Voronoi Diagrams

Robust and Efficient implementation

Master's Thesis Defense

Nirav Patel

Binghamton University
Department of Computer Science
Thomas J. Watson School of Engineering and Applied Science

May 5th, 2005

Nirav Patel Voronoi Diagrams



Nirav Patel




"The Universal Spatial Data Structure” —Franz
Aurenhammer

Primary motivation: To obtain skeletal representations for two
dimensional shapes to be converted to embroidery data by an
automated design system. Current methods employed by that
system produced skeletons somewhat unreliably due to their
inability to handle degenerate cases where intricate detail was
present in the input shape.

Nirav Patel Voronoi Diagrams



Applications of Voronoi diagram

The Voronoi diagram is one of the most fundamental and versatile
data structures in computational geometry. It's many applications
include:

e Collision detection
e Pattern recognition

e Geographical optimization

Geometric clustering

Closest pairs algorithms

k-nearest-neighbor queries

Nirav Patel Voronoi Diagrams



Definition of Voronoi Diagram

Definition

For a set P of points p1, p2, ..., pn in the Euclidean plane, the
partition Vor (P) of the plane into regions R(p1), R(p2), ..., R(pn)
associated with each member of P, such that each point in a
region R(p;),1 < i < nis closer to p; than any other point in P.

Nirav Patel Voronoi Diagrams



Structure of a Voronoi diagram

/ ___— Voronoi Vertex

Infinite Voronoi -
Edges

___ Generators
Ordinary Voronoi
Edge

A region that corresponds to a generator p; is called it's Voronoi
region and is denoted as R (p;).

Nirav Patel Voronoi Diagrams



Structure of a Voronoi diagram

/ ___— Voronoi Vertex

Infinite Voronoi -
Edges

___ Generators
Ordinary Voronoi
Edge

A common boundary of two Voronoi regions is called a Voronoi
edge.

Nirav Patel Voronoi Diagrams



Structure of a Voronoi diagram

/ ___— Voronoi Vertex

Infinite Voronoi -
Edges

___ Generators
Ordinary Voronoi
Edge

A point at which the boundaries of three or more Voronoi regions
meet is called a Voronoi vertex.

Nirav Patel Voronoi Diagrams



Properties of Voronoi diagram

© A Voronoi edge between two Voronoi regions R(p;) and R(p;)
is a portion of the perpendicular bisector of the line segment
connecting the two generators p; and p;.

Nirav Patel Voronoi Diagrams



Properties of Voronoi diagram

© A Voronoi edge between two Voronoi regions R(p;) and R(p;)
is a portion of the perpendicular bisector of the line segment
connecting the two generators p; and p;.

® A Voronoi vertex is the center of the circle that passes
through the three generators whose regions are incident to the
vertex, i.e., it is the circumcenter of the triangle with those
generators as the vertices.

Nirav Patel Voronoi Diagrams



Properties of Voronoi diagram

© A Voronoi edge between two Voronoi regions R(p;) and R(p;)
is a portion of the perpendicular bisector of the line segment
connecting the two generators p; and p;.

® A Voronoi vertex is the center of the circle that passes
through the three generators whose regions are incident to the
vertex, i.e., it is the circumcenter of the triangle with those
generators as the vertices.

©® A Voronoi region R (p;) is a convex (possibly unbounded)
polygon containing the corresponding generator p;.

Nirav Patel Voronoi Diagrams



Correlation between Voronoi diagram and Primary cycle
structure

Figure: (a) Voronoi Diagram (V/, E) (b) Corresponding primary cycle
structure G = (V, E, C)

Nirav Patel Voronoi Diagrams



Nirav Patel




Various algorithms for Voronoi computation

"It is notoriously difficult to obtain a practical
implementation of an abstractly described geometric
algorithm” —Steven Fortune

e Sweep line

e Divide-and-conquer

e Spiral-search

e Three dimensional convex hull

e Incremental

Nirav Patel Voronoi Diagrams



Sweep line algorithms

e Proposed by Steven Fortune.
o A vertical line (also called a sweep line) is swept across the
plane, from left to right.

e The Voronoi diagram is incrementally constructed as point
generators are encountered by the sweep line.

