

forever to real-time MBAs where measurement is performed

periodically. While frequent measurement and dissemination

of these values to the neighboring nodes will enable better

performance of the MBAs, it drastically increases the mea-

surement overhead. For example, many routing protocols like

OLSR and ETX requires transmission of broadcast packets to

infer the link quality. Constant transmission of these control

packets results in humongous measurement overhead while

infrequent measurement is vulnerable to stale and unrepre-

sentative values. It is necessary to study the temporal varia-

tion of these primary parameters in order to optimize these

measurement window. In this paper, we first study the this

trade-off by analyzing the decay of the measured values with

respect to time for different variety of links. Specifically,

our analysis answers the following questions: (1) Do these

parameters vary over different quality of links and different

modulation schemes? If so, how? (2) How often should the

RSS be disseminated in the neighborhood such that they are

representative? Can this dissemination overhead be justified?

From these experiments, we conclude that the time-variation

of the parameters is strongly dependent upon the quality of

the link and dissemination of RSS values once in 2-5 seconds

is reasonable for a majority of the links.

Another important aspect for MBAs is the approximating

the variation of of the measured values within the measurement

period. A wide variety of assumptions are employed in char-

acterizing the variations of the primary parameters within the

measurement period which have not been thoroughly validated

by experiments. These parameters have been represented in

different forms in the literature. While some research work

assume these parameters as constants [5], [10], [11], oth-

ers approximate them as i.i.d. random variables from some

known statistical distribution [3], [12]. Many studies have even

pointed out that the RSS varies rapidly and randomly [2]

and it is hard to deterministically or statistically characterize

them. With such differing abstractions and conclusions about

these primary parameters, empirical study and characteriza-

tion not only provides insight into their behavior, but also

aids in the design of practical real-time models, network

planning/provisioning tools and design of efficient dynamic

protocols. The second contribution of the paper is to validate

the generality of these assumptions by analyzing the statistical

properties of RSS and error rates for different link qualities

and transmission rates. We find, as previously stated, that the

distribution of the RSS and PER values are strongly dependent

on the link quality. Strong links and weak links are separated

by a layer of transitional grey zone where fading of the channel

leads to unexpected and interesting distribution of the error

rates. We analyze the variation of error rates with respect to

different transmission rates. Finally, we use our conclusions

from the empirical study of these parameters to develop a

throughput model and show our model the results of the model

with the experimental values.

II. EXPERIMENTAL OBSERVATION

In this section, we analyze the statistical properties and the

behavior of RSS and error rates.

A. Measurement methodology

The experiments were conducted using laptops with NEC

Aterm WL54AG(S) wireless cards with MadWiFi driver [13].

These cards have Atheros chip-sets and a port for attaching

an external antenna. We have modified the driver to collect

the information of received packets. It also provides the

information about erroneous packets where only header was

received successfully and the rest of the packet failed the CRC

test. This allows us to log the information about the RSS,

transmission rate and time about the all the packets where only

header correctly received, thus providing a finer granularity

RSS measurement.

Unless mentioned, IEEE 802.11a with basic mode is used

in the experiments. IEEE 802.11a is used to avoid the external

interference in the 2.4GHz band. Spectrum analyzers are used

to ascertain the absence of external interference while the

experiment is in progress. Transmission rate-control modules

are disabled and fixed-rate is used to deterministically charac-

terize the behavior of the parameters under a known rate and

modulation scheme.

A CBR client and server application is used to generate the

broadcast and unicast traffic. Since the objective of the paper is

to measure and analyze physical layer parameters like RSS and

error rates, and not to study the effect of MAC protocols like

exponential back-off, we employ saturated broadcast traffic.

Atheros cards exhibit a transmission strategy where alternate

packets are transmitted at two different power-levels if the

source does not receive any form of acknowledgement (e.g. in

broadcast transmissions). The effect of this design anomaly in

Section IV-B. But, for a majority of the paper, we analyze the

RSS by forcing the card to transmit all the packets at a single

power (as suggested by Giustiniano et al. [14]) since we are

interested in a more general case of capturing the effects of

wireless propagation without this anomaly.

B. Analysis of Received Signal Strength

In this section, we study the variation of RSS time-series

to conclude if we can approximate the RSS as a random

distribution over large time scale. This is also of critical

importance in many protocols and models that assume that

RSS values from a node is either known or communicated

to the neighboring nodes [11], [15]. If the RSS varies to a

large extent over fraction of seconds, then measurements have

to be taken in very small durations of time and thus adding

to a lot of measurement and control overhead. The analysis

also answers the question about how often to exchange the

RSS measurements. For the distributed protocols and models

which assume such a knowledge of RSS, it is important to



answer the important system designing questions like: (1) How

often should RSS values be disseminated to the neighbors

such that the protocols and analytical models will have a fairly

consistent view of the neighbors’ RSS?; (2) Does the variation

of the RSS values depend upon the quality of the link? In this

section, we empirically analyze the RSS values to answer such

important questions.
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Fig. 1. Percentage of RSS that cause a BER variation of 0.0002 or less

1) How often should RSS information be disseminated:

We analyzed the RSS time-series for a number of links, both

having a line-of-sight in component (LoS links) and non-

line-of-sight (nLoS links), in an indoor office environment.

