CS 560
Computer Graphics
Professor Richard Eckert
Lecture # 4
January 31, 2001
Lecture 4
Wednesday, 1-31-01

• A. An Introduction to MFC Programming, continued
• B. Computer Graphics Hardware

SKETCH Application

• Example of Using AppWizard and ClassWizard
• Mouse used as a drawing pencil
• Left mouse button down
 – Line in window follows mouse motion (sketching)
• Left mouse button up
 – Sketching stops
• User clicks "Drawing Color" menu item
 – popup menu to choose drawing color
• User clicks "Clear" menu item
 – Window client area is erased
Last Class We:

- Used AppWizard to set up an SDI Skeleton
- Defined Variables in View Class:
 - `m_butdn`, `m_ptold`, `m_pt`, `m_color`, `pDC`
- Used Menu Editor to add menu items:
 - `IDM_RED`, `IDM_GREEN`, `IDM_BLUE`, `IDM_CLEAR`
- Used ClassWizard to add handlers for:
 - `WM_LBUTTONDOWN`, `WM_LBUTTONUP`
 - `WM_MOUSEMOVE`

Code Requirements

- **WM_LBUTTONDOWN:**
 - Set `m_butdn` to TRUE & record point in `m_ptold`
- **WM_LBUTTONUP:**
 - Set `m_butdn` to FALSE
WM_MOUSEMOVE handler code:

- if (m_butdn)
 • (pDC = GetDC();
 • m_pt = point;
 • CPen pen(PS_SOLID, 1, m_color);
 • CPen *pPenOld = pDC->SelectObject(&pen);
 • pDCMoveTo(m_ptold);
 • pDCLineTo(m_pt);
 • m_ptold = m_pt;
 • pDC->SelectObject(pPenOld);)

Adding the WM_COMMAND menu item handlers

- Invoke ClassWizard and scroll "ObjectIDs" list (not "Messages") to "IDM_BLUE"
- Select it and choose "COMMAND" in "Messages" list box
- Click "Add Function" button
- Click "OK" in resulting "Add Member Function" dialog box
Result:
- ClassWizard generates `On_Blue()` handler to message map
- Press "Edit Code" to go to skeleton handler and add following code after // TODO...
  ```
  m_Color = RGB(0,0,255);
  ```
- Do same to add `OnGreen()` and `OnRed()` handlers
- Add `OnClear()` handler in same way
- Code to be added:
  ```
  Invalidate(); //forces WM_PAINT msg
  ```

Member Variable Initialization

- All data members added to `CSketchView` class must be initialized
 - If not, they will contain garbage when application begins
- From Project Workspace window choose ClassView icon
 - Expand "sketch classes" icon and `CSketchView` Class icon
– Double click on CSketchView() constructor
– Add following initialization code under "// TODO..." comment:
 m_pt = m_ptold = CPoint(0,0);
 m_butdn = FALSE;
 m_color = RGB(0,0,0); // initial draw color black

Build project

• “Build” from main menu
• If no errors, you get a functioning
 Document/View color sketching
 application
Lecture 4, Part B:

Introduction to Computer Graphics Hardware

GRAPHICS HARDWARE

- Display Devices
 - Vector Scan
 - Raster Scan
- Both based on CRT (TV)
 - Electron beam accelerated toward screen
 - focused
 - deflected
 - strikes phosphorescent material on screen
 -->pixel that glows
A Pixel

- Visible point where electron beam hits screen
- Screen phosphors glow & fade
- Have a finite size
- Not a mathematical point
Resolution

- Max number of pixels that can be plotted without overlap
- Expressed in # horizontal X # vertical pixels
- Depends on:
 - phosphor used
 - focusing system (how small a point)
 - speed of deflection system
 - video memory size (raster scan)--as we'll see

Aspect Ratio

- Ratio of # of pixel columns to # of pixel rows
- Examples:
 - SVGA VESA mode 100h: 640 X 400, A.R. = 1.6
 - Standard Windows: 640 X 480. A.R. = 1.33
- **Pixel Ratio** (often called Aspect Ratio)
 - Ratio of pixel height to pixel width
 - Ratio of # of horizontal pixels to vertical pixels needed to produce equal length lines
 - For a square screen, A.R. = P.R.
 - If P.R. != 1, figures are distorted
Dot Pitch

- Minimum distance between centers of adjacent pixels of same color
- Should be less than 0.28 mm for sharp images
- For fixed sized screen
 - Decreasing distance between pixels ==> Increase Resolution
 - So dot pitch determines max resolution

Persistence

- After beam leaves a phosphor, it fades
- Definition of persistence:
 - Time to reduce initial intensity by 10%
 - Value depends on type of phosphor (10 - 100 msec.)
- Finite persistence==>screen must be redrawn
 - Refresh rate determined by persistence
- Example: If persistence = 20 msec
 - 1st pixel on screen invisible after that time ==>
 • screen must be refreshed once every 20 msec
 • so refresh rate must be > 50 Hz.
A Graphics Hardware System

- CPU--Runs pgm specifying what is to be drawn
- CRT--does the actual display
- Display Controller--Provides analog voltages needed to move beam and vary its intensity
- DPU--generates signals that drive display controller
 - (offloads task of video control to separate processor)
- VRAM--Stores info needed to draw the picture
 - Dual-ported (written to by CPU, read from by DPU)
 - Fast (e.g., 640x480, 50 Hz => 65 nsec access time!)
 - Also called Refresh Buffer or Frame Buffer
- I/O devices--interface CPU with user

