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Abstract—Protocols in Cognitive Radio Networks (CRNs) tune
the radio and network parameters to utilize the unused fre-
quency spectrum, and thus improve the application performance.
Generalized Network Utility Maximization (GNUM) approach
has been used to derive optimal algorithms in CRN from a
theoretical formulation of the problem. However, there are several
practical challenges for realizing these algorithms in a networking
system. In this paper, we consider a joint source-rate, routing and
scheduling GNUM problem in CRNs. We discuss three issues of
protocols that are derived directly from the optimal algorithms:
spurious pressure points, bursty scheduling and the need for
link pruning. We show that the above practical problems result
in serious system implications such as large message passing
overheads, packet delays and buffer requirements.

I. INTRODUCTION

Frequency spectrum is scarcely used in several licensed
spectrum bands such as TV white-spaces [1], while the
license-free band, which are used by WiFi networks, are
heavily congested. Cognitive Radio Networks (CRNs) take
advantage of the unused spectrum in licensed bands; they
dynamically use the spectrum bands which are not used
by licensed primary users. CRNs are equipped with nodes
with flexible radios that adjust low-level radio and PHY-layer
parameters to operate over a wide spectrum band. Thus, CRNs
provide a promising solution to alleviate the capacity shortage
issues in wireless networks, such as WiFi, that operate in
license-free bands.

Large spectrum does not always translate into large capacity
in CRNs. The primary user activity may forbid the use of a
spectrum band or policy restrictions may block the usage of
some parts of the spectrum. In addition, the growing capacity
demands by wireless applications, which has been a prominent
trend in recent years, may exceed the CRN capacity limits.
The network is expected to respect the constraints of policy
and primary users, and efficiently use the available networking
resources to provide better performance to the applications.

Optimization of application performance is a hard problem
in CRNs since it depends upon several radio and networking
parameters [2]. Existing heuristic protocols search for efficient
and low-complexity solutions. However, it is challenging to
systematically and analytically quantify the best solution.
Such systematic solution is necessary not only to predict
the theoretically optimal solution, but also towards designing
practical optimal protocols that ensure near-optimal solutions.
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Generalized Network Utility Maximization (GNUM) has
been extensively used to optimally adjust the network param-
eters, and derive optimal algorithms [3]. GNUM states the
application optimization as a convex optimization problem [4],
and, based on the structure of the problem, derives algorithms
that are dynamic, distributed and converge to optimal solution.
Joint source-rate control, routing and scheduling is one the
key problems in GNUM which has been widely studied in
traditional wireless networks [5], [6] and CRNs [7], [8].

Translating the optimal algorithms derived from GNUM
to protocols in CRN system poses practical challenges. The
theoretical problems assume ideal conditions, such as low
message passing overheads, for the simplicity of formulation.
Realizing optimal algorithms into protocols require evaluating
the assumptions under a system perspective such that the
protocol has near-optimal performance.

In this paper, we analyze the practical anomalies in a joint
rate-control, routing and scheduling GNUM problem in CRNS.
We describe the general network model in Section II, which
has been extensively studied in the literature [7], [6]. The main
contribution of the paper, which is described in Section III,
is identifying key practical considerations for the design of
near-optimal protocols. First, we show that optimal algorithms
lead to accumulation of packets at inactive nodes; we call this
phenomenon as spurious pressure points. Second, we illustrate
the effect of bursty scheduling. Finally, we motivate the need
for link pruning, where unnecessary links are ignored by the
scheduler, to design fast schedulers.

Through numerical examples in different scenarios, we
show that the anomalies of the optimal algorithms lead to
practical networking issues such as message passing over-
heads, large packet delays, retransmissions and large buffer
requirements. Finally, we conclude and discuss the future work
in Section IV.

II. GENERAL NETWORK MODEL

In this section, we formulate the joint rate-control, routing
and scheduling problem to a network with frequency-agile
radios. We extend the general single channel model proposed
by Chen et. al. [6], and use the similar notations where ever
applicable.

We represent the network as a set of nodes (A) and links
(£). A link between nodes a and b is represented by (a,b)



or by an index ¢. Each node is equipped with radios that can
operate on a wide frequency band. The band is divided into
set of discrete channels (C). The radio can transmit or receive
on a subset of these discrete channels. Such a radio model is
reasonable for OFDMA based systems, where the frequency
band is divided into a number of sub-carriers, and a radio can
transmit or receive on a subset of sub-carriers.