Similar to several existing studies [16] and for the clarity of

presentation we classify the links into three zones: (1) A Low-

loss zone where the links observe a very few packet losses; (2)

A High-loss zone where the link experiences very high rate of

packet errors; and (3) An intermediate Gray-zone where the

link quality fluctuates between low and high losses. We use

the term strong, average and weak link to refer to the link in

low-loss, gray and high-loss zone, respectively. We observed

that links can be classified into these zones with fair accuracy.

Due to space limitations, we present the results by choosing

one representative link in each zone. However, the conclusions

we derive are based on the analysis of all the links that were

measured.

Many protocols and models assume accurate value of the

RSS at the nodes. In reality, the correlation between the true

RSS and the measured RSS value decays over time. We

study the decay of the correlation between expected RSS and

observed RSS with respect to time. One approach of studying

the decay is to study the decrease in the auto-correlation

function (ACF) of the RSS time-series. However, this has

two drawbacks: (1) The Bit Error Rate (BER) does not vary

linearly with the RSS. Hence, a small difference of RSS for a

link in the low-loss zone has lesser effect on the performance

than the same difference for a gray-zone link; (2) As we will

see later, the distribution of the RSS varies widely depending

upon the quality of the link.

Our results indicate that comparing the decay of ACFs of

different distributions will not quantify the variance of RSS

over time. Hence, we use a more direct approach: We consider

a series of measured RSS values in the time interval T and

find its mean. We then calculate the empirical BER (by our

measurement data) for the mean RSS and predict the RSS

interval which causes a change of δ in the BER. Then, we find

out the fraction of the RSS population that would have resulted

in the BER within δ tolerance. Intuitively, this gives the

fraction of the RSS in an interval T that does not significantly

alter the BER. We conduct this experiment for different values

of T to study how the fraction of the population deviates from

the expected BER.

Figure 1 shows the population fraction that is within

BER±0.0002. The strong link does not have any variations

that cause the BER shift of more than 0.002. The RSS of

the average and weak link decays faster initially (upto around

2 seconds), but the the average link is prone to have greater

variation in the BER at time scales of 10’s of seconds. This is

intuitive since the average link is in the gray-zone where slight

alteration of RSS will lead to large variation in BER1. Hence,

BER is almost constant for strong links, stabilizes for the weak

link at around 2-3 seconds and the decay increases drastically

after 2-3 seconds for the average link. Hence, a choice of 1s

to 3s will be a reasonable period to disseminate RSS values

to the neighbors. Updating RSS values by overhearing the

beacon packets in single-hop wireless networks or HELLO

messages sent by certain routing protocols in multi-hop wire-

less networks2 gives a fairly good estimation of RSS from the

neighbors. The measurement models and other protocols can

benefit from recording the RSS values of such control packets.

2) Distribution of RSS: The approximation of RSS as a

constant or a i.i.d. random variable from some distribution

has been extensively used in the literature [3], [10]. However,

the validity of these assumptions and the effect of such

approximations is not extensively tested, even though the

assumption of i.i.d. random variables has a large effect on

the effectiveness of the model. In this section, we analyze

the empirical RSS values to infer about the independence and

distribution of the RSS values.

The RSS time-line for each link is first divided into seg-

ments of duration 1.5 seconds each (approximately 750 RSS

values for 1460 byte sized packets) and the independence and

distribution-fitting tests are applied for each of these segments.

The measured RSS values for each packet is verified for

independence by plotting the Auto-correlation function (ACF).

ACF is a statistical metric for verifying if there is a repeating

pattern in the measured values, thus indicating the non-

randomness in the data. ACF is defined at various positive

integer points n (called as lags) and is a value between [0, 1]
at each lag. ACF at lag n denotes the correlation between

1BER variation of δ = 0.0002 will approximately change the PER by 0.1

for a 512 byte sized packet under operating RSS values. Different reasonable
δ values were experimented and it was concluded that the trend of the curves
remains the same.

2The default interval of HELLO messages in widely used routing protocols
like OLSR is around 2s.



the measurement point at time t and t + n. A perfect random

variable should have a ACF of 1 for lag 0 and ACF of 0 at

all the other lags.

For the distribution-fitting tests, we have to extrapolate the

histogram of discrete RSS values into a continuous variable

pdf by using an appropriate Kernel Density Estimation (KDE)

technique. This is because the actual RSS is a continuous

variable and the cards report only discrete values of RSS

(integer values of RSSI). Without KDE, the distribution fitting

tests fail to match any of the continuous distributions even

when there is a very high visual similarity in the PDF of the

measured RSS values. We then sample 100 values from this

extrapolated population and conduct distribution-fitting tests

using Kolmogorov-Smirnoff tests.

