

CS-460/560: Computer Graphics

Richard R. Eckert

M,W, 8:30-9:50 A.M.
EB-J23/J15

Lecture 1 - 1/22/01

Contacting Me

- Office: EB-N6
- Office Hours: Tue: 1:30-3:30, Thur: 10-11:30
- Office Phone: 607-777-4365
- Department phone: 607-777-4802
- email: reckert@binghamton.edu
- My web page: www.cs.binghamton.edu/~reckert/
 - See link to: [CS-460/560 \(Computer Graphics\)](#)
- EngiNet CS-560 course web page:
<http://www.enginet.binghamton.edu/cs560>

Course Materials

- Text book: D. Hearn and M.P. Baker, "Computer Graphics, C Version," 2nd Edition., Prentice Hall, 1997
- Online notes: CS-460 link on my home page
- Class presentations (slides and audio): EngiNet CS-560 web page

Prerequisites

- Data Structures (CS-240)
- Basic Knowledge of Linear Algebra
 - Matrix/Vector Manipulation
- C or C++ Programming
 - Visual C++ Ideal
- Some Knowledge of Computer Organization
 - e.g., CS-220

Evaluation

- CS-460:
 - 2 Term Exams (20% each)
 - Programming Assignments (40%)
 - Final Exam (20%)
- CS-560:
 - 2 Term Exams (15% each)
 - Programming Assignments (40%)
 - Research Paper or Project (10%)
 - Final Exam (20%)

Course Schedule (by weeks)

1. Introduction/Applications/History, Introduction to Win32 API Programming
2. Computer Graphics Hardware and Software,
3. Graphics Output Primitives: lines, polygons, circles, curves, text
4. Display Attributes and Area Fill Algorithms
5. 2-Dimensional Geometric Transformations
6. 2-D Windows, Viewports, and Clipping
 - *** Term Examination # 1 ***

Course Schedule (by weeks)

- 7. Interactive 2-D Graphics: Input Devices, GUI Techniques
- 8. Segmentation, Hierarchical Modeling; PHIGS, OpenGL, VRML
- 9. Curved lines and surfaces, parametric equations, Bezier and B-spline curves
- 10. Animation, Sprites, Game Development, DirectX
- 11. 3-D Graphics: Transformations
- 12. 3-D Graphics: Viewing and Projections

Course Schedule (by weeks)

- 13. Hidden Surface Removal
 - *** Term Examination # 2 ***
- 14. Illumination, Reflection, Shading, Texturing, Ray Tracing, Radiosity
- 15. Fractals, Iterated Function Systems, L-Systems, Particle Systems, Escape-time algorithms, Chaos

Lecture 1: Computer Graphics

See:

[Week 1-A: An Introduction to Computer Graphics](#)

URL:

<http://www.cs.binghamton.edu/~reckert/460/wk1a.htm>

Computer Graphics

- Using a computer to generate visual images
- Definition:
 - Creation, storage, manipulation, and display of models of scenes (real or imagined) using the computer
- Interactive Computer Graphics:
 - User dynamically controls displayed image attributes by means of interactive input devices

Motivation

- Human visual channel highly developed
- Efficient for communicating complex ideas

Related Field--Image Processing

- Reconstruction of objects from images
- Computer Graphics--Synthesis of images
- Image Processing--Analysis of images
- Image Processing subfields:
 - image enhancement
 - computer vision
 - pattern recognition (AI important)

Computer Graphics & Image Processing

Two Phases of Computer Graphics

- Modeling
 - Mathematical representations of objects/scenes
- Rendering
 - Production of an image from a model

Features of Computer Graphics Models

- Output primitives:
 - building blocks
- Data structures:
 - how primitives relate to each other

Levels of Complexity of CG

- 2-D line Drawings: Primitives
- 2-D colored images: Area fill
- 3-D line drawings: 3-D to 2-D projection
- 3-D colored images: Hidden surface removal, color, shading
- 3-D photorealistic images: materials properties, lighting, reflection, transparency, shadows (physics), complex object models
- Animation at all levels: Movement

2-D Line Drawing

2-D Colored Image

An Animation of a 3D Scene

- Frames generated by ray tracing

Brief History of Computer Graphics

- Early 50s--MIT Whirlwind Computer
 - First computer-driven CRT
- Middle 50s--SAGE Air Defense System
 - Selection of targets with light pen
 - First interactive graphics
- Early 60s--Ivan Sutherland's PhD thesis
 - Proposed 1st model for interactive graphics
 - Identified basic data structures
 - Discovered important algorithms

History of CG (continued)

- Middle 60s--GM's Digigraphic Design System
 - Beginning of CAD
 - Costly hardware
 - Hard-to-write programs
 - Non-portable software
- Late 60s--Tektronix Direct View Storage Tube
 - First inexpensive graphics display device

History of CG (continued)

- Early 70s--First microprocessors
 - first microcomputers
 - inexpensive
 - primitive graphics capability
- Late 70s--First graphics software standard
 - (CORE--1977)
 - first attempt at portable graphic software

History of CG (continued)

- 1980s
 - Micros with extensive graphics capabilities
 - Introduction of first Work Stations (graphics engines)
 - Graphics standards with increased capabilities
 - GKS (1984), GKS-3D (1988), PHIGS (1988)
 - Microcomputer GUIs (Macintosh, Windows)

History of CG (continued)

- 1990s
 - Graphics engines
 - many algorithms implemented in hardware
 - Fast, powerful, cheap
 - Multimedia systems
 - Windows-95/98/NT
 - X Windows with PEX
 - GL, OpenGL industry standard graphics libraries
 - Microsoft Direct-X

Some Applications of CG

- Data Presentation (statistics, business, scientific, demographics...)
- CAD, CAM, CIM
- Painting/Drawing systems
- TV Commercials
- Entertainment; Video Games
- Cartography
- Computer Art

More CG Applications

- Motion Picture Industry (animation, special effects, etc.)
- Desktop Publishing
- Architectural Design
- Simulation of Reality
 - Flight simulators
 - Ground vehicle simulators
 - Arcade games
 - Virtual reality devices

More CG Applications

- Scientific Simulation/Visualization
 - Use graphics to make sense of vast amounts of scientific data
 - Use when too dangerous to do real experiments
- Hypermedia
 - Integration of broadcasting, computing, publishing
- Education
- Process Control
- CASE

More CG Applications

- Image Processing/Enhancement
- Medicine
 - Computed Tomography (CT Scan)
 - X-ray, ultrasound, NMR, PET:
 - All can give 3-D images of human anatomy
- GUIs
- World Wide Web Development
- VRML
- New Stuff--can't even be imagined

Computer Graphics--

- A huge, fast-moving, exciting field that integrates the best of art and science
- Needs new Renaissance men & women
 - Bright and analytic enough to understand the science & math
 - Sensitive and creative enough to do the art
- Both left and right sides of the brain required!

A VIDEO SHOWING SOME COMPUTER GRAPHICS APPLICATIONS:

