Knowledge-based Sequential Decision-Making under Uncertainty

Shiqi Zhang (SUNY Binghamton, USA)
Mohan Sridharan (University of Birmingham, UK)

szhang@cs.binghamton.edu; m.sridharan@bham.ac.uk
Tutorial Objectives

- Motivate knowledge-based sequential decision making under uncertainty
- Describe related concepts in knowledge representation, reasoning and learning with simple robotics examples
- Draw on own work and work by others to describe architectures that illustrate knowledge-based sequential decision making under uncertainty
- Explore interplay between knowledge representation, reasoning and learning with architecture examples
- Will not discuss specific “solvers” for logical or probabilistic reasoning; the architectures described will use such solvers
Tutorial Outline

● Introduction

● Basics:
 ○ Knowledge representation: declarative, probabilistic, hybrid
 ○ Reasoning: logic-based, MDP, POMDP
 ○ Learning: reinforcement

● Example architectures:
 ○ Knowledge guides reasoning
 ○ Knowledge guides learning
 ○ Learning for knowledge revision

● Discussion

Shiqi Zhang (SUNY Binghamton) & Mohan Sridharan (U. of Birmingham)
Knowledge-based Sequential Decision-making under Uncertainty

- Sequential decision-making (SDM):
 - More than one action often required to complete complex tasks
 - Subsequent actions often depend on the effects of actions that precede them

- Reasoning (planning, diagnostics) under uncertainty:
 - Actions in complex, practical domains are non-deterministic
 - Local, unreliable observations; partial observability

- Knowledge-based:
 - Considerable commonsense knowledge available in practical applications
 - Reasoning with this knowledge can improve decision making and guide learning
Knowledge Representation, Reasoning and Learning

● How is knowledge represented?
 ○ Knowledge representation (KR) is a fundamental research area in AI
 ○ Representations include logic, probability, graphs, etc

● How to reason with knowledge?
 ○ Different reasoning mechanisms based on the underlying representation

 Query → KRR → Conclusions

● Why learning?
 ○ Reasoning with incomplete knowledge results in incorrect or suboptimal outcomes
 ○ Exploit ability to observe domain and action outcomes, learn from trial and error

● Representation, reasoning and learning are inter-dependent!
Overview of Knowledge-based SDM

How to use knowledge to help agent better select actions?

Declarative knowledge

How to augment knowledge with SDM experience?

Probabilistic Planning (MDPs, POMDPs, etc)

Reinforcement Learning (model-free, model-based, etc)

Sequential Decision-Making (SDM) under Uncertainty

State, reward

Action
SDM Applications

- Robotics; used often in tutorial
- Finance
- Urban planning
- Healthcare

- Games
- Transportation
- E-commerce
- ... and many more ...

Common Applications

- autonomous driving
- business operations
- robotics
- language & dialogue (structured prediction)
- finance

Image from Sergey Levine
Motivating Example

Consider a robot assisting humans in an indoor domain.

- The robot has to find and move objects to locations or people.
- Has some prior knowledge of locations, objects and object properties.
- Humans provide limited feedback.
- Noisy sensing and actuation.
Tutorial Outline

- Introduction
- **Basics:**
 - Knowledge representation: declarative, probabilistic, hybrid
 - Reasoning: logic-based, MDP, POMDP
 - Learning: reinforcement
- **Example architectures:**
 - Knowledge guides reasoning
 - Knowledge guides learning
 - Learning for knowledge revision
- Discussion

Shiqi Zhang (SUNY Binghamton) & Mohan Sridharan (U. of Birmingham)
SDM paradigms: Broad Classification

- **Logic-based commonsense reasoning**
 - Logics to represent uncertainty, *commonsense knowledge and theories of action*
 - Challenges: comprehensive domain knowledge, quantitative models of uncertainty

- **Probabilistic reasoning** or **decision-theoretic planning**
 - Compute an action policy *when domain model is known and probabilistic*
 - Challenges: long planning horizons, large state and action spaces

- **Reinforcement learning (RL)**
 - Learn an action policy through trial and error *when domain model is unknown*
 - Challenges: exploration/exploitation tradeoff, credit assignment, structured knowledge
Logic-based Knowledge Representation

- Many different logics: first order, non-monotonic, temporal
- We discuss non-monotonic logics; often Prolog-style statements

 \[\text{Head :- Body.}\]

 "Head is true if Body is true"

- Particular example: Answer Set Prolog [Gelfond, Kahl 2014]

- Action language: formal model of part of natural language used to describe transition diagrams [Gelfond, Lifschitz 1998]; many options, e.g., AL, B, C etc