In networks operating on a wide-frequency band, the quality
of links vary depending upon the channel frequency. OFDMA
based systems allow to modulate each sub-carrier separately
(say, based on link quality). The time to transmit unit data on
a link 4 on channel ¢ (75 ) is hence a function of the chosen
modulation.

The set of end-connections in a network is represented
by K. The source, destination and the rate of transmission
for a connection k is denoted by src(k), dest(k) and ry,
respectively. Each connection k& has an application utility that
is expressed by a convex utility function U(ry). We use the
utility function U (r) = log(rx), which ensures proportional
fairness to connections. Other convex utility functions can be
used for ensuring different application utilities [9].

A link may carry traffic for various connections on different
channels. The traffic flow allocated to link 4 (or (a b)) on
channel ¢ for connection % is denoted by fi’fc (or ab ). The
time required to transmit this flow over the link ¢ on channel
c is a function of the link capacity, and is denoted by ti—f .=
T ffc The vector of various variables (say, f, ¢ and r) are
represented by their bold letter counterparts (f, ¢ and 7).

We now discuss the primal and dual optimization problem
to optimize r and f for a given network topology. Finally, we
briefly discuss the algorithm to solve the dual optimization
problem with an example scenario.

A. Primal problem

The primal problem allocates flows on various links and
channels such that: (1) the application utilities are maximized,
(2) packets are routed from sources to the destinations, and
(3) the schedule for link transmission is feasible. The overall
problem is given by:

Maximize Z U(r), (D
VkeEK
such that

F=0, (2)

.I' < Z Z ab,c Z Z fba c)

(a,b)eL ceC :(b,a)eL ceC

VkEIC,VaGN,a;édebt( ), 3)
fell 4)

Equations 1 and 2 are obvious. Equation 3 represents the
mass balance constraints, which is used to route packets from
source to destination. Here, the source of a connection k injects
a flow into the network, and is indicated by a positive demand
variable xfrc(k) = rp. Similarly, the destination has negative

demand xgcst(k) —r}. For other nodes a, £C =0.

Equation 4 describes the scheduling constraint that a sched-
ule allocated on different link-channel combinations belongs
to a feasible region II. A flow allocation f on different links
and channels is feasible when certain properties are satisfied:
(1) Primary Usage Constraint: If a link 7 observes primary
user activity on channel ¢ for time-fraction P; ., then a link
may schedule only for the remaining period (Equation 5).
(2) Maximal Independent Set (MIS) constraint: The flows on
links on different channels have to be scheduled in cognitive
wireless networks such that links do not interfere with each
other. Interference in cognitive radio wireless network is
represented by a multi-channel conflict graph [7], where each
link-channel pair ({i, ¢)) is represented as a vertex of conflict
graph and an edge between two verticies exist if they interfere.
A Maximal Independent Set (MIS) of this graph is a set of
link-channel pairs (i,c) that can be concurrently scheduled.
The set of all MIS is represented by M = { My, Ms, ..., Mr},
where M,, is an MIS and [ is the total number of MIS for the
conflict graph.

The scheduler assigns a fraction of time s, to MIS M,
thus allowing the transmissions on link-channel pairs in M,,.
Equation 6 specifies the lower bound for MIS time-share,
and the maximum cumulative share of time for all MIS is
1 (Equation 7). The schedule is feasible if the overall time-
share for a transmitting over a link-channel pair (i, ¢) cannot
exceed the sum of the time-shares of MIS to which it belongs
(Equation 8). Hence, a schedule is feasible, f € II, if:
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Note that under realistic wireless interference models com-
putation of MIS is NP-hard, and polynomial approximations
exist to compute such sets [10]. The number of MIS increases
rapidly as the number of edges or channels grow. Hence, as
we discuss in Section III-D, realistic computation of MIS for
a network is a demanding task for a scheduler.

B. Dual problem

We formulate the dual problem by Lagrangian dual de-
composition using the well-known GNUM framework [6]. We
relax the balance constraints in Equation 3. For each constraint
in Equation 3, we introduce a Lagrangian multiplier ¢*. Since
a node maintains a queue for each connection, it can be
shown that ¢¥ maps to the congestion price of the queue for
connection k on node a. Higher value of price ¢* indicates
that queue length is larger.