In order to summarize these tests for a large number of

samples, we use the box-plot notation. The box-plot summa-

rizes groups of data (e.g. ACF for each packet transmission

in Figure 6(a)) by a box (that bounds the upper and lower

quartiles of the data), a median (a horizontal line) and the

outliers (denoted by ’+’ marks).

a) Histograms of RSS: Figure 2 shows the overall his-

tograms of the RSS for the strong, average and the weak links.

We can infer that strong links have very little variation of RSS

and as the link gets weaker, the variation of RSS increases.

To analyze the variation of RSS in a much shorter duration of

time, we analyzed the variation of RSS in 1.5 second interval.

The results indicate that the largest standard deviation was

found for the weak links (a value of approximately 2 dB) and

strong links exhibited almost no variation in such time interval.

b) Distribution fitting tests: Kolmogorov-Smirnov (KS)

test with significance level α = 0.05 was used to test the

distribution of the extrapolated RSS with standard distributions

and the results were randomly verified by visual matching of

the PDF, CDF and the Q-Q plots. Log-likelihood test were

also conducted to verify the conclusions. Certain tests like

Lillifor test for normality was conducted if KS test for normal

distribution resulted in a positive match. For succinctness, we

demonstrate the results of KS test in this paper.

Figures 3, 4 and 5 shows the outcome of the KS tests.

It can be inferred that distribution of the weak links can be

coarsely approximated as log-normal distribution. This was

true in a majority of the weak links which suggests that the

approach used by Qiu et al. [3] is valid for weak links. Strong

links do not follow any of the distribution. As the histogram

in 2(a), it was observed that RSS for the strong link is very well

approximated as a constant rather than a random variable from

a specific distribution. The average link in the gray zone match

normal distribution in approximately 50% of the cases (e.g.

Figure 4). However, the approximation is not very accurate. .

c) Independence of RSS: Figure 6 shows that most of the

RSS values in the time-period of 1.5 seconds are independent

since the ACF at lag 1 is approximately zero. However, strong

auto-correlation was observed for weak and average links as

the period was increased. This suggests that slow variation of

the channel over longer period.

In summary, from the histograms, distribution-fitting tests

and the independence tests, we conclude that: (1) Strong

links are best approximated as constant and the disseminated

RSS values can be used for a longer duration of time (ap-

proxmiately 10s of seconds); (2) Weak links can be coarsely

approximated as i.i.d random variables from a log-normal

distribution with appropriate parameters; (3) Average links are

independent random variables but their approximation as a

random variable from a specific distribution is not consistently

true. However, the variation of RSS is very small for a time-

frame of approximately 1.5 seconds. This also suggests that a

constant RSS approximation is reasonable for this time-frame.

3) Variance of RSS in different periods of time: The above

section specifies the average decay of the correlation of the

RSS values over time with a rough estimate of the tolerated

variance in RSS. However, it does not explicitly quantify the

amount of variance of RSS for different time intervals. It

also does not capture the short-term variation of RSS during

different time phases of the link where the RSS is inherently

low or high due to environmental effects. We now measure the

variation of the RSS in different time-intervals T and scenarios

to quantify the fluctuations of RSS over T and different time

phases. This experiment is conducted for two reasons:

• To examine the time intervals during which the RSS

can be assumed to be constant, thus aiding measurement

based models and protocols to set a precise intervals to

update the RSS data among the nodes.

• Establish empirical relationships between the short-term

and long-term RSS fluctuations. This helps to identify the

phases where RSS can be used as a stable link quality

estimator.

Similar to the experiments in the previous section, the effect

of variance in indoor scenario with LoS and nLoS scenarios

are measured. However, a saturated CBR traffic with a smaller

packet (64 bytes including the MAC, IP and CBR headers) is

selected. This enables us to receive an RSSI value for every

132 microseconds and hence measure the fluctuation with a

finer granularity.

A time interval T is selected and the variation of the RSSI

value over T is measured. During each interval the mean and

variance of the RSS values are collected. Since the mean RSS

over T varies over longer time frame, the mean RSS values

are divided into different bins and the variance of the RSS

in that bin is measured. This enables us to measure the RSS

variance as a function of the fluctuation of across different time

intervals T . The time interval T was selected from 5ms to 3s.

Figures 7 and 8 show the variance of RSS for different LoS

and nLoS scenarios. The error bar plots the 95% confidence

intervals for RSS variance. As a general trend, it can be seen

that:

• The variance generally decreases as the RSS values

increases, reaches minimum at a point (which is the long-

term mean of the RSS), and slightly increases or remains

the same. Hence, the variation of short-term RSS are

highly unstable if their values are much lower than the

long-term average.
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Fig. 3. Distribution of RSS: Strong link

• The variation of the RSS variance, as given by the error

bars, indicates the fluctuation of variance of RSS values.

A larger fluctuation indicates that RSS variance fluctuates

significantly when the mean RSS is smaller. The error

bars are very high when the mean RSS is low, reaches

minimum at around the long-term mean of the RSS,

and slightly increases thereafter. This suggests that the

accuracy of using the short-term average RSS values will

be ineffective in predicting link quality when the short-

term average RSS is significantly lower than the long-

term average of RSS.