- In AL: hierarchy of basic sorts, statics, fluents, actions

- Statements: causal law, state constraint, executability condition

- Statements of AL provide system description: signature and axioms.
Declarative Knowledge: Answer Set Prolog

● **Signature:**
 ○ Basic sorts: *robot, place, object, cup, book, printer*
 ○ Statics: *next_to(place, place), obj_weight(O, weight)*
 ○ Fluents: *loc(robot) = place, in_hand(robot, object)*
 ○ Actions: *move(robot, place), pickup(robot, object), serve(robot, object, person)*

● **Axioms:**
 ○ Causal laws:
 move(rob, Pl) **causes** loc(rob) = Pl
 pickup(rob, O) **causes** in_hand(rob, O)
 ○ State constraints:
 loc(O) = Pl **if** loc(rob) = Pl, in_hand(rob, O)
 ○ Executability conditions:
 impossible pickup(rob, O) **if** loc(rob) = Pl1, loc(O) = Pl2, Pl1 != Pl2
 impossible pickup(rob, O) **if** obj_weight(O, heavy)
Declarative Knowledge: Answer Set Prolog

- Appealing properties of ASP:
 - Default negation and epistemic disjunction; things can be true, false, and unknown
 - p: p is believed to be false
 - not p: p is not believed to be true
 - Only believe what you are forced to believe!
 - Represent recursive definitions, defaults, causal relations, self-reference, and language constructs occurring in non-mathematical domains
 - Unlike classical first order logic, supports non-monotonic logical reasoning, i.e., revise previously held conclusions.

- Domain representation: system description D and history H.
- History contains records of the form:
 - obs(fluent, boolean, timestep)
 - hpd(action, timestep)

- Translate D and H to ASP program (automatic tools) for reasoning.
Probabilistic Knowledge Representation

- Many representations possible; we focus on *Probabilistic Graphical Models* (PGMs) that probabilistically model state transitions, causal relationships etc.

- PGMs use a **graph** to express conditional independence between random variables.

- We are particularly interested in directed acyclic PGMs (also called *Bayesian networks*).
Probabilistic Knowledge Representation

- Many representations possible; we focus on **Probabilistic Graphical Models** (PGMs) that probabilistically model state transitions, causal relationships etc.

- **Joint probability as product of conditional probabilities and marginals:**
 \[P(C, S, R, W) = P(W | S, R) \cdot P(S | C) \cdot P(R | C) \cdot P(C) \]

- We only discuss the PGMs:
 - Learned by agent/robot from environment; or
 - Constructed using human input or feedback

Human, world, or both
Hybrid Knowledge Representation

- Combine logics and probabilities
- Literals hold true with some probability

Left: an example of MLN

Two constants: **Anna** (A) and **Bob** (B)

Compute the probability of:

- Anna and Bob being friends given their smoking habits
- Bob having cancer given his friendship with Anna and the likelihood of Anna having cancer
Representation of Probabilistic Planning Domains

- **PDDL** is developed for and maintained by the International Planning Competition (IPC) community [McDermott, Ghallab, et al. 1998], and is (arguably) the most popular declarative language for classical planning.

- **PPDDL** developed for describing MDP settings in 2004.

- In 2011, **Relational Dynamic Influence Diagram Language (RDDL)** developed for better expressiveness (c.f., PPDDL).

- **pBC+** developed for probabilistic reasoning about transition systems [Lee, Wang 2018].

These and other similar action languages are limited in terms of representing and reasoning with different descriptions of knowledge and uncertainty.
Tutorial Outline

- Introduction
- **Basics:**
 - Knowledge representation: declarative, probabilistic, hybrid
 - **Reasoning:** logic-based, MDP, POMDP
 - Learning: reinforcement
- **Example architectures:**
 - Knowledge guides reasoning
 - Knowledge guides learning
 - Learning for knowledge revision
- Discussion

Shiqi Zhang (SUNY Binghamton) & Mohan Sridharan (U. of Birmingham)
Logics for Reasoning

- Reasoning includes planning, diagnostics and inference.
- Strategy depends on representation; many solvers have been developed.
- Map reasoning task to:
 - Resolution and theorem proving, e.g., with First Order Logic.
 - Constraint satisfaction problem (CSP).
 - Satisfiability (SAT) problem, e.g., with ASP.
- We do not focus on solvers in this tutorial; instead, we explore how they can be used to formulate and solve problems.
- Let us explore how reasoning is accomplished using CR-Prolog, a variant of ASP with consistency-restoring (CR) rules [Balduccini, Gelfond, 2003].
CR-Prolog Program