A Computer Graphics Hardware System (General)
Vector Scan systems

- Also called random, stroke, calligraphic displays
- Images drawn as line segments (vectors)
- Beam can be moved to any position on screen
- Refresh Buffer stores plotting commands
 - So Refresh Buffer often called "Display File"
 - provides DPU with needed endpoint coordinates
 - Pixel size independent of frame buffer
 - \Rightarrow very high resolution
Advantages of Vector Scan

- High resolution (good for detailed line drawings)
- Crisp lines (no "jaggies")
- High contrast (beam can dwell on a pixel ==> very intense)
- Selective erase (remove commands from display file)
- Animation (change line endpoints slightly after each refresh)

Disadvantages of Vector Scan

- Complex drawings can have flicker
 - Many lines
 - so if time to draw > refresh time ==> flicker
 - High cost--very fast deflection system needed
 - Hard to get colors
 - No area fill
 - so it’s difficult to use for realistic (shaded) images
 - 1960s Technology, only used for special purpose stuff today
Raster Scan Systems
(TV Technology)

- Beam continually traces a raster pattern
- Intensity adjusted as raster scan takes place
 - Beam focuses on each pixel
 - Intensity value stored in refresh (frame) buffer
 - So resolution determined by size of frame buffer
- Each pixel on screen visited during each scan
 - Scan rate must be ≥ 30 Hz to avoid flicker
Simplest system: one bit per pixel
 – frame buffer called a bitmap

Gray Scale: N bits/pixel
 – 2^N intensities possible
 – memory intensive
 • Example: 1000 X 1000 X 256 shades of gray
 ==> 8 Mbits

Scan Conversion

• Process of determining which pixels need to be turned on in the frame buffer to draw a given graphics primitive

• Need algorithms to efficiently scan convert primitives like lines, circles, etc.
Advantages of Raster Scan Systems

- Low cost (TV technology)
- Area fill (entire screen painted on each scan)
- Colors
- Selective erase (just change parts of bitmap)
- Bright display, good contrast
 - but not as good as vector scan:
 - can’t make beam dwell on a pixel

Disadvantages

- Large memory requirement for high resolution
 - (but cost of VRAM has decreased!)
- Aliasing (due to finite size of pixels)
 - Jagged lines (staircase effect)
 - Moire patterns, scintillation, "creep" in animations
- Raster scan is the principal “now” technology for graphics displays!
Tektronix Direct View Storage Tube

- 1st "inexpensive" graphics display device
- Extension of vector scan technique
- Two electron guns
 - writing gun
 - flood gun

- Writing gun beam knocks electrons out
 leaves + charges behind (constitute image)
- Flood gun supplies continuous source of unfocused electrons
 - migrate toward the + charges on grid
 - pass through grid and strike screen phosphors
 --> lighted dots
 - electrons continue to hit + charges
 - continuous light (Up to an hour)
Erasure of DVST image

1. Plus charge applied to entire grid
 – Attracts electrons to entire grid
 – Entire screen flashes (Image gone)
2. Minus charge applied to entire grid
 – Provides electrons that can be knocked out by writing gun
 – Ready to draw next image with writing gun

Advantages to DVST

- No refresh needed
 – unlimited image complexity possible
- High resolution
- Crisp lines
- Low cost
 – no fast refresh circuitry needed
Disadvantages to DVST

- No selective erase
 - whole image or nothing
- No animation
- Low light output
 - poor contrast
 - must use in subdued light
- No color
- No area fill

Interlaced Displays

- All even then all odd screen lines scanned
- Typically 1/60 second each
 - Same image presented twice in 1/30 second
 - Image changed at 1/2 non-interlaced frequency
 - less demands on image generation system
 - can be less expensive
 - 30 Hz is borderline for flicker
 - lower quality image (seeing half the image at a time)
Color Display Hardware (raster)

- Each screen pixel composed of 3 phosphors
 - glow red, green, and blue
- 3 electron guns shoot their beams through a shadow mask
 - so beams hit the sensitive phosphors
- Intensity of 3 beams determines how bright each phosphor glows
- Human eye detects an additive color mix
 - e.g., max red, green, & blue perceived as white

Direct color systems

- Frame buffer divided into bit planes
- A bit plane contributes one bit to color of pixels
- If resolution of the screen is W x H pixels:
 - a bit plane is a W x H x 1 bit memory
- Bit planes can be organized into 3 sets
 - Each called a color channel: (R, G, B)
 - Bit planes of a color channel provide the intensity values fed to that channel’s electron gun
- A system with N bit planes per color channel:
 - 2^N red, 2^N green, & 2^N blue shades
 - 2^{3N} different colors displayable simultaneously
True Color & High Color Systems

- **True color**: direct color system with:

 \[N = 8 \]

 so \(2^{24} = 16,777,216 \) different colors possible for each pixel on screen

 More colors than discernable by human eye

- **High color**: direct color system with:

 \[Nr = 5, \ Ng = 6, \ Nb = 5 \]

 \(2^{16} = 65,536 \) different colors possible