
Anomalies in Optimal Rate-control and Scheduling

Protocols for Cognitive Radio Networks

Vinay Kolar

Department of Computer Science

Carnegie Mellon University, Qatar.

vkolar@cmu.edu

Vikram Munishwar and Nael B. Abu-Ghazaleh

Department of Computer Science,

State University of New York, Binghamton.

{vmunish1,nael}@cs.binghamton.edu

Abstract—Protocols in Cognitive Radio Networks (CRNs) tune
the radio and network parameters to utilize the unused fre-
quency spectrum, and thus improve the application performance.
Generalized Network Utility Maximization (GNUM) approach
has been used to derive optimal algorithms in CRN from a
theoretical formulation of the problem. However, there are several
practical challenges for realizing these algorithms in a networking
system. In this paper, we consider a joint source-rate, routing and
scheduling GNUM problem in CRNs. We discuss three issues of
protocols that are derived directly from the optimal algorithms:
spurious pressure points, bursty scheduling and the need for
link pruning. We show that the above practical problems result
in serious system implications such as large message passing
overheads, packet delays and buffer requirements.

I. INTRODUCTION

Frequency spectrum is scarcely used in several licensed

spectrum bands such as TV white-spaces [1], while the

license-free band, which are used by WiFi networks, are

heavily congested. Cognitive Radio Networks (CRNs) take

advantage of the unused spectrum in licensed bands; they

dynamically use the spectrum bands which are not used

by licensed primary users. CRNs are equipped with nodes

with flexible radios that adjust low-level radio and PHY-layer

parameters to operate over a wide spectrum band. Thus, CRNs

provide a promising solution to alleviate the capacity shortage

issues in wireless networks, such as WiFi, that operate in

license-free bands.

Large spectrum does not always translate into large capacity

in CRNs. The primary user activity may forbid the use of a

spectrum band or policy restrictions may block the usage of

some parts of the spectrum. In addition, the growing capacity

demands by wireless applications, which has been a prominent

trend in recent years, may exceed the CRN capacity limits.

The network is expected to respect the constraints of policy

and primary users, and efficiently use the available networking

resources to provide better performance to the applications.

Optimization of application performance is a hard problem

in CRNs since it depends upon several radio and networking

parameters [2]. Existing heuristic protocols search for efficient

and low-complexity solutions. However, it is challenging to

systematically and analytically quantify the best solution.

Such systematic solution is necessary not only to predict

the theoretically optimal solution, but also towards designing

practical optimal protocols that ensure near-optimal solutions.

Generalized Network Utility Maximization (GNUM) has

been extensively used to optimally adjust the network param-

eters, and derive optimal algorithms [3]. GNUM states the

application optimization as a convex optimization problem [4],

and, based on the structure of the problem, derives algorithms

that are dynamic, distributed and converge to optimal solution.

Joint source-rate control, routing and scheduling is one the

key problems in GNUM which has been widely studied in

traditional wireless networks [5], [6] and CRNs [7], [8].

Translating the optimal algorithms derived from GNUM

to protocols in CRN system poses practical challenges. The

theoretical problems assume ideal conditions, such as low

message passing overheads, for the simplicity of formulation.

Realizing optimal algorithms into protocols require evaluating

the assumptions under a system perspective such that the

protocol has near-optimal performance.

In this paper, we analyze the practical anomalies in a joint

rate-control, routing and scheduling GNUM problem in CRNs.

We describe the general network model in Section II, which

has been extensively studied in the literature [7], [6]. The main

contribution of the paper, which is described in Section III,

is identifying key practical considerations for the design of

near-optimal protocols. First, we show that optimal algorithms

lead to accumulation of packets at inactive nodes; we call this

phenomenon as spurious pressure points. Second, we illustrate

the effect of bursty scheduling. Finally, we motivate the need

for link pruning, where unnecessary links are ignored by the

scheduler, to design fast schedulers.

Through numerical examples in different scenarios, we

show that the anomalies of the optimal algorithms lead to

practical networking issues such as message passing over-

heads, large packet delays, retransmissions and large buffer

requirements. Finally, we conclude and discuss the future work

in Section IV.