- Convert D and H as program: \(\neg (D, H) \)
- Signature and axioms of D, inertia axioms:
 \[
 \text{holds}(F, I+1) :- \text{holds}(F, I), \text{not} \ -\text{holds}(F, I+1) \\
 -\text{holds}(F, I+1) :- -\text{holds}(F, I), \text{not} \ \text{holds}(F, I+1)
 \]
- Reality checks, closed world assumptions for defined fluents and actions
 \[
 :- \text{holds}(F, I), \ \text{obs}(F, \text{false}, I) \\
 :- -\text{holds}(F, I), \ \text{obs}(F, \text{true}, I)
 \]
- Observations, actions, defaults from H, e.g., initial state default + CR rule:
 \[
 \text{holds}(\text{loc}(X) = \text{library}, 0) :- \ \text{textbook}(X), \text{not} \ -\text{holds}(\text{loc}(X) = \text{library}, 0) \\
 -\text{holds}(\text{loc}(X) = \text{library}, 0) :\pm \ \text{textbook}(X), \text{not} \ -\text{holds}(\text{loc}(X) = \text{library}, 0)
 \]
- Planning and diagnosis reduced to computing answer sets of program.
CR-Prolog Planning Example

- Goal: \text{loc(book1, office2)}, \text{-in_hand(rob, book1)}

- Given: \text{textbook(book1), loc(rob) = kitchen, ..., next_to(kitchen, office2)}, \text{next_to(library, kitchen)}, ...

- Based on default knowledge: \text{move(rob, library), pickup(rob, book1), move(rob, kitchen), move(rob, office2), putdown(rob, book1)}
Challenges in using Logics for Reasoning

- Modeling and reasoning with sensing and actuation uncertainty.
- Domain knowledge often incomplete and may change.
- Fine-grained reasoning necessary (e.g., grasping) but computationally expensive.

Will return to these later
Probabilistic Reasoning: Bayes Rule and Filter

- Joint and conditional probability of random variables: $P(A, B)$, $P(A | B)$
- Basic Bayes rule: $P(A, B) = P(A | B) P(B) = P(B | A) P(A)$
 $$P(A | B) = \frac{P(B | A) P(A)}{P(B)}$$
- Bayes filter for state estimation (prediction and correction):
 - **Bayes filter:**
 $$\forall x_t : \text{bel}(x_t) = \int p(x_t | u_t, x_{t-1}) \text{bel}(x_{t-1}) \, dx_{t-1}$$
 $$\text{bel}(x_t) = \eta \, p(z_t | x_t) \, \text{bel}(x_t)$$
 - **Discrete Bayes filter:**
 $$\forall k : \overline{p}_{k,j} = \sum_i p(X_t = x_k | u_t, X_{t-1} = x_i) \, p_{i,t-1}$$
 $$p_{k,j} = \eta \, p(z_t | X_t = x_k) \, \overline{p}_{k,j}$$
- X (or S) = state, U (or A) = action, Z = observation (i.e., measurement)
- **Bayes filter is the basis of most probabilistic reasoning systems**
Probabilistic Reasoning: Markov Decision Process (MDP)

- **Markov property** is assumed to hold for MDP (and later RL)
 - First-order: given current state, next state is conditionally independent of previous states
 - Simplifies computation of policies for complex real-world problems

- MDP is an *SDM framework* under the Markov assumption [Puterman 2014]

- An MDP is a 4-tuple <S, A, T, R>
 - States, Actions, Transitions, and Rewards
 - T: S × A × S’ ↦ [0, 1]
 - R: S × A × S’ ↦ ℙ

- Solving an MDP produces a policy:
 - π: S ↦ A
Probabilistic Reasoning: Partially Observable MDPs (POMDPs) [Kaelbling, Littman, Cassandra. 1998]

- Partial observability and non-determinism
- POMDP tuple \(<S, A, Z, T, O, R> \):
 - \(Z \): set of observations
 - \(O \): observation function: \(P(z \in Z | s \in S, a \in A) \)
 \[
 O: S \times A \times Z \mapsto [0, 1]
 \]
- Maintain \textit{belief state} (or belief), a probability distribution over states, using observations
- Solving a POMDP produces a policy mapping beliefs to actions.
 \[
 \pi: B \mapsto A
 \]
MDPs and POMDPs

Observability

Partial → POMDP → Belief state → MDP

Probabilistic planning over a long, unspecified horizon…
MDPs and POMDPs as DBN

- MDPs and POMDPs are essentially Dynamic Bayesian Networks (DBNs)
MDPs and POMDPs as DBN