Through standard derivation approach, the primal problem
(Equations 1-4) can be shown to be decomposed into two



sub-problems:
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D1(q) is a source-rate maximization problem, which can be
solved in a distributed manner; each connection source node
(src(k)) executes a local maximization problem:
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Ds(q) is a joint routing and scheduling problem. The
objective is a weighted maximization problem with each flow
on a link (a,b) has a weight w,;, = Iglea%(qs — qF). Since the
weight on a link wg;, is the maximum difference of prices on
sender and receiver of a link, it can be viewed as a maximum
differential price for a link.

C. Optimal protocols

Protocols to dynamically solve the optimal problems is
derived based on the sub-problems D;(q) and D2 (q). At each
time-slot all the nodes co-operate and perform different tasks
to solve the sub-problems. It can be shown that the following
protocol executed at each time-slot () solves the joint rate-
control, routing and scheduling problem:

Step 1: Each node a updates the congestion price ¢¥(t) as

follows:
Z fabc Z flica,c)}-i_a
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where « is a non-negative integer step-size parameter. The
value the expression {p}™ = p if p is non-negative. Otherwise
it is 0. Hence, if the queue has more incoming packets
(either from incoming links or from application) than outgoing
packets, then the congestion price for the queue will increase.
Step 2: Each source node of a connection executes a local
source-rate maximization based on D1(q(t)). Here, the source
alters the rate based on the observed queue price and applica-
tion utility.
Step 3: Scheduling and routing are performed by solving
D5(q(t)). Each link (a,b) calculates the maximum price
differential wq,,(t) = max(q® — ¢f) for all connections F,
and marks the connection (kmax,(t)) for which the maxi-
mum price-differential is observed. The sender and receiver
of link also transmit primary usage map P, .(¢), which is
obtained from the spectrum sensing components. The infor-
mation wgp (), P; o(t) is sent to the centralized scheduler.
The scheduler computes the optimal flow f(¢) by solving
D>(gq(t)), and the link allocates the flow to the queue for
the connection indicated by kpax, (1).

Scheduling in step 3 works on the basis of back-pressure.
The scheduler uses the price-differentials at various queues to
prioritize the packets: transmission from the longest queues are
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Fig. 1. 2-level tree scenario.

first scheduled before allocating schedules to other queues. By
this procedure the algorithm schedules packets to neighboring
nodes such that almost equal queue lengths (back-pressures)
are observed at neighboring queues.

While we describe dynamic protocols using a centralized
scheduler, the framework can be readily extended to distributed
protocols similar to [6]. The only additional information
exchanged between the nodes is the spectrum occupancy by
primary users P; .(t) for each link.

IIT. PRACTICAL CONSIDERATIONS IN PROTOCOL DESIGN

In this section, we first illustrate the optimal protocol
described in Section II-C by using numerical example. Then,
we identify the important limitations of optimal protocols, and
illustrate them with simple examples.

A. Example scenario

Consider a 2-level tree scenario with three connections as
shown in Figure 1. Each node operates on two channels, and
there is no interference from primary transmitters on either
channels. Each channel is assumed to have unit capacity, thus
each link has a capacity of 2 units.

We run the optimal protocols in Section II-C for 500 time-
slots with no primary traffic (P;. =0),« =0.1and T; . = 1.
The source-rate of the connections smoothly converge close
to the optimal value 0.33 as the time increases (similar to
Figure 2(c), but without the intermediate turbulence observed
from time-slots 300 to 500). The average of the flows allocated
to links on different channels is shown in Figure 2(a).

We re-run the scenario with primary activity as marked in
Figure 2(c). It can be seen that primary user activity creates
small turbulence in the instantaneous rate. However, the rates
dynamically adapt and converge over time.

Figures 2(a) shows the average flows in this scenario. Even
though L2 has one of the channel unusable for the whole
period, there is no drop in any source-rates. The intelligent
scheduler subdues the effect of primary activity observed at
L2. It allocates L2 a flow of 0.33 on unused channel, instead of
allocating flow of 0.17 on two channels (as seen by comparing
Figures 2(a) and 2(b)). Hence, if feasible, the scheduler re-
arranges link schedules such that source-rates are not reduced.
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Fig. 2. Rate convergence, mean flows and the effect of primary user activity in a 2-level tree scenario.
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Fig. 3. Spurious pressure point: Flow for connection 1 accumulate at node
N3 (on link L1), which is inactive in routing.

