| CT ICT-MobileSummit 2009 Conference Proceedings

Paul Cunningham and Miriam Cunningham (Eds)

1IMC International Information Management Corporation, 2009
ISBN: 978-1-905824-12-0

MobileSummit

A Case for Generic Interfaces in
Cognitive Radio Networks

Vinay Kolar!, Petri Mahonen!, Marina Petroval, Mahesh Sooriyabandara?,
Janne Riihidrvi!, Tim Farnham?

Y Department of Wireless Networks, RWTH Aachen University,
Kackertstrasse 9, 52072, Aachen, Germany
Tel: +49 2407 575 7032, Fax: +49 2407 575 7050,

e-mail: {vko,pma,mpe,jar} @mobnets.rwth-aachen.de

2Telecommunications Research Laboratory,
Toshiba Research Europe Limited,
32, Queen Square, Bristol BSI 4ND, UK
Tel: +44 1179069830, Fax: +44 1179060701

e-mail: {mahesh, tim} @toshiba-trel.com

Abstract: Cognitive wireless networks are envisioned as a solution for intelligent
ubiquitous networks that are capable of adapting to the dynamic environment through
programmable radio devices. Each functional module and protocol accomplishes such
learning by observing the various environmental, networking and application related
parameters and adapts its behaviour to improve the performance. While access to a
variety of parameters provide a large margin to improve the performance, it hinders
the practical use of the system by restricting portability. In this paper, we argue that
standard generic interfaces can be effectively used to overcome the above problem
and enable seamless communication between modules at different layers and radio
technologies. We examine the various parts of a cognitive wireless network, categorise
different types of generic interfaces, analyse the suitable abstractions, and propose
architectural principles for a cognitive radio system. We discuss four such categories
of generic interfaces that abstract different layers of networking, application utility
and policy enforcement. Various business benefits arising from such standard generic
interfaces are briefly discussed. We believe that the proposed architecture and the
benefits greatly enhance a feasible realisation of cognitive wireless networks.

Keywords: Generic Interfaces, Cognitive Radio, Cognitive Wireless Networks

1. Introduction

Cognitive radios and cognitive wireless networks [1, 2, 3, 4] are envisioned as solutions to
enable ubiquitous networks that are capable of learning from the environment, adapting
to the dynamic environment and, thus, increase the system performance. Dynamic
Spectrum Access (DSA) techniques in the context of cognitive radios are expected to
increase the efficient use of scarce spectrum. The core of such systems involves: (a)
devices that are capable of communicating across different networking technologies;
and (b) a set of modules that provide the capability for learning and adaptation. A
key feature of cognitive radios is that devices are reconfigurable so that they allow re-
programming the radio behaviour in real-time. Note that the device is not necessarily
terminal equipment, but can also be other equipment such as base station or access
point towards infrastructure. Naturally software defined radio is particularly suitable
platform for implementation of such devices.

Copyright (©) The authors www.ICT-MobileSummit.eu/2009 1of8

Most of the research projects and practitioners are also positioning a cross-layer
optimisation to the centre of such devices. It is expected that cognitive radio devices
could provide efficient use of cross-layer optimisation to enhance their operational ef-
ficiency. Cross-layered methods and modules are particularly promising as they could
unleash the full use of information that resides at the various levels of protocol stack.

While cross-layered optimisation in cognitive radio networks has gathered a lot of
attention (e.g., [5]), much less emphasis has been given to solving practical problems
that still block the advancement towards Cognitive Radios (CR). One of the main
challenges to cope is heterogeneity: there exists a large number of different proprietary
radio interfaces and protocol entities — even in the case where functionality of building
blocks of the radio systems are very similar. As a result, wider deployment of CR
prototypes has been very slow; and sometimes completely blocked, due to fact that
although the functionality of each block may be exactly the same, often the interfaces
and APIs (Application Programming Interfaces) are highly different and proprietary.
In many cases, the interfaces are not made openly available for any third parties. The
difference in the proprietary interfaces often means that one is required to rewrite large
parts of the code when moving from platform to another. A good example is the
current situation with WiFi (IEEE 802.11) network interface cards where access to
certain simple but essential information is not often available. The APIs and interfaces
are highly proprietary, and only very rudimentary information is made available to
programimers.