- MDPs and POMDPs are essentially Dynamic Bayesian Networks (DBNs)

\[b'(s') = \eta O(o \mid s', a) \sum_{s' \in S} T(s' \mid s, a)b(s) \]

where \(\eta = 1 / \Pr(o \mid b, a) \) is a normalizing constant
MDPs and POMDPs Algorithms

- Many MDP and POMDP algorithms:
 - Bellman equation, Value Iteration (VI); classical solvers
 - Monte Carlo tree search (MCTS), point-based (approximate) methods [Shani, Pineau, Kaplow 2013]
 - And many more...

![Diagram showing the interaction between world model, goal, MDP/POMDP algorithms, policy, and interact]

World model

Goal

MDP/POMDP algorithms

Policy

Interact
Challenges in MDPs and POMDPs Algorithms

- MDP/POMDP algorithms computationally expensive for large complex domains.
- Policy often assumed to be stationary.
- *By themselves, not well-suited for commonsense reasoning.*

Will return to these later
Tutorial Outline

● Introduction

● Basics:
 ○ Knowledge representation: declarative, probabilistic, hybrid
 ○ Reasoning: logic-based, MDP, POMDP
 ○ Learning: reinforcement

● Example architectures:
 ○ Knowledge guides reasoning
 ○ Knowledge guides learning
 ○ Learning for knowledge revision

● Discussion

Shiqi Zhang (SUNY Binghamton) & Mohan Sridharan (U. of Birmingham)
Learning for Decision Making

- Domain knowledge incomplete and can become inconsistent

- Decisions made can be incorrect or sub-optimal:
 - Moving on newly polished surface
 - Inaccurate model of sensors or domain objects

- Different ways to learn knowledge and use for decision making:
 - Supervised learning from labeled training samples
 - Unsupervised learning
 - ...
 - Learning through trial and error

- We focus on **Reinforcement Learning** for decision making
Reinforcement learning (RL)

- Basic idea:
 - State fully observable, actions non-deterministic
 - Attempt different actions, receive feedback in the form of rewards
 - Agent learns to act so as to maximize expected cumulative rewards

- Still have an MDP:
 - Set of states and actions.
 - Learn policy $\pi: S \rightarrow A$
 - *No knowledge of domain models* (T, R); *trial and error approach*
Reinforcement learning (RL) [Sutton 2018]

- Different “threads” of RL
 - Trial and error approach; origins in psychology.
 - Dynamic programming approach for stochastic control problems
 - **Temporal difference methods**

- Challenges:
 - Exploration/exploitation, generalization.
 - Credit assignment
 - Model design, reward specification
 - Delayed consequences

![Image from David Silver]
RL Algorithms Taxonomy

- **Model-based:**
 - Compute model parameters T, R; solve MDP for value function $V(s)$ or Q-value function $Q(s,a)$

- **Model-free:**
 - Directly compute $V(s)$ or $Q(s, a)$ from samples (s, a, r, s')

- **Policy-based:**
 - Compute state-action mapping

- **Advanced algorithms:**
 - State-action abstractions, function approximation through deep learning
Tutorial Outline

- Introduction
- Basics:
 - Knowledge representation: declarative, probabilistic, hybrid
 - Reasoning: logic-based, MDP, POMDP
 - Learning: reinforcement
- Example architectures:
 - Knowledge guides reasoning
 - Knowledge guides learning
 - Learning for knowledge revision
- Discussion

Shiqi Zhang (SUNY Binghamton) & Mohan Sridharan (U. of Birmingham)
Logical Inference Guides Probabilistic Planning

- **Logical reasoning** to compute **informative priors** for planning with partial observability

- Components:
 - ASP-based inference with commonsense knowledge sets probabilistic priors
 - Probabilistic planning with these priors using hierarchical POMDPs
 - Reason about domain-level priors

Zhang, Sridharan, Wyatt. 2015
Logical Inference Guides Probabilistic Planning

- Early work on commonsense (logical) reasoning guiding probabilistic state estimation
- Computing *probabilistic* priors from *logical* knowledge uses postulates (e.g., objects from a class are often co-located) and psychophysics
- Knowledge from similar domains provide priors for early termination

Zhang, Sridharan, Wyatt. 2015
Logical-Probabilistic Reasoning about Belief State

- Algorithm **CORPP**: (logical-probabilistic) commonsense reasoning and probabilistic planning
- Logical reasoning for filtering out irrelevant states
- Probabilistic reasoning for associating probability with each state