• The variance of RSS for stronger links does not vary

significantly over time scales. For example, the difference

between the variance curves for the strongest LoS link

(Figure 7(a)) is much lesser than that of the strong LoS

link(Figure 7(c)). Hence, stronger links can be updated

with lesser frequency while the weaker links should be

updated with higher frequency.

• The variance of the RSS does not fluctuate significantly

even at 3s intervals (around 1.2 dBm in the worst case).

Hence, RSS dissemination by beacons and control mes-

sages of the routing protocols is a viable option to keep

track of RSS. Very frequent updates of RSS values (order

of fraction of seconds) which causes extreme overhead,

especially in the multi-hop wireless networks, is not

necessary.

C. Error rate analysis

In this section, we study empirical Packet Error Rate (PER)

and Bit Error Rate (BER), other important parameters that

are important to predict the performance of the link. In this

section, we first study the PER with RSS values which gives

a rough estimate of the PER with respect to the observed

signal strength. We then perform an in-depth analysis to isolate

the effect of fading and state the mechanisms for identifying

the gray-zone links where the link error rates are extremely

volatile. We then test if PER can be assumed as an i.i.d.

random variable and analyze the results of distribution fitting

for the PER values. This is useful to validate the assumptions

of many models which assume PER as either constant or as

an i.i.d. random variable from some distribution. Finally, we

observe the effect of different packet sizes and transmission-

rates on PER.

1) Error rate as a function of RSS: Figure 9(a) shows the

Packet Error Rate (PER) against the measured RSS values

with the error bars capturing the [12.5%, 87.5%] percentiles.

It also plots the theoretical PER calculated for BPSK under

AWGN and Rayeigh fading channels. As in the specification of

802.11a broadcast packets, we used the theoretical curves were
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calculated for BPSK modulation with convolutional codes. We

used Rayleigh fading since we are more interested in indoor

environments where line-of-sight path is not readily available.

The PER is calculated assuming that the BER values observed

during the packet transmission time are constant and

PER = 1 − (1 − BER)D (1)

where D is the size of the complete packet (including PHY

and MAC headers). This equation is often used while modeling

the MAC layer throughput to abstract the PHY level details

like modulation and coding. Hence, we computed the BER

curves for the combination of the protocol (802.11a/b/g) and

the allowed transmission rate and use it as a basis for MAC

layer modeling.

The division of PER into three piecewise zones can be

clearly identified by observing the experimental PER curves:

(1) A low-loss zone with low and constant PER with small

variance; (2) A gray zone where PER varies widely (from 0.2

to 0.9); and (3) A high-loss zone where PER approaches 1

with acceptable variation. It can be observed that irrespective

of the link type (strong LoS link or strong nLoS link), the

RSS can be directly mapped to an almost constant value in

the low-loss zone. In the gray zone, we observe that aggregate

metrics of mean PER is not sufficient to capture the error rate

due its huge variation. Section II-C2 investigate this region in

detail.

Identifying the relation between RSS and BER (instead

of the PER) is useful for modeling and protocol design of

the wireless networks where varying packet sizes are often

transmitted. Since the BER depends upon the type of the

channel and the card specifications, accurate measurement

of the BER is infeasible for dynamic applications. Hence,

we derive the BER from the easily measured PER values.

Figure 9(b) shows BER curve and compares it with the

theoretical BER curve, with and without fading. From the

Figure 9(b), we infer that: (i) In the low-loss zone, constant

BER assumption is a better approximation than the fading

models; (ii) In the gray-zone the BER is significantly deviates

from the regularly observed trends while Rayleigh fading

approximation is good in some areas; and (3) In high-loss

zones, the measured BER approaches 1 more rapidly than

predicted by theoretical models as the RSS value is lowered.

The observed illustrates the need for using empirical BER

values in protocols and models that predict higher layer

performance in wireless networks with standard wireless cards.

2) Determining the cross-over RSS values: Figure 9(a)

discussed the variation of PER with RSS for three types of

links. In this section, we answer another important question for
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Fig. 6. Independence of RSS
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Fig. 7. Mean vs. Variance in LoS links
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Fig. 8. Mean vs. Variance in nLoS links

measurement based models and protocols: “How to infer the

zone in which a given link operates?”. Based on the inference,

protocols and the models can tune their BER/PER curves to

estimate the link quality.

Different links cross-over from the low-loss zone to gray-

zone at different ranges of RSS due to the variation of the

channel between the nodes of different links. The RSS value

for which a strong outdoor line-of-sight link crosses from the

low-loss zone to the gray-zone is different from the cross-over

point for an indoor non-line of sight link due to the varying

effect of fading. Hence, absolute cross-over points cannot be

dictated for estimating the quality of the link. Secondly, as

shown in Section II-B2 (Figure 2), the RSS has an almost

similar distribution for links in all the zones: a small variation

and the histogram is unimodal for links in all the zones. Hence,

sole measurement of RSS per link will not suffice to decide

the cross-over points of PER.

