

Anomalies in Optimal Rate-control and Scheduling Protocols for Cognitive Radio Networks

*Vinay Kolar*¹ *V. Munishwar*² *N. Abu-Ghazaleh*^{1,2}

¹Department of Computer Science
Carnegie Mellon University, Qatar

²Department of Computer Science
State University of New York, Binghamton

CogART, 2010

Introduction

Cognitive Radio Networks are promising

- Large spectrum can meet growing capacity demands
- WiFi, Mesh, Sensor Networks based on CRNs

But, large spectrum \neq large capacity to end-applications

- Primary user activities
- Resource allocation among secondary nodes

Paper focus: How do we design and realize efficient protocols?

How do we design and realize efficient protocols?

Two broad categories:

- Heuristic protocols: Fast design cycle, low-complexity
- Theoretical models: Systematically formulate, derive insights

Well-known theoretical methodology: Generalized Network Utility Maximization (GNUM)

- Formulate optimal network models
- Derive optimal protocols, network layers
- Demonstrated in real-systems (e.g. FAST-TCP)

Contribution

Varieties of GNUM formulations have been studied in CRN

- Power-control, Scheduling, etc
- Joint optimization of source-rate, routing and scheduling

Paper focus:

- Can we realize Joint source-rate, routing and scheduling in systems?
- What are the anomalies when translating theory into systems?

Introduction

Contribution

Model

System issues in GNUM

Conclusions

Joint Source-rate, routing and scheduling

Deriving optimal protocols in GNUM: A three step recipe

- Formulate the primal optimization problem
- Decompose into sub-problems
 - Structure of sub-problems → Functions carried out at physical entities
- Identify message-passing between physical entities

Joint Source-rate, routing and scheduling

Deriving optimal protocols in GNUM: A three step recipe

- Formulate the primal optimization problem
- Decompose into sub-problems
 - Structure of sub-problems → Functions carried out at physical entities
- Identify message-passing between physical entities

Primal Problem

1. Maximize application utilities
(e.g., throughput, fairness, . . .)
such that

2. Packets are routed
from src to dest

3. Schedule for links are feasible
(an NP-hard problem)

4. Don't schedule when primary is on

$$\text{Maximize } \sum_{k \in \mathcal{K}} U(r_k)$$

s.t.

$$x_a^k \leq \sum_{b:(a,b) \in \mathcal{L}} \sum_{c \in \mathcal{C}} f_{ab,c}^k - \sum_{b:(b,a) \in \mathcal{L}} \sum_{c \in \mathcal{C}} f_{ba,c}^k$$

$$\mathbf{f} \in \Pi$$

$$\sum_{k \in \mathcal{K}} t_{i,c}^k + P_{i,c} \leq 1$$

Primal Problem

1. Maximize application utilities
(e.g., throughput, fairness, . . .)

such that

2. Packets are routed
from src to dest

3. Schedule for links are feasible
(an NP-hard problem)

4. Don't schedule when primary is on

$$\begin{aligned} & \text{Maximize } \sum_{k \in \mathcal{K}} U(r_k) \\ & \text{s.t.} \end{aligned}$$

$$\begin{aligned} x_a^k \leq & \sum_{b:(a,b) \in \mathcal{L}} \sum_{c \in \mathcal{C}} f_{ab,c}^k \\ & - \sum_{b:(b,a) \in \mathcal{L}} \sum_{c \in \mathcal{C}} f_{ba,c}^k \end{aligned}$$

$$\mathbf{f} \in \Pi$$

$$\sum_{k \in \mathcal{K}} t_{i,c}^k + P_{i,c} \leq 1$$

Dual decomposition

Use standard Lagrangian Dual Decomposition method.

Two subproblems

1. Source-rate maximization problem

$$D_1(\mathbf{q}) = \max_{\mathbf{r} \geq 0} \sum_{k \in \mathcal{K}} U(r_k) - \sum_{k \in \mathcal{K}} r_k q_{\text{src}(k)}^k$$

- Completely distributed

2. Joint routing and scheduling problem

$$D_2(\mathbf{q}) = \max_{\mathbf{f} \geq 0} \sum_{(a,b) \in \mathcal{L}} \sum_{c \in \mathcal{C}} f_{ab,c}^k \max_{k \in \mathcal{K}} (q_a^k - q_b^k)$$

- Weight for a flow = *Congestion price differential* at link end-points
- Needs message passing at each time-slot

Dual decomposition

Use standard Lagrangian Dual Decomposition method.