Zhang, Stone. 2015
Logical-Probabilistic Reasoning about Belief State

- CORPP was used with *spoken dialog system* for sequential decision-making

Robot needs to identify \(<Coffee, Office 1, Bob>\), through spoken dialog

<table>
<thead>
<tr>
<th>Time:</th>
<th>9:00am</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rooms:</td>
<td>Office 1, Office 2, ...</td>
</tr>
<tr>
<td>Persons:</td>
<td>Alice, Bob, Carol, ...</td>
</tr>
<tr>
<td>Items:</td>
<td>Coffee, Sandwich, ...</td>
</tr>
</tbody>
</table>

- Dialog manager (a planner) maintains a *belief distribution* over possible service requests
- Reasoning is for initializing belief distributions with *informative priors*
Dynamically Factored Belief State

- Robot receives both *sensory information* and human-provided *declarative knowledge*
- How to accurately incorporate the (noisy, relational) information to achieve goals in POMDP setting?

![Diagram showing POMDP with observations drawn from two sources](image-url)
Dynamically Factored Belief State

- **Idea:**
 - Join factors when *their variables are correlated* through observational information
 - Separate factors when uncorrelated

Robotic cooking domains:

- Involving both locations and ingredients
- Robot is tasked with gathering ingredients and using them to cook a meal

Chitnis, Kaelbling, and Lozano-Perez. 2018
Knowledge-based belief estimation

Probabilistic planning over a long, unspecified horizon…

Zhang, Stone. 2015
Zhang, Sridharan, Wyatt. 2015
Chitnis, Kaelbling, and Lozano-Perez. 2018
Logical-Probabilistic Reasoning about Dynamics

- Interleaved CORPP (iCORPP)
 - Reasons about world dynamics with logical-probabilistic knowledge
 - Dynamically constructs transition systems (MDP/POMDPs) for adaptive planning

Transition probability of a navigation action depends on many factors: weather, near-window status, time, human positions, etc

It’s infeasible to consider all in the (PO)MDPs
iCORPP *dynamically builds (PO)MDPs* by reasoning with knowledge about world dynamics
Knowledge-based Dynamics Estimation

Belief state

MDP

Partial POMDP

Full MDP

Observability

Probabilistic planning over a long, unspecified horizon…

Zhang, Khandelwal, Stone. 2017
Switching Planner

- Switches between classical planner and probabilistic planner depending on level of uncertainty \([\text{Hanheide et al., 2017}]\)

- Classical planner: **Continual Planning** \([\text{Brenner, Nebel, 2009}]\)
 - Interleaves planning, plan execution and plan monitoring
 - Actions assert that preconditions will be met when that point in plan execution reached
 - Replanning triggered if preconditions are not met during execution or are met earlier

- Probabilistic planning computes actions executed in the physical world.
Switching Planner

- Overall architecture:
 - Three-layered organization of knowledge (instance, default, diagnostic)
 - Three-layered architecture (competence, belief, deliberative)
 - Combines first-order logic and probabilistic reasoning for planning

- **Decision-Theoretic PDDL** (DTPDDL) used for representing both action preconditions and effects, as well as probabilistic transitions

- **Weak coupling** (transfer of information) between the two planning systems
REBA: Refinement-based KRR

- Represent and reason with tightly-coupled transition diagrams at two different resolutions [Sridharan et al., 2018, 2019]

- For any given goal, non-monotonic logical reasoning with commonsense knowledge at coarse-resolution provides sequence of abstract actions

- Each abstract transition implemented as sequence of fine-resolution concrete actions; automatically zoom to and reason probabilistically with part of fine-resolution diagram relevant to coarse-resolution transition

- Result of executing fine-resolution action updates coarse-resolution history for subsequent reasoning

- We use CR-Prolog for logical reasoning, hierarchical POMDPs for probabilistic reasoning.
REBA: Refinement-based KRR (Example)

- Examine the transition of a robot moving between two rooms at coarse-resolution and fine-resolution

Coarse resolution

\[\text{loc}(\text{rob1}) = \text{office} \quad \text{loc}(\text{rob1}) = \text{kitchen} \]

move(rob1, kitchen)

Fine resolution

r1 (office)

\[\text{loc}(\text{rob1}) = c1 \]

move(rob1, c2)

\[\text{loc}(\text{rob1}) = c2 \]

r2 (kitchen)

\[\text{loc}(\text{rob1}) = c5 \]

move(rob1, c6)

\[\text{loc}(\text{rob1}) = c6 \]
REBA: Refinement-based KRR (Example)