We now analyze the gray-zone of the PER for inferring

the cross-over ranges. This is a critical area of the PER

curve where PER changes dramatically and follows unintuitive

trends. For example, figure 9(a) shows that average PER

dramatically increases instead of decreasing as the RSS is

increased at around -74 dBm in our measurements. We study

detailed PER measurements for analyzing and answering the

trends in this region.

Figure 10 plots the histograms of the PER and the RSS

values in an experimental setup where the links do not have

a line of sight. We vary the transmit power at the sender
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Fig. 9. Error rate vs. RSS
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(b) PER at 3 dBm transmit power
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(c) PER at 6 dBm transmit power
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Fig. 10. Effect of fading on PER



and observe its effect on PER and RSS. Figure 10(a) shows

that the PER is high and has a nice unimodal distribution

when the transmit power is low. At high transmit powers,

a low PER with a similar unimodal distribution is observed

(Figure 10(c)). Intuitively, we expect the PER histogram to

shift from high to low (with probably decreased variance) as

we increase the transmit power. However, Figure 10(b) shows

that at a certain intermediate RSS value, the PER histogram

dramatically differs from the expected one. As shown in

Figure 10(b), the PER fluctuates dramatically between low

and high values over a very small RSS range (even on a time

scale of fraction of seconds). It becomes bimodal with a large

separation between the two modes. This is clearly an effect

of fading [17]. In addition, Figures 10(d), 10(e), 10(f) also

see that there is no significant difference in the shape of the

RSS histograms for these transmit powers. The histogram of

the measured PER plots indicates the presence of the link

in the gray-zone. The cross-over points can be computed by

measuring PER for various transmission powers.

We observe that this tipping point varies depending upon

the quality of the channel between the transmitter and the

receiver. Hence, generalizing the tipping point based only

on the observed RSS values leads to false estimates. This

indicates that a link should not only be aware of the RSS

values, but also the precise nature of the channel between

them. Disseminating or measuring the channel information

(e.g. the PER for a large range of RSS values) is valuable

when there is a high probability that link operates in this

gray-zone. However, as seen in Figure 9(b), RSS value can be

directly mapped to the PER or BER values for links in other

zones. Hence, disseminating the RSS information is sufficient

for predicting the link behavior when the link is not operating

in the gray-zone. A vast majority of the links operate in high-

loss or low-loss zones because the limited range of RSS which

causes such behavior. Moreover, strong and relatively stable

PER links are preferred by wireless nodes in WLAN and

multi-hop wireless networks.

3) Can PERs be approximated as i.i.d. random variables?:

In existing MAC layer modeling, PER is computed from

the measured RSS values. Some studies conclude PER as a

random variable from a given distribution since RSS was as-

sumed to be from a specific distribution (e.g. Qiu et al assume

RSS and error rate to be log-normally distributed [3]). Other

research studies derive it from a constant RSS value (or an

average of many measurements) (e.g. [5]). We have shown in

Section II-C2 that the PER has a peculiar bi-modal distribution

in gray-zones and unimodal distributions elsewhere. In this

paragraph, we statistically analyze the empirical PER values

in all the zones to check if they can be assumed to be i.i.d.

random variables.

For the sake of simplicity, we demonstrate the distribution

of the PER by choosing three types of links based on their

link quality: strong links in low-loss zone, average links in

gray zone and weak links in high-loss zone. Each source

broadcasts saturated UDP traffic with packet size of 1460 bytes

(including MAC headers). We measure PER once in every

50ms (approximately 30 packets). Since we are interested

in analyzing PER distribution in one measurement period,

we group the PERs in one measurement period (which is

approximately 1.5 seconds as analyzed in Section II-B1) and

perform distribution fitting tests on the data. The histograms

of the PER were already analyzed in Section II-C2. To

summarize, (i) in the low-loss zone, the PER has a unimodal

histogram with very small variance. (ii) In the high-loss zone,

the histogram is still unimodal, but the variance is larger.

(iii) Gray-zone links have a bi-modal distribution with widely

varying PER values. Experiments on different type of links

(strong/weak, LoS/nLoS) links also revealed similar shapes of

the histograms. Hence, it is reasonable to assume that the PER

is constant for strong links, and not for average and weak links,

within a measurement period.

a) Distribution tests for PER: In this paragraph, we

explain the results of distribution fitting tests to conclude the

distribution of the PERs. Figures 11, 12 and 13 show the re-

sults of the Kolmogorov-Smirnov tests (K-S Test) for the PERs

in each measurement period. The summary is represented by

the H-value of the K-S Test. The results demonstrate that

the strong link does not fit into any distribution (it is near

constant) while the distribution of the high-loss links is well-

approximated by Log-normal, Beta or Weibull distributions.

As we have seen earlier, the gray-zone links are bi-modal.

b) Independence of PER: In this paragraph, we verify if

the PER can be considered as independent random variables.

Figure 14 shows the box-plot of the auto-correlation function

of the links. It can be seen that the ACF of the low-loss link

alternates with a very high probability. However, most of the

PER values for strong links are near-constant with very little

variance and they an be assumed as constant. The ACF of

the gray-zone link, gradually decreases to droops indicating

the effect of the fading of the channel over time. Hence, PER

of the gray-zone links have memory and cannot be assumed

as independent random variables. The ACF of the weak links

drops to near zero values at the first-lag, thus showing that the

PER an be assumed as independent variables.