II. GENERAL NETWORK MODEL

In this section, we formulate the joint rate-control, routing

and scheduling problem to a network with frequency-agile

radios. We extend the general single channel model proposed

by Chen et. al. [6], and use the similar notations where ever

applicable.

We represent the network as a set of nodes (N ) and links

(L). A link between nodes a and b is represented by (a, b)



or by an index i. Each node is equipped with radios that can

operate on a wide frequency band. The band is divided into

set of discrete channels (C). The radio can transmit or receive

on a subset of these discrete channels. Such a radio model is

reasonable for OFDMA based systems, where the frequency

band is divided into a number of sub-carriers, and a radio can

transmit or receive on a subset of sub-carriers.

In networks operating on a wide-frequency band, the quality

of links vary depending upon the channel frequency. OFDMA

based systems allow to modulate each sub-carrier separately

(say, based on link quality). The time to transmit unit data on

a link i on channel c (Ti,c) is hence a function of the chosen

modulation.

The set of end-connections in a network is represented

by K. The source, destination and the rate of transmission

for a connection k is denoted by src(k), dest(k) and rk,

respectively. Each connection k has an application utility that

is expressed by a convex utility function U(rk). We use the

utility function U(rk) = log(rk), which ensures proportional

fairness to connections. Other convex utility functions can be

used for ensuring different application utilities [9].

A link may carry traffic for various connections on different

channels. The traffic flow allocated to link i (or (a, b)) on

channel c for connection k is denoted by fk
i,c (or fk

ab,c). The

time required to transmit this flow over the link i on channel

c is a function of the link capacity, and is denoted by tki,c =
Ti,cf

k
i,c. The vector of various variables (say, f , t and r) are

represented by their bold letter counterparts (f , t and r).

We now discuss the primal and dual optimization problem

to optimize r and f for a given network topology. Finally, we

briefly discuss the algorithm to solve the dual optimization

problem with an example scenario.

A. Primal problem

The primal problem allocates flows on various links and

channels such that: (1) the application utilities are maximized,

(2) packets are routed from sources to the destinations, and

(3) the schedule for link transmission is feasible. The overall

problem is given by:

Maximize
∑

∀k∈K

U(rk), (1)

such that

f ≥ 0, (2)

xk
a ≤

∑

b:(a,b)∈L

∑

c∈C

fk
ab,c −

∑

b:(b,a)∈L

∑

c∈C

fk
ba,c,

∀k ∈ K, ∀a ∈ N , a 6= dest(k), (3)

f ∈ Π. (4)

Equations 1 and 2 are obvious. Equation 3 represents the

mass balance constraints, which is used to route packets from

source to destination. Here, the source of a connection k injects

a flow into the network, and is indicated by a positive demand

variable xk
src(k) = rk. Similarly, the destination has negative

demand xk
dest(k) = −rk. For other nodes a, xk

a = 0.

Equation 4 describes the scheduling constraint that a sched-

ule allocated on different link-channel combinations belongs

to a feasible region Π. A flow allocation f on different links

and channels is feasible when certain properties are satisfied:

(1) Primary Usage Constraint: If a link i observes primary

user activity on channel c for time-fraction Pi,c, then a link

may schedule only for the remaining period (Equation 5).

(2) Maximal Independent Set (MIS) constraint: The flows on

links on different channels have to be scheduled in cognitive

wireless networks such that links do not interfere with each

other. Interference in cognitive radio wireless network is

represented by a multi-channel conflict graph [7], where each

link-channel pair (〈i, c〉) is represented as a vertex of conflict

graph and an edge between two verticies exist if they interfere.

A Maximal Independent Set (MIS) of this graph is a set of

link-channel pairs 〈i, c〉 that can be concurrently scheduled.

The set of all MIS is represented by M = {M1, M2, . . . , MI},

where Mn is an MIS and I is the total number of MIS for the

conflict graph.

The scheduler assigns a fraction of time sn to MIS Mn,

thus allowing the transmissions on link-channel pairs in Mn.