- **Goal:** $\text{loc}(B) = \text{kitchen}$, $-\text{in_hand}(\text{rob}, B)$, $\text{box}(B)$
- **Initial:** $\text{loc}(\text{rob}) = \text{office}$, $\text{obj_weight}(\text{box1}, \text{heavy})$, $\text{arm}(\text{rob}, \text{pneumatic})$
- Based on default: $\text{loc}(\text{box1}) = \text{office}$
- One **coarse-resolution plan** from ASP-based inference:
 \[
 \text{move}(\text{rob}, \text{office}), \text{pickup}(\text{rob}, \text{box1}), \\
 \text{move}(\text{rob}, \text{kitchen}), \text{putdown}(\text{rob}, \text{box1})
 \]
- Assume rob is in office. implement $\text{pickup}(\text{rob}, \text{box1})$; find+pickup box1
- Relevant literals: $\text{loc}(\text{rob}) = C1$, $\text{loc}(\text{box1}) = C2$ where $C1, C2 \in \text{office}$
- Possible **fine-resolution action sequence** (executed probabilistically):
 \[
 \ldots \\
 \text{mov}(\text{rob}, c3) \\
 \text{test}(\text{rob}, \text{loc}(\text{box1}), c3) \quad \% \text{box1 observed!} \\
 \text{pickup}(\text{rob}, \text{box1})
 \]
- Subsequent plan steps succeed
REBA: Refinement-based KRR

● Key contributions:
 ○ *Tight coupling* between transition diagrams
 ○ *Theory of observations*; formal definitions of *refinement* and *zooming*
 ○ *Automatic construction* of data structures for probabilistic reasoning
 ○ General methodology for design of software for robots; Dijkstra’s *step-wise refinement*
 ○ Combine strengths of declarative programming, probabilistic reasoning

● Advantages:
 ○ *Simplifies and speeds up design; increases confidence* in correctness of robot’s behavior
 ○ *Separation of concerns*; reuse of representations on other robots and domains
 ○ *Single framework for planning, diagnostics, inference*, trade-off accuracy and efficiency
 ○ Significant improvement in reliability and efficiency; *scales to complex domains*

Sridharan, Gelfond, Zhang, Wyatt. 2018
Comparative Summary of Architectures

<table>
<thead>
<tr>
<th>Algorithm name</th>
<th>Logical knowledge</th>
<th>Probabilistic knowledge</th>
<th>Tight Coupling</th>
<th>Reason about Dynamics</th>
<th>Interleaved reasoning & planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching planner (2017)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>ASP-POMDP (2015)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>CORPP (2015)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>iCORPP (2017)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Dynamic Factorization (2018)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>REBA (2018)</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Here “knowledge” refers only to declarative knowledge
- Tight coupling refers to the transfer of all (and only) the relevant information between the logical and probabilistic reasoning components
Tutorial Outline

● Introduction

● Basics:
 ○ Knowledge representation: declarative, probabilistic, hybrid
 ○ Reasoning: logic-based, MDP, POMDP
 ○ Learning: reinforcement

● Example architectures:
 ○ Knowledge guides reasoning
 ○ Knowledge guides learning
 ○ Learning for knowledge revision

● Discussion

Shiqi Zhang (SUNY Binghamton) & Mohan Sridharan (U. of Birmingham)
Domain Approximation for Reinforcement LearnING (DARLING)

- **Reasoner** provides a rational way to constrain the exploration, while **RL** eases the requirements on the model accuracy.

- DARLING is composed of three steps:
 1. **Plan generation**: find all **reasonable plans** (cost < threshold)
 2. **Plan filtering**: exclude “certainly-suboptimal” plans, e.g., those with redundant actions, and generate **partial policy**
 3. **Execution and learning**: try only actions that are returned by the partial policy in exploration

Door status unknown initially: door being open with increasing probability

Domain map, and states traversed during the first and last 50 episodes by the RL (Sarsa) and PRL (knowledge-based RL) agents
Domain Approximation for Reinforcement Learning (DARLING)

DARLING uses declarative action knowledge to guide robot exploration in reinforcement learning -- robot only tries the *reasonable* actions.
Symbolic Deep Reinforcement Learning (SDRL)

- **Symbolic planner**: action knowledge for long-term planning
- **Controller**: DRL for learning for each subtask based on intrinsic rewards;
- **Meta-controller**: learning extrinsic rewards from the controller’s performance, and propose new intrinsic goals to the planner

![Diagram of Symbolic Deep Reinforcement Learning (SDRL)]
Symbolic Deep Reinforcement Learning (SDRL)

- hDQN cannot reach the “400” score with 2.5M samples
- The variance of SDRL is smaller than the hDQN’s
- Symbolic planner guides primitive sub-policy learning

Montezuma’s Revenge, & the optimal policy
Symbolic Deep Reinforcement Learning (SDRL)

- SDRL uses an RL agent to interact with the “real world”, and reports to the task level agent (task planner) with abstraction.