Two subproblems

1. Source-rate maximization problem

$$D_1(\mathbf{q}) = \max_{\mathbf{r} \geq 0} \sum_{k \in \mathcal{K}} U(r_k) - \sum_{k \in \mathcal{K}} r_k q_{\text{src}(k)}^k$$

- Completely distributed

2. Joint routing and scheduling problem

$$D_2(\mathbf{q}) = \max_{\mathbf{f} \geq 0} \sum_{(a,b) \in \mathcal{L}} \sum_{c \in \mathcal{C}} f_{ab,c}^k \max_{k \in \mathcal{K}} (q_a^k - q_b^k)$$

- Weight for a flow = *Congestion price differential* at link end-points
- Needs message passing at each time-slot

Dual decomposition

Use standard Lagrangian Dual Decomposition method.

Two subproblems

1. Source-rate maximization problem

$$D_1(\mathbf{q}) = \max_{\mathbf{r} \geq 0} \sum_{k \in \mathcal{K}} U(r_k) - \sum_{k \in \mathcal{K}} r_k q_{\text{src}(k)}^k$$

- Completely distributed

2. Joint routing and scheduling problem

$$D_2(\mathbf{q}) = \max_{\mathbf{f} \geq 0} \sum_{(a,b) \in \mathcal{L}} \sum_{c \in \mathcal{C}} f_{ab,c}^k \max_{k \in \mathcal{K}} (q_a^k - q_b^k)$$

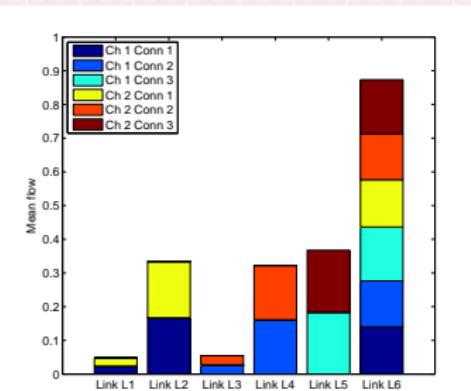
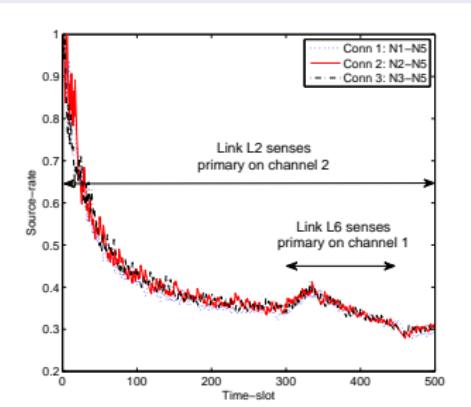
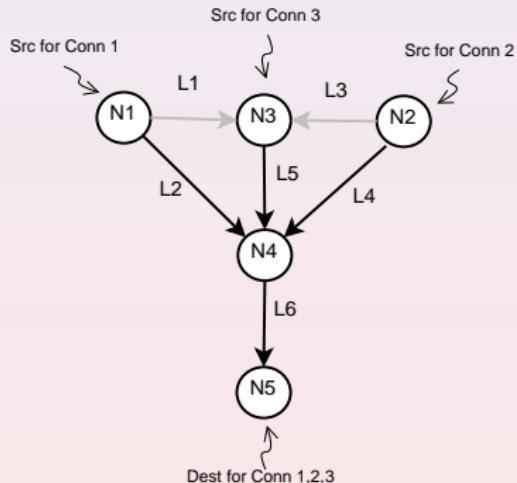
- Weight for a flow = *Congestion price differential* at link end-points
- Needs message passing at each time-slot

Optimal algorithms

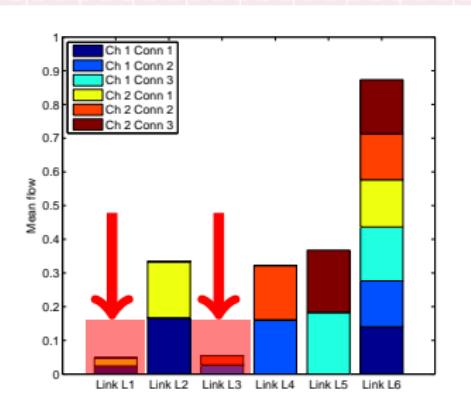
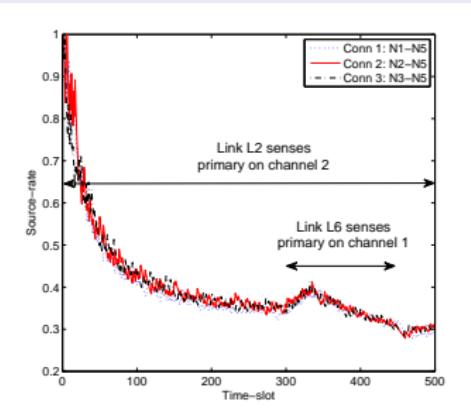
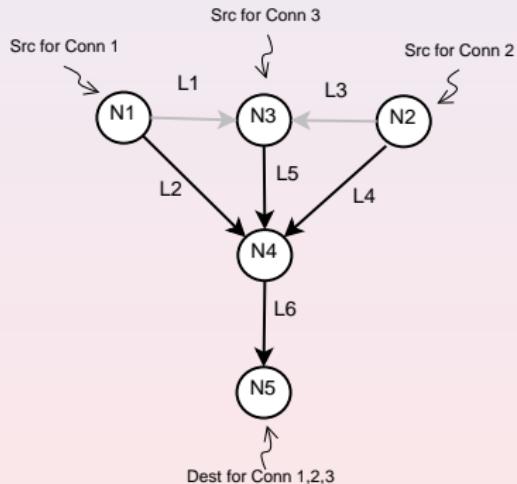
At each time-slot