Equation 6 specifies the lower bound for MIS time-share,

and the maximum cumulative share of time for all MIS is

1 (Equation 7). The schedule is feasible if the overall time-

share for a transmitting over a link-channel pair 〈i, c〉 cannot

exceed the sum of the time-shares of MIS to which it belongs

(Equation 8). Hence, a schedule is feasible, f ∈ Π, if:

∑

k∈K

tki,c + Pi,c ≤ 1, ∀i ∈ L, c ∈ C, (5)

sn ≥ 0, n = 1..I, (6)
∑

n=1..I

sn ≤ 1, and (7)

∑

k∈K

tki,c ≤
∑

n:〈i,c〉∈Mn

sn, ∀i ∈ L, c ∈ C. (8)

Note that under realistic wireless interference models com-

putation of MIS is NP-hard, and polynomial approximations

exist to compute such sets [10]. The number of MIS increases

rapidly as the number of edges or channels grow. Hence, as

we discuss in Section III-D, realistic computation of MIS for

a network is a demanding task for a scheduler.

B. Dual problem

We formulate the dual problem by Lagrangian dual de-

composition using the well-known GNUM framework [6]. We

relax the balance constraints in Equation 3. For each constraint

in Equation 3, we introduce a Lagrangian multiplier qk
a . Since

a node maintains a queue for each connection, it can be

shown that qk
a maps to the congestion price of the queue for

connection k on node a. Higher value of price qk
a indicates

that queue length is larger.

Through standard derivation approach, the primal problem

(Equations 1–4) can be shown to be decomposed into two



sub-problems:

D1(q) = max
r≥0

∑

k∈K

U(rk) −
∑

k∈K

rkqk
src(k), (9)

and

D2(q) = max
f≥0

∑

(a,b)∈L

∑

c∈C

fk
ab,c max

k∈K
(qk

a − qk
b ),

such that f ∈ Π. (10)

D1(q) is a source-rate maximization problem, which can be

solved in a distributed manner; each connection source node

(src(k)) executes a local maximization problem:

max
rk≥0

U(rk) − rkqk
src(k).

D2(q) is a joint routing and scheduling problem. The

objective is a weighted maximization problem with each flow

on a link (a, b) has a weight wab = max
k∈K

(qk
a − qk

b ). Since the

weight on a link wab is the maximum difference of prices on

sender and receiver of a link, it can be viewed as a maximum

differential price for a link.

C. Optimal protocols

Protocols to dynamically solve the optimal problems is

derived based on the sub-problems D1(q) and D2(q). At each

time-slot all the nodes co-operate and perform different tasks

to solve the sub-problems. It can be shown that the following

protocol executed at each time-slot (t) solves the joint rate-

control, routing and scheduling problem:

Step 1: Each node a updates the congestion price qk
i (t) as

follows:

qk
a(t) = qk

a(t-1) + α
{

xk
a − (

∑

(a,b)∈L,
c∈C

fk
ab,c −

∑

(b,a)∈L,
c∈C

fk
ba,c)

}+

,

where α is a non-negative integer step-size parameter. The

value the expression {p}+ = p if p is non-negative. Otherwise

it is 0. Hence, if the queue has more incoming packets

(either from incoming links or from application) than outgoing

packets, then the congestion price for the queue will increase.

Step 2: Each source node of a connection executes a local

source-rate maximization based on D1(q(t)). Here, the source

alters the rate based on the observed queue price and applica-

tion utility.

Step 3: Scheduling and routing are performed by solving

D2(q(t)). Each link (a, b) calculates the maximum price

differential wab(t) = max(qk
a − qk

b ) for all connections k,

and marks the connection (kmaxi
(t)) for which the maxi-

mum price-differential is observed. The sender and receiver

of link also transmit primary usage map Pi,c(t), which is

obtained from the spectrum sensing components. The infor-

mation wab(t), Pi,c(t) is sent to the centralized scheduler.

The scheduler computes the optimal flow f(t) by solving

D2(q(t)), and the link allocates the flow to the queue for

the connection indicated by kmaxi
(t).