We have worked during the last couple of years in various EU projects, especially
ARAGORN [6] and GOLLUM (7], on developing technologies which provide standard
generic interfaces. These technologies will enable seamless communication between pro-
tocol and hardware entities at different layers and enhance the portability. In addition
to providing portability, such decoupled modules shorten development cycle and ease
the implementation overhead of the developer. In this paper, we discuss the need for
such generic interfaces and describe shortly our initial high-level architecture of the
generic interfaces that are designed for CR/SDR systems.

2. Background and Principles

Providing generalised access to various information, possibly across different layers and
protocol entities, is naturally a key requirement for efficient system that provides cog-
nitive resource optimisation capability. Standardised interfaces are not, of course, new
idea, and any modern radio interface and system standard includes well defined inter-
faces. However, typically many of the management functionalities inside of the devices
and between some elements are typically proprietary. Especially APIs have not been
standardised, and apart of OBSAI (Open Base Station Architecture Initiative) [8] there
has not been much activity in this domain. This is understandable since the propri-
etary approach has been until now driving many business models. Recently discussion
towards CR and SDR interface definition has been started by various standardisation
groups most notably by IEEE SCC41/P1900 and ETSI. SDR Forum has also been an
early player in this domain [9].

Our approach is very much complementary to the above ones, since we are working
on providing the basic mechanisms for general information exchange in cognitive wire-
less systems, instead of focussing on interfaces for a particular type of radio device or

Copyright (©) The authors www.ICT-MobileSummit.eu/2009 20f8

. CAPRI
Application layer
Transport layer M GENI B Jm{]
Network layer J Events and
notifications
Link layer M ULLA
- c ds/
Py H s

Figure 1: A basic positioning of interfaces and Cognitive Resource Manager (CRM).

network layer. The desired core properties for our API are that they should be: (a)
generic, i.e. platform/technology independent; (b) as transparent as possible; and (c)
extensible to support future technologies and platforms. Our two key goals are to hide
away different proprietary access APIs and interfaces, and to provide an interface to
describe the goals of application (users).

3. Interfaces and Basic Architecture

There are three main categories of interfaces we have considered. This list is naturally
not exhaustive, but each of the considered categories are archetypical and can be seen
as a starting point towards other similar interfaces. We are working on developing
following three interfaces:

e Universal Link Layer Interface (ULLA) facilitates the interaction with the link
layer. In some sense one can see ULLA as a sort of abstraction layer, with the
difference that this mechanism is extensible, provides a specific API and developed
specifically to support SDR/CR operations.

e Generic Network Interface (GENI) on the other hand enables the detailed moni-
toring and configuration of the transport and network layers. Much like ULLA,
it provides these functionalities through generic and portable APIs.

e Common Application Program Requirement Interface (CAPRI) provides an in-
terface between applications and cognitive radio optimiser. It is a mechanism
for applications and users to define their goals and objectives in a quantifiable
manner.

Furthermore as part of our architecture we have defined a Common Control Channel
(CCC), which provides support for the cognitive radios especially in the context of
spectrum management. The characteristics and the functionalities of the CCC are
beyond the scope of this paper, and that work is more closely related to exiting state
of the art that is done by SCC41/P1900.4.1 and IEEE 802.11k committees.

In Figure 1, we show the functional location of the interfaces towards the classical
protocol stack. The CRM processing unit is a part of so called Cognitive Resource
Manager (CRM), which is responsible for the main coordination of cognitive radio
resources and thus utilises the defined APIs and interfaces for information exchange
[10, 11].

Copyright (©) The authors www.ICT-MobileSummit.eu/2009 30f8

| Application | Application | Application

Notification
Query requests

ULLA Event
handling

Commands

ULLA Command ULLA Query
Processing Processing

Commands

LL Adapter

802.11
driver

LL Adapter
Bluetooth
driver

Figure 2: The basic components of ULLA architecture.

