Data in C: Floating Point

-4 -3 -2 -1 0 1 2 3 4

-3.5 -\frac{7}{6} .\overline{345} \sqrt{3} \pi
Variable Concept

Memory

0000 0000 0000 0000 0000 0000 0011 1100

Age

0101 0100

First_Initial

0100 0000 1000 0000 0000 0000 0000 0000 0000 0000

gpa
C Built-in Types

Numbers

Integer
Binary, 2’s complement

char
8 bit

short
16 bit

int
32 bit

long
64 bit

Real
IEEE 754

float
32 bit

double
64 bit
Abstraction

Anything that is not an integer can be thought of as
<int>.<decimal>
 e.g. 391.8125
Or can be thought of as
<int> + <numerator>/<denominator>
 e.g.
 391 + 8125/10000
 or 391 13/16
Leak 1: **Floats are approximations!**

Numbers may not be exactly precise!

\[
\frac{1}{3} \neq 0.33333333333333333333
\]

\[6.02214129 \times 10^{23}\] is not an exact Avogadro’s constant

\[3.14159265358979323846264338327950288419716939937510\]

is not exactly \(\pi\)
Concrete: Floats are Binary

On computers, fractional numbers must be represented by bits

Implies base 2

Implies “binary point”

<table>
<thead>
<tr>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
<th>.</th>
<th>2^-1</th>
<th>2^-2</th>
<th>2^-3</th>
<th>2^-4</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>.</td>
<td>1/2</td>
<td>1/4</td>
<td>1/8</td>
<td>1/16</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>.</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

...
Concrete: Floats are “Normalized”

Almost infinite number of ways to represent floating point numbers

- Implied binary point: 1101 1010 = 1101 10.10 = 54.5
- int numerator, int denominator: 0110 1101 / 0000 00010 = 109/2
- Scientific notation with int integer, int fraction, int exponent
 0000 0101 / 0111 0011 / 0000 0001
 = (5+1/4 +1/8 +1/16 +1/128 + 1/256) x 10^1 = 54.4921875
- ...
Scientific Notation (Base 10)

- Represent numbers as `<Integer>.<Fraction> x 10<exp>`
 - For instance: \(c = 2.99792458 \times 10^8 \text{ m/s}; \ e = 1.602 \times 10^{-19} \text{ C}\)
- Many different representations of the same number
 - \(c = 299,792,458 \times 10^0 \text{ m/s} = 299.792458 \times 10^6 \text{ m/s}\)

- “Normalization” : `<1-9>.<Fraction> x 10<exp>`
 - Special case for zero: \(0.0 \times 10^0\)
Scientific Notation Precision

• Numbers in scientific notation are often approximations

• Number of fractional digits indicates precision
 • \(\frac{1}{3} = 3.333333 \times 10^{-1} \) to within 7 digits (\(+/- 10^{-7}\))
 • \(\frac{1000}{3} = 3.333333 \times 10^{2} \) to within 7 digits (\(+/- 10^{-5}\))

• “Precision” is not the same as “tolerance”
 • Precision – relative accuracy - is independent of exponent
 • Tolerance - absolute accuracy – depends on exponent
Scientific Notation (Base Two)

• Start with a base two rational number... \(<0/1>^*\).\(<0/1>^*

<table>
<thead>
<tr>
<th>2^4</th>
<th>2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
<th>.</th>
<th>2^{-1}</th>
<th>2^{-2}</th>
<th>2^{-3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>.</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[= 16 + 1/4 + 1/8 = 16.375\]

• Express normalized as 1.\(<\text{FRAC}>\) x 2^{\text{exp}}
 • e.g. 1.0000011 x 2^4
 • Special case for zero: 0.0 x 2^0
IEEE Standard (32 bit float)

• First convert the number to the form:
 \[\text{value} = -1^S \times \text{FRAC} \times 2^{\text{exp}} \]

• \(S = 0 \) (positive) or 1 (negative)
• \(1 \leq \text{FRAC} < 2 \) (except for special cases like 0 or +/- \(\infty \))
• \(-126 \leq \text{exp} \leq 126 \)
Standard: IEEE 754