- ① Each node updates *congestion-prices*
- ② Source node locally solves the Source-rate problem.
- ③ Centralized scheduler computes schedule
 - Each link computes congestion price differential for each connection.
 - Sender and receiver will transmit Primary Usage Map
 - Scheduler computes optimal flow for each link, and disseminates

Introduction




Contribution

Model

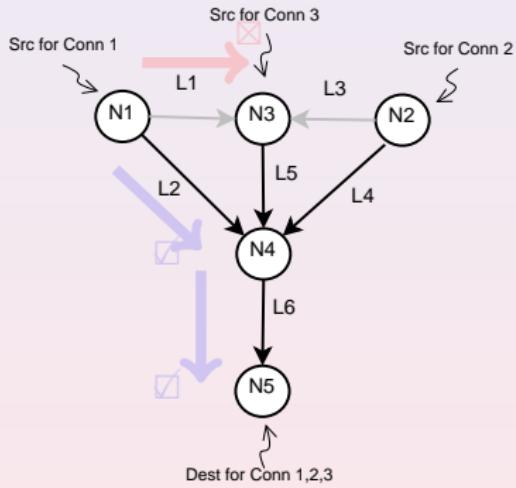



System issues in GNUM

Conclusions

Example scenario

Example scenario

Closer look at scheduling


Scheduling works on the basis of back-pressure

Scheduler balances queue-length differences

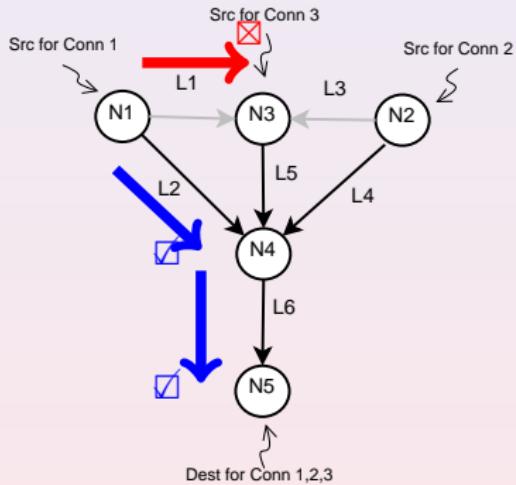
- Links with larger price differential are given priority

System issue 1: What happens at inactive links of a connection?

- *Spurious pressure* at inactive links is necessary to push packets through actual link

Example scenario

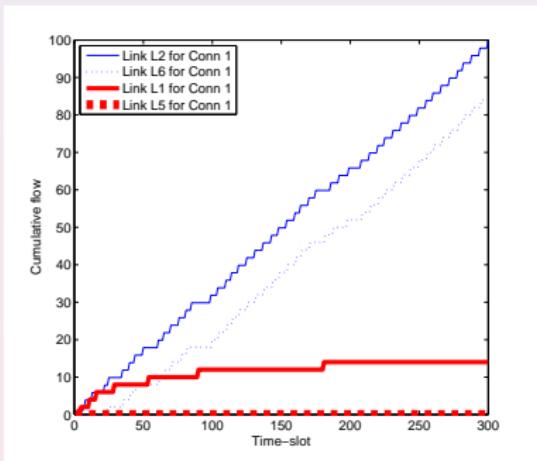
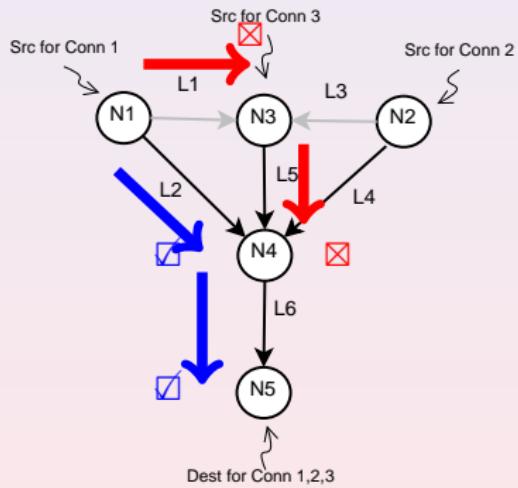
Closer look at scheduling


Scheduling works on the basis of back-pressure

Scheduler balances queue-length differences

- Links with larger price differential are given priority

System issue 1: What happens at inactive links of a connection?