In summary, observing the results of independence and the

distribution of PER in the time-frame of seconds, we can infer

that: (i) PER of strong links should be best approximated

as a constant; (ii) PER of gray-zone links are unpredictable,

have memory and are bi-modally distributed; and (iii) PER of

the high-loss links can be approximated by i.i.d from a Log-

normal, Beta or Weibull distributions.

4) Effect of packet size: Figure 15(a) shows the variation of

the observed PER for different packet sizes for one representa-

tive link. It shows that the cross-over values are approximately

the same for a given link with varying different packet sizes in

the low-loss zone. The mean PERs are also similar in the grey

zone, but the amount of variation differs for different packet

sizes.

The effect of packet size on the observed error rate is one

of the primary factors to access the measurement mechanism.

If the observed BER (which is empirically calculated from

Equation 1) for different packet sizes deviates significantly
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Fig. 12. Distribution of PER: Gray-zone link It does not make sense putting this here. We know that it is bi-modal

from each other, then the MBAs has to replicate the empirical

PER measurement for different packet sizes to infer the BER

curve for a dynamic and realistic traffic that consists of

varying packet sizes. This adds an overwhelming measurement

overhead, thus making the measurement procedure infeasible

for realistic application. Figure 15(b) shows that a BER can be

assumed as independent of packet sizes for the strong links.

However, the BER curves deviate in the grey and high-loss

zones.

5) Effect of modulation and rate control: In the previous

sections, we analyzed the PER for different links with varying

transmission power, but by fixing a standard transmission

rate and modulation scheme. This was done in order to

study the relationships between the RSS and the PER and

the distribution of the PER. In this section, we fix the link

and analyze the results the for different modulation schemes.

This is helpful the analyze the effect of standard modulation

and transmission rates, which are vital for the widely used

rate-control modules. Each transmission rate uses a specific

modulation scheme with a fixed set of parameters in 802.11.

Hence, altering the transmission rate invariably alters the mod-

ulation. Measurements were carried out for all the specified

transmission rates and a representative subset was chosen to

illustrate the effect in a simple and uncluttered manner.

Figure 16(a) studies the effect of transmission rate (or

modulation scheme) on the observed PER for a subset of

802.11 transmission rates. An interesting point to be noted

is the general trend that as the transmission rate is increased

(by using more complex modulation schemes), the cross-over

point from low-loss zone to the gray-zone happens at lower

SNR. This is counter-intuitive since stable modulation schemes

like BPSK should yield lesser error rates when compared to the

more advanced modulation schemes like 64-QAM. Consistent

with the result observed in Figure 8, the traces indicated that

there is no large variation in RSS 3 when the link is in

transitional stage. Hence, we conjecture that this observation

is due to the fact that higher modulation schemes transmit

the packet in much smaller time than the lower modulation

schemes since the transmission rates are much higher. Hence,

modulation schemes like BPSK (which take approximately

2ms to transmit a 1460 byte size packet at 6Mbps) is more

vulnerable to deep fading of the channel when compared to the

64-QAM (which takes approximately 0.2ms using 54Mbps).

Finally, we focus on the cross-over points that were ob-

3A large number of packets were received with correct headers but CRC
with errors. In 802.11a, the PLCP header is always transmitted using a more
stronger BPSK modulation at 6Mbps for all the values of data transmission
rates. Hence, we observe a large number of erroneous packets with correct
headers at higher transmission rates.
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Fig. 13. Distribution of PER: High-loss link
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(b) Gray-zone link
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Fig. 14. Independence of PER
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Fig. 15. Effect of packet size on error rates

Tx-Rate (in Mbps) 6 9 12 18 24 36 48

Cross-over (in dBm) -69.5 -69.1 -70.1 -68.2 -74.1 -73.6 -74.8

TABLE I
CROSS-OVER POINTS FOR DIFFERENT TRANSMISSION RATES
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Fig. 16. PER and rate-control

served on our simulations for different modulation schemes.

Figure 16(b) focusses on the low-loss zone and cross-over

points. This also points to the trend that higher transmission

rates with complex modulation schemes generally have cross-

over points at a lesser RSS than the lower transmission rates

with simple and robust modulation. Table I shows the cross-

over points that were measured for a link in our testbed. The

cross-over points for 48Mbps and 6Mbps is separated by over

5 dB.

An important inference from the result observed in this

section is that rate-control modules have to be sensitive to

the loss zone of the link. If the link is in the gray-zone region,

which can be inferred from bi-modal PER due to the effect

of fading, then it is reasonable to attempt using a higher

transmission rate to reduce the probability of deep fade. This

will not only result in lower and stable PER, but also lead to

a drastic improvement in throughput because of the increase

in transmission rate. This property makes it effective for both

real-time applications with smaller packet size and data traffic

with larger packet size. As far as our knowledge, none of

the existing rate-control modules use this inference. Majority

of the rate-control modules switch to a lower rate when the

greater packet errors are observed.