B. Spurious pressure points

Recall that the building of back-pressure enables link
scheduling. The bootstrapping process required for back-
pressure algorithm is building enough pressure at all neighbor-
ing nodes — even on the nodes inactive in routing. For example,
node N1 can send the packets for connection 1 to N4 or N3. If
there are already some packets at N4, the price-differential of
link L2 becomes lower that of L1. Hence, N1 pushes packets
to N3 on link L1. However, L5 prefers transmitting packets of
connection 2 for providing proportional fairness to connections
(Equation 9). Hence, packets of connection 1 accumulate at
N3 for a long time, as shown in Figures 3 and 2(a). Spurious
pressure results in several higher-layer issues such as out-of-
order delivery, retransmissions of packets and waste of queue
buffers.

C. Bursty schedules

Recall that the ideal scheduler chooses the packets from
the queues that have maximum price differential. This process
results in bursty schedules. For example, Figure 4 shows the
schedules chosen for connection 1 on L1 and L6 of Figure 1.

—»—Link L2 (N1-N4) - Conn 1 - Ch 1

( )=
Average flow on o Link L2 (N1-N4) - Conn 1 - Ch 2
1.2} links L2 and L6 on —+— Link L6 (N4-N5) - Conn 2 - Ch 1|/
channels 1 and 2 — © —Link L6 (N4-N5) - Conn 2 - Ch 2

111

|
I\
i
i

0.2p

|

| ———

l1t3

Time-slot

3
=)

Fig. 4. Bursty schedules: For connection 1, links L2 and L6 are scheduled
in bursts. The long-term average of the flow is constant.

If the scheduling and price updates happen at a fine time-
granularity, then the inter-packet delay is reasonably small.
Hence, the effect of bursty schedules can be ignored. However,
the message passing overhead outruns the advantages of max-
imizing the source-rate if we disseminate the prices at a fine
time-granularity. In reality, the price updates are chosen at, say,
fraction of seconds to few seconds to reduce the dissemination
overhead, and the time-slot to schedule the packet is chosen
as few milliseconds.

Consider the back-of-the-envelope calculations for the sce-
nario in Figure 1. Assume that the two channels have a
capacity of 1 Mbps each. The price updates occur every second
and packet transmission time-slot is 2ms. Packet sizes are
chosen to fit into the time-slot (500 bytes). We map the fraction
of flow as solved by the optimal algorithms into packets, and
record the end-to-end delays of packets. Figure 5 shows the
large end-to-end delay (= 80 seconds) is observed, which has
severe limitations in realistic networking systems: they harm
performance of many applications, result in unfairness and
require large buffer spaces at intermediate nodes.

Bursty schedules are eliminated by using heuristics (such



100

901

801

701

Delay (in s)

501
401

301

Fig. 5. Packet end-to-end delays: Prohibitively large delays are observed due
to bursty schedules.

601

Average packet delay -

20
0

1 2 3

4
Packet Number

5 6 7

Scenario Metric Without With
Link Pruning | Link Pruning
# Links, # MIS 12, 70 4,10
Figure 1 Primal Src-rates 0.33,0.33,0.33 0.33,0.33,0.33
Dual Src-rates 0.35,0.35,0.36 0.36,0.35,0.34
D2 # Links, #MIS 8, 26 4,3
Primal Src-rates 0.5,1 0.5,1
182 1 Dual Src-rates 0.53,0.87 0.53,0.87
b2 # Links, #MIS 20, 468 7,27
st u@ Primal Src-rates 0.5,1 0.5,1
s2 D1 Dual Src-rates 0.55,0.91 0.53,0.86
(from [6])
N 53 # Links, #MIS 12, 168 6, 17
D\®/ Primal Src-rates 0.67,0.67,0.67 0.67,0.67,0.67
01,0203 Dual Src-rates 0.72,0.62,0.66 | 0.70,0.67,0.62
TABLE I

EFFECT OF LINK PRUNING: LINK PRUNING REDUCES THE NUMBER OF
EDGES AND MIS WITHOUT COMPROMISING THE PERFORMANCE.

as scheduling the long-term average, instead of instantaneous
flow). Here, the convergence of source-rates to optimal values
is not guaranteed. We wish to pursue heuristics to achieve
near-optimal rates in the future work.