- Value Representation:
 - Decimal: [+/-]<digit>.<fraction> x 10<exponent> e.g. 6.022 x 10^{23}
 - Binary: [+/-]1.<fraction> x 2<exponent> e.g. 1.11111110000101... x 2^{78}
 - Special case for 0, +/- ∞ (INFINITY), “Not a Number” (NAN)

- Bit Representation (32 bit float)

<table>
<thead>
<tr>
<th>S</th>
<th>EXP</th>
<th>FRAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_{31}</td>
<td>b_{30}</td>
<td>b_{29}</td>
</tr>
</tbody>
</table>

8 bits 23 bits
IEEE 754 Special Cases

- **+/-0**

<table>
<thead>
<tr>
<th>S</th>
<th>EXP</th>
<th>FRAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- **+/-∞ (INFINITY)**

<table>
<thead>
<tr>
<th>S</th>
<th>EXP</th>
<th>FRAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Not a Number (NAN)**

<table>
<thead>
<tr>
<th>S</th>
<th>EXP</th>
<th>FRAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: `math.h` contains definitions of constants INFINITY and NAN, and also `isnan(x)` and `isinf(x)`
IEEE 754 Value vs. Bits

VALUE
- Decimal: -729.6
- Binary: 10 1101 1001.1001 1...
- B/Norm: 1.0110 1100 ... x 2^9
- Exponent: 9

BITS
- Sign bit 0=+, 1=- : 1
- FRAC: 0110 1100 1100...
- Biased Exponent: 9 + 127 = 136
 = 1000 1000
Biased Exponent

Exponent Value

Exponent Bits (biased)

-127
0b0000 0000
0
0b0111 1111
127
0b1111 1110
127
254
0b1111 1110
Bias Value

- Unsigned 8 bits holds values from 0 to 255 = 0b11111111 = 2^8 - 1
- 0b11111111 special case reserved for infinity and/or NAN
- Most useful bias is 127
 - enables both negative and positive exponents with the highest values
 - 127 = 0b01111111 = 2^7 - 1
- In general, if we have n bits for exponent, bias = $2^{(n-1)} - 1$
 - For double, $n=11$, so bias = $2^{10} - 1 = 1023$
IEEE 754 Value vs. Bits

- Sign bit is 0 for positive, 1 for negative... mathematically \((-1)^S\)
- Except in special cases, \(fraction = 1.FRAC\)
- Value must be **normalized** before it can be converted to bits
 - Normalization: moving binary point right of first 1 and adjusting exponent
 - E.g. 0b100110.1010 \(\times 2^5 = 1.001101010 \times 2^{10}\)
 - E.g. 0b0.0001010110 \([\times 2^0] = 1.010110 \times 2^{-4}\)
- In bit form, exponent is \(\geq 0\)
 - Abstract exponent value is **biased** - add a constant
 - \(EXP = exponent + 127 = exponent + 2^7 - 1 = 0x80 + exponent - 1\)
 - \(exponent = EXP - 127\) where \(EXP\) is 8 bit unsigned binary
"Denormal" or "Subnormal" Numbers

- If EXP bits are zero,
 - Do NOT assume fraction starts with 1.\(<\text{FRAC}>\)
 - Assume it starts with 0.\(<\text{FRAC}>\) AND exponent is -126

- Allows numbers smaller than 2^{-126} to be represented

- Smallest Normal: $1.0 \times 2^{-126} = 1.17549435 \times 10^{-38}$

<table>
<thead>
<tr>
<th>S</th>
<th>EXP</th>
<th>FRAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Biggest Denormal: $0.11111... \times 2^{-126} = 1.1754942 \times 10^{-38}$

<table>
<thead>
<tr>
<th>S</th>
<th>EXP</th>
<th>FRAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Smallest Denormal: $0.00...01 \times 2^{-126} = 1.40129 \times 10^{-45}$

<table>
<thead>
<tr>
<th>S</th>
<th>EXP</th>
<th>FRAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Example: Value to Bits

• Value: 3.1416
 • Convert to binary: 11.00100100001111....
 • Normalize: $1.\underbrace{100100100001111}_{\ldots} \times 2^1$