- *Spurious pressure* at inactive links is necessary to push packets through actual link

Example scenario

Spurious pressure points

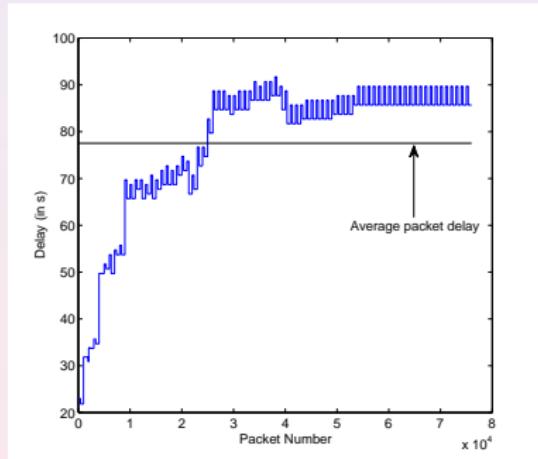
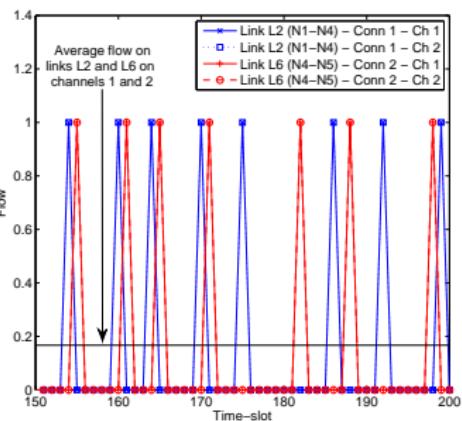
Packets are blocked at wrong nodes!

Example scenario

Choice of time-slot

Scheduling happens in microseconds or milliseconds

Message passing overhead too high



Practical solutions:

- Exchange messages at coarse time-granularity (say, 1 sec)
- Reuse schedules

System issue 2: Bursty schedules

Links are turned on and off for long times

Bursty schedules

Prohibitively large delays, unfairness, large buffer spaces

Conclusions and future work

- Extended Joint Source-rate, routing and scheduling GNUM model for CRNs
- Analyzed system issues and impact of back-pressure based GNUM models
 - *Spurious pressure points* induce packet losses
 - *Bursty schedules* result in large delays, buffer-spaces and unfairness
 - *Link-pruning* can help in designing fast-schedulers

Future work:

- Evaluation in simulation and SDRs

Thank you.

For further information, please contact:
Vinay Kolar: vkolar@cmu.edu

Misc - Scheduling problem

Problem 1:

Compute list of all links that can be scheduled

- Maximal Independent Set (MIS) problem on multi-channel conflict graph of CRN

Each MIS M_j : (link, channel) pair

Problem 2:

Schedule each MIS

- Total time for all MIS ≤ 1
- Time for a (link, channel) should respect MIS membership

System issue 1: Computing MIS is NP hard

- Number of MISs grow exponentially if number of edges, channels grow

Misc - Scheduling problem

Problem 1:

Compute list of all links that can be scheduled

- Maximal Independent Set (MIS) problem on multi-channel conflict graph of CRN

Each MIS M_i : (link, channel) pair

Problem 2:

Schedule each MIS

- Total time for all MIS ≤ 1
- Time for a (link, channel) should respect MIS membership

System issue 1: Computing MIS is NP hard

- Number of MISs grow exponentially if number of edges, channels grow

Misc - Scheduling problem

Problem 1:

Compute list of all links that can be scheduled

- Maximal Independent Set (MIS) problem on multi-channel conflict graph of CRN

Each MIS M_i : (link, channel) pair

Problem 2:

Schedule each MIS

- Total time for all MIS ≤ 1
- Time for a (link, channel) should respect MIS membership

System issue 1: Computing MIS is NP hard

- Number of MISs grow exponentially if number of edges, channels grow

Misc - Scheduling problem

Problem 1:

Compute list of all links that can be scheduled

- Maximal Independent Set (MIS) problem on multi-channel conflict graph of CRN

Each MIS M_i : (link, channel) pair

System issue 1: Computing MIS is NP hard

- Number of MISs grow exponentially if number of edges, channels grow

Problem 2:

Schedule each MIS

- Total time for all MIS ≤ 1
- Time for a (link, channel) should respect MIS membership