D. Link pruning

Recall that the construction of MIS, which is required
for scheduling, is an NP-hard problem. Hence, it takes pro-
hibitively long time to calculate the schedules as the edges
increase. The effect is even more exacerbated in CRNs, where
the number of channels are large. Hence, eliminating surplus
edges that are not active in routing is beneficial in faster
scheduler algorithms.

Fast schedulers can be realized in networking systems by
decoupling routing from rate-control and scheduling problem.
Most systems employ link-state or source-routing protocols,
which already store the possible next-hops or entire routes.
Using this information, link pruning eliminates the surplus
edges that are inactive in routing. Link pruning also helps
to reduce the effect of spurious pressure points, which is
described in Section III-B, since the links to nodes that are
inactive in routing have been pruned.

We implement link pruning by extended Dijkstra algorithm
that computes all the minimum hop routes between given
source-destination pair. We later prune all inactive edges.
While we demonstrate the effect of link pruning using above
algorithm, link pruning can be extended to more realistic
routing protocols, such as link-quality based routing.

We simulate various scenarios as shown in Table I. The
source and destination of a connection are marked as S,
and D,,. We compare the number of edges and maximum
independent sets (MIS). We also compare the source-rates of
optimal protocols with and without pruning. The results show
that link pruning significantly reduces the number of edges
and MIS with no loss in performance.

IV. CONCLUSIONS AND FUTURE WORK

The paper analyzes the issues in realizing optimal protocols
for joint rate-control and scheduling in Cognitive Radio Net-
works. We identify three considerations: (1) spurious pressure
points, which are built due to back-pressure algorithms, (2)
bursty scheduling, due to maximum price-differential based
scheduling, and (3) high-complexity schedulers due to large
number of unnecessary links. The paper shows the above
effects lead to large messaging overheads, packet delays and
buffer requirements. In our future work, we plan to realize the
near-optimal protocols in testbeds.

ACKNOWLEDGEMENTS

This research work was funded by Qatar National Research
Fund (QNRF) under the National Priorities Research Program
(NPRP) Grant No.:08-562-1-095.

REFERENCES

[1] M. A. McHenry, “NSF Spectrum Occupancy Measurements Project
Summary,” Shared Spectrum Company, Technical Report, 2005.

[2] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “NeXt
generation/dynamic spectrum access/cognitive radio wireless networks:
A survey,” Computer Networks, vol. 50, no. 13, pp. 2127 — 2159, 2006.

[3] M. Chiang, S. Low, A. Calderbank, and J. Doyle, “Layering as Optimiza-
tion Decomposition: A Mathematical Theory of Network Architectures,”
Proceedings of the IEEE, vol. 95, no. 1, pp. 255 -312, jan. 2007.

[4] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY,
USA: Cambridge University Press, 2004.

[5] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate Control for
Communication Networks: Shadow Prices, Proportional Fairness and
Stability,” The Journal of the Operational Research Society, vol. 49,
no. 3, pp. pp. 237-252, 1998.

[6] L. Chen, S. H. Low, M. Chiang, and J. C. Doyle, “Cross-Layer
Congestion Control, Routing and Scheduling Design in Ad Hoc Wireless
Networks,” apr. 2006, pp. 1 —13.

[7] J. Tang, S. Misra, and G. Xue, “Joint spectrum allocation and scheduling
for fair spectrum sharing in cognitive radio wireless networks,” Comput.
Netw., vol. 52, no. 11, pp. 2148-2158, 2008.

[8] Y. Hou, Y. Shi, and H. Sherali, “Spectrum Sharing for Multi-Hop
Networking with Cognitive Radios,” Selected Areas in Communications,
IEEE Journal on, vol. 26, no. 1, pp. 146 —155, jan. 2008.

[9] J. Mo and J. Walrand, “Fair end-to-end window-based congestion
control,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 556-567, 2000.

[10] H. Li, Y. Cheng, C. Zhou, and P. Wan, “Multi-dimensional Conflict
Graph Based Computing for Optimal Capacity in MR-MC Wireless
Networks,” jun. 2010, pp. 774 —783.