III. RELATED WORK

This paper presented an empirical analysis of the RSS and

error rates by focusing on the requirements for the MBAs

deployed in a IEEE 802.11 based networks that are susceptible

to fading. Several studies have analyzed the data gathered from

such networks. For the sake of clarity, we divide this section

by studying the related work which analyzes distribution and

the temporal stability of RSS and PER and the effect of fading

on them.

A. Temporal stability

Fixing the order of time to analyze the temporal stability is

obviously a vital step before capturing the temporal stability.

In this aspect, very few research work has focussed on quan-

tifying the time range that is reasonable for a MBA to assume

that the measured value is representative. Wide-ranging con-

clusions has been drawn by studying the experimental traces

of RSS under different environments. Some studies conclude

that RSS fluctuates rapidly over fraction of seconds [18]. Other

studies [4], [19], [20] concur with out observation that the RSS

values remains representative in the order of seconds which

confirms our observation. Research studies on the temporal

stability of the error rates are also inconclusive. Unlike the

above papers, we measure the stability of RSS in more detail:

we show the variation of the RSS for different categories of

links and map the stability of the RSS with respect to the

empirical error rate and the zone of the link. We believe that

this is of direct use in the design of MBAs.

B. Inference of statistical distribution

A discord about the distribution of the RSS and PER is

prevalent seen in the literature. Shrivastava et al. [19] observe

that the distribution of RSS has a very large variation. Qiu et

al. [3] observe a log-normal distribution of the RSS and

use it to model the link throughput. Reis et al. [4] and

Srinivasan et al. [20] observe very low variation of the RSS.

We conjecture that flat distribution [19] of RSS in static

networks are due to external interference or unexpected design

of Atheros chipset to enable transmit diversity [14] and not

due to the propagation effects. In addition to comparing the

RSS to several distributions and performing tests to check the

independence, our contribution in this paper unifies the other

conflicting conclusions by observing that the distribution of

RSS can follow constant or log-normal behavior based on the

operating zone of the link. We also study the statistical tests

to infer the independence and distribution of the PER which

is assumed as constant [10], as a log-normal or normal i.i.d.

random variable [3], [12].



C. Effect of fading and grey zone

Existing studies [4], [16] have observed a specific pattern

where errors rates jump between high, low and a transitional

zone. However, detailed effect of fading and the bimodal

distribution of PER in this region is observed by Zuniga et

al. [16] and Awoniyi et al. [17]. However, both these studies

do not show the effect of different modulation schemes on

the observed PER which is vital for MBAs like rate-control

modules. Moreover, the study in [17] is simulation based and

Zuniga et al. [16] measure using sensor motes which does not

use IEEE 802.11 protocol.

In summary, the paper contributes to the existing measure-

ment based research by analyze the statistical properties of

RSS and error rate for (1) different links where channel state

might be different; (2) different transmission powers over a

single link which isolates the effect of widely varying channel;

and (3) Effect of transmission rate which is not.

IV. DISCUSSION

A. Analysis of RSS at smaller time-scale

In this section, we verify the statistical properties of the

received signal strength at a microsecond granularity. The

spectrum analyze is configured to scan the channel at a very

low time granularity (once every 10 microseconds). The

observed RSS values are analyzed for two main properties:

(1) Independence; and (2) Distribution.

a) Independence of RSS values: The measured RSS

values for each packet (around 200 consecutive measurement

points) is first verified for independence by plotting the Auto-

correlation function (ACF). ACF is a statistical metric for

checking if there is a repeating pattern in the measured values,

thus indicating the non-randomness in the data. ACF is defined

at various positive integer points n (called as lags) and is a

value between [0, 1] at each lag. ACF at lag n denotes the

correlation between the measurement point at time t and t+n.

A perfect random variable should have a ACF of 1 for lag 0
and ACF of 0 at all the other lags. Figure 17(a) shows the box-

plot of the ACF for the RSS values measured for the packets

when the source and the spectrum analyzer were separated

by around 2m distance. The box-plot summarizes groups of

data (e.g. ACF for each packet transmission in Figure 17(a))

by a box (that bounds the upper and lower quartiles of the

data), a median (a horizontal line) and the outliers (denoted

by ’+’ marks). It can be seen that a vast majority of the ACF

drops to almost 0 at lag 1, thus indicating the randomness of

the received signal strength. Similar ACF values are also seen

when the distance between source and the spectrum analyzer

is altered, thus indicating that RSS can be assumed to be a

random variable at a microsecond time granularity.