Next
generation
ULLA
enabled
driver

4. ULLA

The role of the Universal Link Layer API is to expose radio link level behaviours
to the CRM in order to enable intelligent resource management though cross-layer
optimisation. For this purpose, a number of functional and non-functional requirements
for the Generic Link Layer API have already been identified [7]. For instance, statistics
querying, event-notifications, link/radio configuration are several key services expected
from this interface. ULLA is a technology-independent link layer API that is developed
to solve the complexity and interoperability problems related to the large number of
different APIs and methods for accessing heterogeneous communication interfaces. It
abstracts radio and link layer specific details and provides a generic querying mechanism
to enable management of radio links in a flexible manner. These features of ULLA
would enable the CRM to gather information and update settings of the various links
connected to the interface in a unified manner.

The ULLA API facilitates access to link-layer functionality and information in a
technology independent manner. It provides an abstraction from specific link technolo-
gies to the applications or other Link Users (LUs) by regarding a link to be generic
means of providing a communication service. In this context, links are made available
and configured through Link Providers (LPs) to permit abstraction from specific plat-
forms and technologies. Link users that benefit from ULLA services include, but are
not limited to, any higher layer protocols, middleware or application software.

Figure 2 shows the different components of the ULLA. The ULLA core consists of
three main components. The UllaQueryProcessing module is in charge of analysing the
queries and notification requests coming from Link Users. The UllaCommandProcessing
module handles commands and forwards them to the corresponding Link Provider.
The UllaEventProcessing module takes care of handling events arriving from the Link
providers (new link arrivals, new value for a link characteristic, etc.), in particular, for
the evaluation of registered notification requests. Finally the ULLA Storage, represented
outside of the ULLA Core, is an optional component used to cache link characteristics
collected from the Links and Link Providers in order to avoid access to the drivers or
hardware for each query. The main services provided through the ULLA are:

e Queries: ULLA provides a generic querying mechanism allowing applications to

Copyright (©) The authors www.ICT-MobileSummit.eu/2009 4 of 8

retrieve link information in a technologically independent fashion. A query lan-
guage called ULLA Query Language (UQL), a subset of SQL, is used.

e Commands: ULLA supports a mechanism that allows applications to configure
and manage links in a standard way through the use of commands than can be
called from user level applications.

e Events: ULLA provides support for asynchronous notifications based on user de-
fined link criteria. For example, it is trivial with the ULLA to enable a notification
when specific link received signal strength goes under a certain threshold.

It should be noted that ULLA itself does not provide a large static API towards links.
Instead, it provides a very small number of functional API commands. The feature and
attribute richness of the interface is provided through the UQL, and commands are
given as parameters for those few API calls. The ULLA query language is used to
request information from the ULLA and request notifications, i.e. to indicate an event
that should trigger an asynchronous notification. The present reference implementation
of UQL is a subset of SQL with minor semantic differences and a few additions to SQL.
For example, the basic keywords used by UQL are:

e SELECT: used to select what attributes should be returned by the query. Select
should be followed by a list of attributes defined as attribute in the class selected
by the FROM statement.

e FROM: specifies the class that should be used. UQL will limit the number of class
accessed in a query to a single class. Most of the time, the ULLA_Link class will
be specified. Queries targeting specific links could use derived classes though.

e WHERE: filters the responses returned. The WHERE statement is followed by a
clause specifying a Boolean condition, (e.g: bandwidth > 10 Mbits/s). Multiple
clauses can be concatenated with the AND keyword.

Moreover we provide basic logical operations AND, OR, and NOT. Other aggregator
functions could be used on the returned attributes to simplify the application work, e.g.
AVG (compute average), MAX (compute maximum), MIN (compute minimum), SUM
(compute sum), COUNT (returns the number of attributes returned).

In addition, ULLA defines a common information model to integrate diverse infor-
mation coming from heterogeneous radio interfaces available on a device. This simplifies
common management of radio/link resources. Link-aware applications (or Link Users)
can obtain clear and consistent information about performance, configuration and ca-
pabilities of communication resources through this data model.