- The refinement idea is similar to the REBA architecture [Sridharan et al 2018, 2019], while SDRL learns from the task-completion experience.

- SDRL is a follow-up work of PEORL [Yang, Lyu, Liu, Gustafson, 2018] where perception of RL is symbolic.
KRR-RL: integrated logical-probabilistic KRR and model-based RL

- **Logical-probabilistic KRR** allows:
 - Human (logical) knowledge used to specify transition dependency
 - Model-based RL (R-Max) for filling in transition probabilities

KRR-RL agent learns domain dynamics from “small” tasks to get prepared to accomplish “large” tasks.
KRR-RL: integrated logical-probabilistic KRR and model-based RL

A delivery task requires both dialog and navigation actions

- In spare time, agent learns from navigation tasks to prepare for upcoming delivery tasks
- Robot is more cautious on delivery tasks that require significant navigation efforts

Lu, Zhang, Stone, Chen. 2018
KRR-RL: integrated logical-probabilistic KRR and model-based RL

KRR-RL Assumptions:

● Domain experts (human) are good at providing *qualitative* actions preconditions and effects

● Model-based RL algorithms do well in learning *quantitative* uncertainty of action knowledge
TMP-RL: Integrated Task-Motion Planning and RL

- Task and motion planning (TMP) algorithms generate plans at both symbolic and continuous spaces
 - TMP solutions are sensitive to unexpected domain uncertainty and changes

- TMP-RL features two nested planning-learning loops
 - In the inner TMP loop, the robot generates a low-cost, feasible task-motion plan
 - In the outer loop, the plan is executed, and the robot learns from the execution experience via model-free RL
TMP-RL: Integrated Task-Motion Planning and RL

- TMP-RL performs the best in learning rate
- TMP and TMP-RL have smaller variance during execution
- TMP does not improve over time
Summary of knowledge-based RL

<table>
<thead>
<tr>
<th>Algorithm name</th>
<th>Prob. KR</th>
<th>Different resolutions</th>
<th>Lookahead in KR</th>
<th>Representation learning</th>
<th>Model based RL</th>
<th>Motion planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DARLING (2016)</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SDRL (2018)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>KRR-RL (2018)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>PEORL (2018)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>TMP-RL (2018)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

There is also research on integrating cognitive architectures with reinforcement learning, such as SHARSHA (2001) and Soar-RL (2004). These (and other such) cognitive architectures support learning and inference.
Tutorial Outline

● Introduction

● Basics:
 ○ Knowledge representation: declarative, probabilistic, hybrid
 ○ Reasoning: logic-based, MDP, POMDP
 ○ Learning: reinforcement

● Example architectures:
 ○ Knowledge guides reasoning
 ○ Knowledge guides learning
 ○ Learning for knowledge revision

● Discussion

Shiqi Zhang (SUNY Binghamton) & Mohan Sridharan (U. of Birmingham)
Learning for Knowledge Revision

- Many approaches possible for revising domain knowledge:
 - Learning action models from observed effects [Gil, 1994]
 - Searching joint space of hypotheses and observations [Simon, Lea, 1974]

- Our focus on declarative knowledge:
 - Inductive learning of causal laws [Otero, 2003]
 - Expand theory of actions, revise ASP system descriptions [Balduccini, 2007; Law et al., 2018]
 - Process perceptual input to learn in cognitive architecture [Laird, 2012]

- Interactive task learning [Chai et al., 2018; Laird et al., 2017]:
 - Labeled examples or reinforcement; Relational RL [Driessens, Ramon, 2003]
 - Learning task knowledge using RRL [Block, Laird, 2017]

- Challenges:
 - Generalization, e.g., of equivalent axioms with redundant parts
 - Actions with delayed effects
 - Observations from active exploration and reactive action execution
Relational Reinforcement Learning

- Combines RL with relational/inductive learning, e.g., Q-RRL algorithm
- Relational representation of states, actions

- Typically uses *logical decision trees*:
 - Learn relationally equivalent states and actions
 - Each example is a relational database, e.g., state description in planning task
 - First-order logic instead of attribute-value representations
 - Prolog-style queries as tests in internal nodes; *binary decision trees (BDT)*

- Declarative bias for learning relational representations of policies

- **Challenges:**
 - RRL typically for particular planning task (e.g., stack blocks), *difficult to learn generic knowledge across tasks (and MDPs)*
 - Computationally expensive in most practical robotics domains
REBA-Interactive Learning

- Combines declarative programming, probabilistic reasoning and relational reinforcement learning [Sridharan, Meadows, 2017, 2018].