Nirav Patel Voronoi Diagrams



Snapshot of execution of Sweepline algorithm

Point generators

<

\

Vertical sweep line 1

'Source:http: //www.diku.dk/hjemmesider /studerende/duff/Fortune/

Nirav Patel Voronoi Diagrams




Properties of sweep line algorithms

e Elegant solution as in easy to understand and easy to
implement

e Shortcomings when dealing with degenerate cases like more
than three co-circular point generators

e Relies heavily on the accuracy of numerical calculations, which
limits its use to theoretical purposes

Nirav Patel Voronoi Diagrams



Divide and conquer algorithms

BILR)

@ The set of point generators, P,
is split by a dividing line into
subsets L and R of about the
same size.

) The Voronoi diagrams Vor (L

Nirav Patel Voronoi Diagrams



Properties of divide-and-conquer algorithms

e Implementation details are somewhat complicated
e Numerical errors are likely by construction

e The average and worst case time complexity is  (nlog n) and
it is possible to achieve better performance using other
methods.

Nirav Patel Voronoi Diagrams



Incremental algorithms

Obtain Vor (P) from Vor (P — {q}) by inserting the site q.

Nirav Patel Voronoi Diagrams



Properties of incremental algorithms

e As the region of g can have up to n — 1 edges, for n = |P],
this leads to a runtime of O (nz). Several authors have
further tuned the technique of inserting Voronoi regions,
producing efficient and numerically robust algorithms that
have average time complexity of O (n)

e The implementation of incremental algorithms is simple
compared to other techniques.

Nirav Patel Voronoi Diagrams



Summary of approaches to deal with numerical inaccuracy

Reliance on numerical values

Heavy

Exact Arithmetic
The topological structure is decided based on the signs of results of
numerical computations. Two strategies:

@ Implementing the algorithms on top of a model of exact
arithmetic capable of infinite precision computation.

@ Restricting the precision of input data (e.g., using only 24 bit
integers) such that other techniques may be used that
guarantee correctness of specific mathematical operations on
that data.

Nirav Patel Voronoi Diagrams



Summary of approaches to deal with numerical inaccuracy

Reliance on numerical values

Medium

Tolerance based

Every numerical computation is accompanied by calculation of an
upper bound on its error. Based on this, the result is judged to be
either reliable or unreliable.

e Program code is comparatively complex because there must
be two branches for processing after each calculation, one
each for the reliable and unreliable case

e Software is less portable because the errors are often tied to a
particular computation environment

Nirav Patel Voronoi Diagrams



Summary of approaches to deal with numerical inaccuracy

Reliance on numerical values

Small

Topology Oriented
Does not rely directly on numerical computations because of the

assumption that there is error associated with all numeric computa-
tions.

e Derived topological properties are given higher priority and
only the numerical computations consistent with that derived
topology are accepted

e This approach can guarantee correctness at a relatively low
cost since models of exact computation or restrictions on
input are not required

Nirav Patel Voronoi Diagrams



Nirav Patel




Overall approach to ensure robustness

@ Reduce the algorithm into simple routines with precisely
defined topological requirements.

Nirav Patel Voronoi Diagrams



Overall approach to ensure robustness

@ Reduce the algorithm into simple routines with precisely
defined topological requirements.

® Ensure every routine achieves its goals and leaves the Voronoi
data structures in a topologically consistent state.

Nirav Patel Voronoi Diagrams



Overall approach to ensure robustness

@ Reduce the algorithm into simple routines with precisely
defined topological requirements.

® Ensure every routine achieves its goals and leaves the Voronoi
data structures in a topologically consistent state.