5. Extending beyond ULLA with GENI

The key novelty of our approach has been to build a very lightweight system that imple-
ments query engine and language, which allows us to build and extend many different
kind of interfaces and APIs. As the main command structure, parser and query engine
stay unchanged those can be reused and the syntax of interface programming stays
unchanged. Thus for example GENI that provides data models and interface towards
network and transport layers reuses same core infrastructure and components defined

Copyright (©) The authors www.ICT-MobileSummit.eu/2009 50f8

in ULLA specification. In other words, GENI simply extends ULLA with new providers
(service) and information (class) definitions for defining the notion of transport layer
connections and network layer routing information. Instead of traditional Link Layer
Adapters, GENI introduces Transport and Network layer adapters to interface with the
TCP/IP stack of the host operating system. For the transport layer, a new provider
is defined for UDP and TCP assuming for now that these are the only transport layer
protocols we consider for implementation.

6. CAPRI

Cognitive radios need to be aware of different application and user goals. In order to
make multi-objective optimisation, we need to provide mechanism to handle objectives
quantitatively. One very natural way is to use utility functions (objective functions) for
modeling these goals. Due to this CAPRI interface need to provide slightly different
and richer set of functionalities than other interfaces that have been discussed above.
Fundamentally, CAPRI is designed to support utility-based optimisation [12, 13, 14].

Different applications can have widely varying requirements in terms of network
connectivity. For interactive web-browsing bandwidth is the most important quantity
provided that the delay does not become prohibitive, whereas for VoIP low (residual)
packet error rates along with low and stable delay are more important. Streaming
media applications in general feature a complicated throughput dependant behaviour
in the quality of the streamed media due to the use of certain fixed codec rates. Adding
the complication of multiple applications sharing a connection over a link or a path, it
becomes clear that for optimisation of the system performance quantitative expression
of these application interests is needed.

A flexible solution to the problem is obtained through the application of utility
functions. We associate each application with a function U, evaluated on the collection
of the various measurable attributes of the connection (such as throughput, delay, error
rate etc.), resulting in a single real number, the utility of the connection for the ap-
plication. In simple cases the utility functions might be functions of a single attribute
only, but we foresee them more typically as being dependent on a number of them.

The CAPRI is fundamentally based on the capability of expressing application pref-
erences through it. Thus the basic interface will be of the form: “attach_utility(utility
specification, application ID)”. If such a function is invoked by the application itself, the
latter argument can, of course, be omitted. It is included to allow dedicated operating
system components to associate utilities to applications, allowing legacy applications
and other software components not supporting CAPRI directly to be integrated seam-
lessly into the same optimisation framework. The semantics of application ID will, in
general, be operating system specific, although we expect simple process number or
PID to be the most common choice. The argument utility specification is a string con-
taining the description of the utility function in a language basically forming a subset of
the textual notation for mathematical expressions typically used in modern computer
algebra systems. This part of the definition work is still on-going part of our research.

We cannot, of course, expect ordinary users to operate on utility specifications
directly. They are meant to represent the lowest, most expressive layer of ways to
express application preferences, used by developers with necessary expertise or domain
knowledge (on behaviour of multimedia codecs, for example). We expect that on top of

Copyright (©) The authors www.ICT-MobileSummit.eu/2009 6 of 8

the basic CAPRI a layer of macro-like behaviours will be developed to further abstract
the most common types of utility functions. Additionally, we expect various deployed
systems to come up with additional mechanisms for inferring user satisfaction to the
application behaviour by means of various HCI techniques. Utility functions form in
each of these cases the basis of expressing the desired behaviour to the CRM where it
can be reasoned about automatically, but will largely remain hidden from users and
even most developers.

7. Discussion and Conclusions

We have already defined most of the core part of the architecture and interfaces. More-
over, there is an early reference implementation for ULLA and related query engine
components. Our current measurements show that the system can be implemented
with low usage of resources and thus is suitable also for embedded devices. The per-
formance evaluation has shown that interface is able to operate in real-time fashion so
that events notification and information exchange can be performed at line-speed. Part
of the work has been also presented towards standardisation groups and has been made
available to public [15].