Scheduling in step 3 works on the basis of back-pressure.

The scheduler uses the price-differentials at various queues to

prioritize the packets: transmission from the longest queues are

N1

N4

N3 N2

N5

L2

L1 L3

L4
L5

L6

Src for Conn 1 Src for Conn 2

Src for Conn 3

Dest for Conn 1,2,3

Fig. 1. 2-level tree scenario.

first scheduled before allocating schedules to other queues. By

this procedure the algorithm schedules packets to neighboring

nodes such that almost equal queue lengths (back-pressures)

are observed at neighboring queues.

While we describe dynamic protocols using a centralized

scheduler, the framework can be readily extended to distributed

protocols similar to [6]. The only additional information

exchanged between the nodes is the spectrum occupancy by

primary users Pi,c(t) for each link.

III. PRACTICAL CONSIDERATIONS IN PROTOCOL DESIGN

In this section, we first illustrate the optimal protocol

described in Section II-C by using numerical example. Then,

we identify the important limitations of optimal protocols, and

illustrate them with simple examples.

A. Example scenario

Consider a 2-level tree scenario with three connections as

shown in Figure 1. Each node operates on two channels, and

there is no interference from primary transmitters on either

channels. Each channel is assumed to have unit capacity, thus

each link has a capacity of 2 units.

We run the optimal protocols in Section II-C for 500 time-

slots with no primary traffic (Pi,c = 0), α = 0.1 and Ti,c = 1.

The source-rate of the connections smoothly converge close

to the optimal value 0.33 as the time increases (similar to

Figure 2(c), but without the intermediate turbulence observed

from time-slots 300 to 500). The average of the flows allocated

to links on different channels is shown in Figure 2(a).

We re-run the scenario with primary activity as marked in

Figure 2(c). It can be seen that primary user activity creates

small turbulence in the instantaneous rate. However, the rates

dynamically adapt and converge over time.

Figures 2(a) shows the average flows in this scenario. Even

though L2 has one of the channel unusable for the whole

period, there is no drop in any source-rates. The intelligent

scheduler subdues the effect of primary activity observed at

L2. It allocates L2 a flow of 0.33 on unused channel, instead of

allocating flow of 0.17 on two channels (as seen by comparing

Figures 2(a) and 2(b)). Hence, if feasible, the scheduler re-

arranges link schedules such that source-rates are not reduced.
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(a) Flows when no primary activity observed.
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(b) Flows when primary is active.
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Fig. 2. Rate convergence, mean flows and the effect of primary user activity in a 2-level tree scenario.
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Fig. 3. Spurious pressure point: Flow for connection 1 accumulate at node
N3 (on link L1), which is inactive in routing.

B. Spurious pressure points

Recall that the building of back-pressure enables link

scheduling. The bootstrapping process required for back-

pressure algorithm is building enough pressure at all neighbor-

ing nodes – even on the nodes inactive in routing. For example,

node N1 can send the packets for connection 1 to N4 or N3. If

there are already some packets at N4, the price-differential of

link L2 becomes lower that of L1. Hence, N1 pushes packets

to N3 on link L1. However, L5 prefers transmitting packets of

connection 2 for providing proportional fairness to connections

(Equation 9). Hence, packets of connection 1 accumulate at

N3 for a long time, as shown in Figures 3 and 2(a). Spurious

pressure results in several higher-layer issues such as out-of-

order delivery, retransmissions of packets and waste of queue

buffers.

C. Bursty schedules

Recall that the ideal scheduler chooses the packets from

the queues that have maximum price differential. This process

results in bursty schedules. For example, Figure 4 shows the

schedules chosen for connection 1 on L1 and L6 of Figure 1.
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Fig. 4. Bursty schedules: For connection 1, links L2 and L6 are scheduled
in bursts. The long-term average of the flow is constant.

If the scheduling and price updates happen at a fine time-

granularity, then the inter-packet delay is reasonably small.

Hence, the effect of bursty schedules can be ignored. However,

the message passing overhead outruns the advantages of max-

imizing the source-rate if we disseminate the prices at a fine

time-granularity. In reality, the price updates are chosen at, say,

fraction of seconds to few seconds to reduce the dissemination

overhead, and the time-slot to schedule the packet is chosen

as few milliseconds.