- Learn parts of system description (represented as CR-Prolog programs):
 - Action descriptions (i.e., actions, preconditions, effects), action capabilities (affordances)
 - Axioms including causal laws, executability conditions
REBA-Interactive Learning

● Non-monotonic logical reasoning (with or without probabilistic reasoning) used for planning and diagnostics (as in REBA).

● Interactive learning:
 ○ Verbal input to learn action relations and causal laws;
 ○ Active exploration (RRL) of action preconditions and effects;
 ○ Reactive exploration (RRL) of unexpected action outcomes

● **ASP-based reasoning guides learning:**
 ○ Determines transitions to explore further
 ○ Selects and defines relevant MDPs for RRL (active/reactive exploration)

● Learned domain knowledge used for subsequent reasoning

● **Tight coupling:** bidirectional flow of control and relevant information between reasoning and learning
Our Binary Decision Tree

- Generalizes over MDPs; policy for subsequent Q-learning
- Computationally efficient, more reliable, *scales better*
- Nodes: test of domain literals
- Path from root to leaf: partial state-action pair
- Expansion at leaf if adding a test reduces Q-value variance
- *Generates candidate axioms*
Learning for Knowledge Revision (Example)

- **Goal:**
 \(\text{loc}(C) = \text{office}, \text{-in_hand}(\text{rob, } C) \), \(\text{cup}(C) \)

- **Initial:**
 \(\text{loc}(\text{rob}) = \text{office} \),
 \(\text{objweight}(\text{cup1}, \text{light}) \), \(\text{obj_surface}(\text{cup1}, \text{brittle}) \)

- Based on default:
 \(\text{loc}(\text{cup1}) = \text{kitchen} \)

- One **coarse-resolution plan** from ASP-based inference:
 \(\text{move(rob, kitchen)} \), \(\text{pickup(rob, cup1)} \),
 \(\text{move(rob, office)} \), \(\text{putdown(rob, cup1)} \)

- Assume *rob* moves successfully to the *kitchen*.

- Next action to implement: \(\text{pickup(rob, cup1)} \); to find+pickup *cup1*
Learning for Knowledge Revision (Example)

- Relevant literals: $\text{loc(rob)} = C_1, \text{loc(cup1)} = C_2$ where C_1, C_2 can be any cell in kitchen
- Possible fine-resolution action sequence (executed probabilistically):

  ```
  ... 
  mov(rob, c3) 
  test(rob, loc(cup1), c3) % cup1 observed! 
  pickup(rob, cup1) 
  ... 
  ```

- Robot moves to office and puts cup down; cup is then observed to be broken:

 $\text{obs(obj_status(cup1, damaged), true, 4)}$

- This unexpected outcome triggers RRL to learn previously unknown generic axiom:

 $\text{putdown(rob, C) causes obj_status(C, damaged) if obj_surface(C, brittle)}$
Tutorial Outline

● Introduction
● Basics:
 ○ Knowledge representation: declarative, probabilistic, hybrid
 ○ Reasoning: logic-based, MDP, POMDP
 ○ Learning: reinforcement
● Example architectures:
 ○ Knowledge guides reasoning
 ○ Knowledge guides learning
 ○ Learning for knowledge revision
● Discussion

Shiqi Zhang (SUNY Binghamton) & Mohan Sridharan (U. of Birmingham)
Discussion

- Key capabilities supported by *knowledge-based SDM under uncertainty*:
 - Non-deterministic action outcomes, partial observability
 - Reasoning with (incomplete) declarative knowledge
 - Efficient learning from interaction experience

- Important *challenges* to be addressed by future work:
 - *Representation for KRR*: logics, probabilistic, hybrid? Integration takes considerable effort if different components have different representations
 - *Benchmark problems* and algorithms; comparing and evaluating architectures is difficult
 - *Formal analysis* for trustworthy behavior: completeness and soundness guarantees
 - *Scaling* to large knowledge bases/ontologies and complex relationships
 - *Explainable decision making*

Shiqi Zhang (SUNY Binghamton) & Mohan Sridharan (U. of Birmingham)

References

References

References

Questions and comments