• Bits:
 • $S = 0$ (positive)
 • $EXP = 1 + 127 = 128 = 0b1000 \ 0000$
 • $FRAC = 100100100001111\ldots$

<table>
<thead>
<tr>
<th>S</th>
<th>EXP</th>
<th>FRAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>0000</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Bits=$0x40490FF9$

See Also: xmp_float
Example: Bits to Value

• Bits: 0x6703ece6

<table>
<thead>
<tr>
<th>S</th>
<th>EXP</th>
<th>FRAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1 0</td>
<td>6</td>
</tr>
</tbody>
</table>

• $S = 0, +$
• $EXP = 0xCE = 206$, $exponent = 206 - 127 = 79$
• $fraction = 1.0000011111011\ldots$
• Value: $+ 0b1.0000011111011\ldots \times 2^{79} = 6.23 \times 10^{23}$
What happens when types are mixed?

• Mixed Type Expressions
 float x; double y; x = y * x;

• Assignment Statements
 int x; float y; x = y * 3.0;

• Argument Evaluation
 int myfn(float x); int y = myfn(3);

• Explicit Casting
 int x = 7; float y = ((float)x) / 3;
C Automatic type conversion rules

• In an expression (or part of an expression), C converts all components in that expression to the most “general” type, and then evaluates the expression using that general type

• In an assignment (or argument evaluation), C converts the value of the expression to the type of the receiver

• C converts expressions with a valid explicit cast
Generality of Numeric Types

Most General

Least General

char
unsigned char
short
unsigned short
int
unsigned int
long
unsigned long
float
unsigned float
double
unsigned double
Changing Floating Point Size

- Truncate Fraction or Pad Fraction with 0 on right
- Re-bias exponent
 - If exponent overflows, convert to infinity
- Special case for denormalized numbers!
 - May be denormal in float, but not in double
 - May be denormal in double, but 0 in float

```markdown
float x = 234.34;
double y = x;
float z = w;
```

```
x = 0x436A570A  y = 0x406D4AE140000000  w = 0x406D4AE147AE147B
```
Integer to Float

• Add .0 and convert to nearest floating point representation

```c
int x = 1331254215;
float y = x;
printf("y=%f\n", y);
// prints y=1331254272.000000
```
Float to Integer

• Truncate at the decimal point (round towards zero)

```c
float w=-374289.74112;
int z=w;
printf("z=%d\n",z);
// prints z=-374289
```
Conversion Errors

• When C truncates decimals
 float x=2.7; int y=x; printf(“y = %d\n”,y); // 2

• When C approximates floating point
 float x = 0.2; printf(“x=%10f\n”,x); //0.2000000029
Integer Division Pitfall

```c
int atBats = atoi(argv[1]);
int hits = atoi(argv[2]);

float battingAverage = (hits / atBats) * 1000;

printf("Everybody has a zero batting average?\n");
```
Leak: Associativity

• Law of Associativity:

\[(A + B) + C = A + (B + C)\]

• Floating point approximations can violate associativity!

```c
float a=6.022e23;
float b=-a;
float z=3.14;
float p1=(a+b)+c;
float p2=a+(b+c);
if (fabs(p1-p2)<0.5) printf("Associativity holds!");
```
Leak: Multiplication is Repeated Addition

• Abstract: \(x \times y = \sum_{i=0}^{y-1} x \) for integer \(y \)

• Leak: Rounding error compounds at each operation!

```c
float onethird=1.0/3.0;
float sum = 0.0;
int mult=atoi(argv[1]);
for(int i=0;i<mult;i++) sum+=onethird;
float prod = mult * onethird;
printf("Sum is %f, product is %f\n",sum,prod);
```
Resources

• The C Programming Language, (K&R) Sections 2.2 and 2.7

• Wikipedia Type Conversion: https://en.wikipedia.org/wiki/Type_conversion

• C Tutorial – Cast operator: http://www.crasseux.com/books/ctutorial/The-cast-operator.html#The%20cast%20operator

• C-FaQ Floating Point Section: http://c-faq.com/fp/index.html