b) Distribution estimation: After inferring that the RSS

values can be assumed as independent random variables, we

now estimate the distribution of the RSS at a small time

scale. We first compared the observed RSS values with more

than 40 classical distributions and inferred that the family of

distributions that denote bell-shaped curves. The skewness was

also observed to be very low. We then carried out an extensive

comparison of measured RSS with four standard distributions

that were indicated as good fits: Normal, Log-normal, Gamma

and Weibull distribution. We use the Kolmogorov-Smirnov

test (K-S test) to estimate the best-fitting distribution to the

measured RSS values. K-S test performs a goodness-of-fit test

for the empirical distribution of the measured value (RSS,

in our case) with the cumulative distribution for a specified

distribution. The K-S test is performed for a given significance

level (α) and will output four metrics based on which we

either reject or do not reject the hypothesis that the measured

values belong to a given distribution. Figures ?? and ?? shows

the box-plot of the p-value and K-S statistic of the measured

RSS values. The hypothesis that the observed empirical data

belongs to the compared distribution is rejected if the p-value

is lesser than α and the K-S statistic value is greater than the

critical value (that is taken from a standard table). From the

figures, we can see that the observed RSS values are a good-fit

for the chosen distributions and the Normal distribution best

fits the RSS values. The Shapiro-Wilk test also provided strong

positive result that ascertains that data fits Normal distribution.

We do not describe those tests due to the lack of space.

As we show in Section ??, another important quantity that

is required for the derivation of Bit-error rate (BER) is the

type of modulation used. Theoretically, BER is approximated

as a closed form function of received signal strength and noise

for different modulation scheme. However, these functions are

complex and it is analytically intractable to derive the distri-

bution of the BER from approximating the RSS as a random

variable. Hence, we numerically estimate the distribution of

the BER from the measured RSS.

c) RSS: Constant or Random Variable: The data from the

spectrum analyzer shows that RSS can be approximated as a

normally distributed independent random variable. However,

the lowest granularity of the received signal strength that can

be obtained from the realistic wireless cards is a single value

of the Received Signal Strength Indicator (RSSI) per packet.

This value is measured when the preamble of the packet is

received. RSSI can be converted to an actual received signal

strength (RSS) through standard conversion techniques [4].

We now evaluate if per-packet RSS information is sufficient

to represent the fluctuations of RSS over packet transmission

time. Specifically, we empirically analyze the answers to the

following questions: (1) Does the RSS measured during the

preamble be a good indicator of the mean RSS during the

packet transmission?; (2) The effect of approximating the RSS

as constant.

Previous paragraph argued that the RSS is well-

approximated as a random normally distributed variable. While

the per-packet RSS can be taken as the expected value of this

random variable, the complete distribution cannot be inferred

since other critical parameters like standard deviation are not

reported. In order to have an accurate and realistic model

that can be used in standard wireless nodes, we evaluated

the dependency of the mean and standard deviations from the

distribution fitting tests that we conducted.
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Fig. 17. Broadcast traffic analyzed at smaller time scale

Thus, we have used the detailed measurement using the

spectrum analyzer to derive a realistic model based on the

data obtained from the commercial wireless cards.

However, spectrum analyzer results cannot be used for long-

term RSS analysis since:

• Analysis of long-term data using spectrum analyzer pro-

duces inconsistent data since the spectrum analyzer will

pause for a long duration (around 200 ms) after each

sweep cycle (approximately 20 ms in our setting) to log

the collected data. Increasing the sweep cycle time is

not feasible since it reduces the accuracy of the signal

measurement.

• Protocols and analytical models that run on the node will

have direct access to the RSS obtained from the Atheros

cards.

B. Anomalies on Atheros chipsets

In this paragraph, we measure the RSS of a saturated

broadcast transmission. The measurements reveals an unex-

pected and interesting effect. As shown in Figure 18(a), the

broadcasted packets toggle between two significantly differing

power-levels. The effect of such alternating power-levels has a

drastic influence on the performance of the network since the

difference in alternating RSS is very high (with a difference

of around 6 dBm). Since the Atheros based card provides the

Linux kernel with per-packet RSSI values, the receiving node

is able to monitor the alternating effect of RSS (as observed

in Figure ??).

This effect of alternating RSS was also recently reported by

Giustiniano et al. [14] and is attributed to the antenna transmit

diversity. The authors concluded that the firmware switches

transmitting each packet using a different antenna when it is

not able to since it is unable to infer any feedback on the

transmitted broadcast packets. success, the card switches to

transmit each packet using a different antenna. This paper

extends this observation by: (1) producing a more detailed

spectrum-analyzer traces; (2) statistical analysis of the effect of

such alternation; and (3) throughput modeling and analysis of

its effects on network performance under such default scheme.

Transmit diversity anomaly in Atheros cards

Mean RSS (MRSS) values are computed for each packet

from the data obtained from the spectrum analyzer and the

variation of these are observed. We first infer if the MRSS

values are independent. Figure 19(a) shows the ACF of the

MRSS values. It is clearly seen that the consecutive MRSS

values are negatively correlated, thus indicating that MRSS are

not independent and it alternates (as observed in Figure 18(a)).

Figure 19(b) shows the histogram of the observed RSS values.

The bimodal distribution of RSS with two peaks separated

by around 8 dBm can be clearly seen; a sharper and better

MRSS that corresponds to the “stronger” antenna diversity

transmission scheme and a more flat and weaker MRSS

that corresponds to the packet reception from the “weaker”

scheme.
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