We have also paid a lot of attention to understand underlying commercial conse-
quences of such interfaces. As discussed above the general API approach has a strong
potential not only to lower development costs in typical industrial environment, but also
enables new business opportunities by opening possibilities for different stakeholders in
flexible fashion. It should be also noted that the flexible interface technology what we
are offering is not a large monolithic approach, which would force stakeholders (e.g.
equipment or chipset manufactures) to open all internal interfaces and functionalities
towards everyone. On the contrary, our approach allows general access towards pro-
prietary functionalities, which still can be kept proprietary and confidential. Naturally
standardisation may require that some specific and very generic functionalities must be
provided, e.g. reading for received signal strength, in a predefined manner.

We believe that the outlined query engine based information exchange and interfaces
API approach is providing not only a future proof way to implement extendable APIs
for cognitive radios and software defined radios, but also takes into account business re-
alities in a fashion that has not been considered by previous attempts. We are currently
continuing our work towards making a minimal reference implementation that includes
all the major components of generic APIs, and plan to make performance evaluation
by using a low-cost CR/SDR platform.

Acknowledgements

This work was financially supported by European Union (ARAGORN project). We
acknowledge also the partial support from DFG and RWTH Aachen through UMIC-
research center facility. We thank other project partners for their valuable discussions
and feedback.

References

[1] J. Mitola and J. Maguire, G.Q., “Cognitive radio: making software radios more
personal,” IEEE Personal Communications, vol. 6, pp. 13-18, Aug 1999.

Copyright (©) The authors www.ICT-MobileSummit.eu/2009 7 of 8

2]

3]

[4]

[5]

[11]

[12]

D. Clark, G. Partridge, J. C. Ramming, , and J. T. Wroclawski, “A knowledge
plane for the internet,” in Proc. of SIGCOMM 2003, Karlsruhe, Germany, 2003.

P. Mahonen, “Cognitive trends in making: Future of networks,” in Proceedings of
IEEE PIMRC 2004, Barcelona, Spain, vol. 2, pp. 1449-1454, 2004.

R. W. Thomas, L. A. DaSilva, , and A. B. MacKenzie, “Cognitive Networks,” in
Proc. of IEEE DySPAN 2005, November 2005, pp. 352-360, 2005.

A. de Baynast, P. Mahonen, and M. Petrova, “ARQ-based cross-layer optimiza-
tion for wireless multicarrier transmission on cognitive radio networks,” Computer
networks, vol. 52, pp. 778794, March. 2008.

The ARAGORN Project website, (http://www.ict-aragorn.eu).

The GOLLUM Project website, (http://www.ist-gollum.orgq).
OBSAI-Open Base Station Architecture Initiative, (http://www.obsai.org).
Software Defined Radio Forum, (http://www.sdrforum.orgq).

P. Mahonen, M. Petrova, J. Riihijarvi, and M. Wellens, “Cognitive Wireless Net-
works:your network just became a teenager,” in Proc. of IEEE INFOCOM 2006
(poster sessions), Barcelona, Spain, 2006.

M. Petrova and P. Mahonen, Cognitive Resource Manager: A cross-layer architecture
for implementing Cognitive Radio Networks. in Cognitive Wireless Networks (eds:
Fitzek F. and Katz M.), Springer, 2007.

J. Riihijarvi, M. Wellens, and P. Mahonen, “Link-Layer Abstractions for Utility-
Based Optimization in Cognitive Wireless Networks,” in Proceedings of CROWN-
COM’06, (Mykonos, Greece), June 2006.

Z. Cao and E. W. Zegura, “Utility max-min: An application-oriented bandwidth
allocation scheme,” in Proc. of IEEE INFOCOM’99, pp. 793-801, 1999.

T. Harks and T. Poschwatta, “Utility fair congestion control for real-time traffic,”
in Proc. of 8th IEEE Global Internet Symposium, co-located with IEEE INFOCOM,
(Miami, FL, USA), pp. 85-90, March 2005.

“Unified Link Layer API (ULLA): Open-source project.”
Available at http://sourceforge.net/projects/ulla/.

Copyright (©) The authors www.ICT-MobileSummit.eu/2009 8of 8