Consider the back-of-the-envelope calculations for the sce-

nario in Figure 1. Assume that the two channels have a

capacity of 1 Mbps each. The price updates occur every second

and packet transmission time-slot is 2 ms. Packet sizes are

chosen to fit into the time-slot (500 bytes). We map the fraction

of flow as solved by the optimal algorithms into packets, and

record the end-to-end delays of packets. Figure 5 shows the

large end-to-end delay (≈ 80 seconds) is observed, which has

severe limitations in realistic networking systems: they harm

performance of many applications, result in unfairness and

require large buffer spaces at intermediate nodes.

Bursty schedules are eliminated by using heuristics (such
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Scenario Metric
Without With

Link Pruning Link Pruning

Figure 1
# Links, # MIS 12, 70 4, 10
Primal Src-rates 0.33,0.33,0.33 0.33,0.33,0.33
Dual Src-rates 0.35,0.35,0.36 0.36,0.35,0.34

S1 S2

D2

D1

# Links, #MIS 8, 26 4, 3
Primal Src-rates 0.5,1 0.5,1
Dual Src-rates 0.53,0.87 0.53,0.87

S1

D1S2

D2 # Links, #MIS 20, 468 7, 27
Primal Src-rates 0.5,1 0.5,1
Dual Src-rates 0.55,0.91 0.53,0.86

(from [6])
S1

D1,D2,D3

S2

S3 # Links, #MIS 12, 168 6, 17
Primal Src-rates 0.67,0.67,0.67 0.67,0.67,0.67
Dual Src-rates 0.72,0.62,0.66 0.70,0.67,0.62

TABLE I
EFFECT OF LINK PRUNING: LINK PRUNING REDUCES THE NUMBER OF

EDGES AND MIS WITHOUT COMPROMISING THE PERFORMANCE.

as scheduling the long-term average, instead of instantaneous

flow). Here, the convergence of source-rates to optimal values

is not guaranteed. We wish to pursue heuristics to achieve

near-optimal rates in the future work.

D. Link pruning

Recall that the construction of MIS, which is required

for scheduling, is an NP-hard problem. Hence, it takes pro-

hibitively long time to calculate the schedules as the edges

increase. The effect is even more exacerbated in CRNs, where

the number of channels are large. Hence, eliminating surplus

edges that are not active in routing is beneficial in faster

scheduler algorithms.

Fast schedulers can be realized in networking systems by

decoupling routing from rate-control and scheduling problem.

Most systems employ link-state or source-routing protocols,

which already store the possible next-hops or entire routes.

Using this information, link pruning eliminates the surplus

edges that are inactive in routing. Link pruning also helps

to reduce the effect of spurious pressure points, which is

described in Section III-B, since the links to nodes that are

inactive in routing have been pruned.

We implement link pruning by extended Dijkstra algorithm

that computes all the minimum hop routes between given

source-destination pair. We later prune all inactive edges.

While we demonstrate the effect of link pruning using above

algorithm, link pruning can be extended to more realistic

routing protocols, such as link-quality based routing.

We simulate various scenarios as shown in Table I. The

source and destination of a connection are marked as Sn

and Dn. We compare the number of edges and maximum

independent sets (MIS). We also compare the source-rates of

optimal protocols with and without pruning. The results show

that link pruning significantly reduces the number of edges

and MIS with no loss in performance.

IV. CONCLUSIONS AND FUTURE WORK

The paper analyzes the issues in realizing optimal protocols

for joint rate-control and scheduling in Cognitive Radio Net-

works. We identify three considerations: (1) spurious pressure

points, which are built due to back-pressure algorithms, (2)

bursty scheduling, due to maximum price-differential based

scheduling, and (3) high-complexity schedulers due to large

number of unnecessary links. The paper shows the above

effects lead to large messaging overheads, packet delays and

buffer requirements. In our future work, we plan to realize the

near-optimal protocols in testbeds.
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