© Build upon the reliability of smaller routines to insert each
generator while maintaining the topological consistency and
correctness of the resulting Voronoi diagram.

Nirav Patel Voronoi Diagrams



Steps for robustness of math routines

@ Avoid using thresholds
® Use all topological information available
© Back-up routines for special case handling

@ For border-line cases use two different methods and choose a
more reliable value based on topology

Nirav Patel Voronoi Diagrams



Example math routine

Computing point on a bisector for two line segments

Figure: Computing bisector point py, of lines ; and h (a) normal case (b)
nearly parallel lines, /5 is the generated line

Nirav Patel Voronoi Diagrams



Nirav Patel




Numerical and Topological Process

© u1, U, uz, uy are the
vertices to be removed

Nirav Patel Voronoi Diagrams



Numerical and Topological Process

® New vertices and new
edges are generated

Nirav Patel Voronoi Diagrams



Numerical and Topological Process

© New cycle is formed

Nirav Patel Voronoi Diagrams



Nirav Patel




Types of Vertices and Edges

" Parabolic Edges

Separator
Vertices

Line Generators

Nirav Patel Voronoi Diagrams



Making End point regions

When computing a Voronoi diagram the endpoints of line
segments are considered to be separate generators which are
already inserted into a previously created Voronoi diagram (i.e., the
first step of this approach).

Topological requirement: To generate two new vertices on the
primary cycle of each endpoint corresponding to the open segment.

Nirav Patel Voronoi Diagrams



Making End point regions

\

Separator
vertices R(p,)

/

Nirav Patel Voronoi Diagrams



Making End point regions

Separators

Nirav Patel Voronoi Diagrams



Marking vertices to be removed

Topological properties applicable to this routine:

e The vertices and edges to be removed form a tree structure.

The tree structure has a unique path between the regions of
the endpoints p; and p;.

The path goes between the two groups of regions; one is to
the right of the open segment e, and the other is to the left.

e Any separator is not completely removed.

Nirav Patel Voronoi Diagrams



Marking vertices to be removed

-

Xy
.

/

/

[

e

-~

-

S~

—

ek

-~

Nirav Patel

Voronoi Diagrams




Removal of a whole region

e When marking vertices and edges for removal in some
situations it is possible that all vertices corresponding to a
particular cycle are marked for deletion.

e Extra Voronoi vertices are inserted into the diagram
corresponding to the intersection of the line segment joining
the Voronoi point generators and the bisector of that segment.

Nirav Patel Voronoi Diagrams



Removal of a whole region

I.II \
\ \
A 4
/ \ Extra ¥ oronoi v
,F \ point added
/ ¥ I
! \ -
ff b ’ 4
/ Y -
/ N\ T
.rJr e - .-_N\ < . .
T \ .
/ \
.rI 1
/ . A
—_ \ .
A
5
)

‘ Edge not marked for deletion hecause if it
[ is then the whole region will be marked for

deletion. This is prevetted because of the
’,//\ addition of the extra Voronod point

Nirav Patel Voronoi Diagrams



Generating new vertices
P —— /
f/ -
T
-
- ——._\\.'f'
T T —a
j ek
T A /
j
Generating new Voronoi vertices on edges connected to those

marked for deletion while maintaining the topological consistency
of regions surrounding the tree marked for deletion.

Nirav Patel Voronoi Diagrams



Forming the new cycle for generator

The primary cycle for the new generator ey is created.

Nirav Patel Voronoi Diagrams



Nirav Patel




Finding the nearest generator

A method using grid data structures was implemented to find the
nearest generator more efficiently. The generators already inserted
within the Voronoi diagram are placed into in a regular grid (i.e.,

each cell is of equal size). When a new generator is to be inserted
its corresponding cell in the grid is located. The generators in this
cell and its surrounding cells are searched to determine the nearest
generator. The grid resolution depends on the width w and height

h of the bounding box of generators. There are w+/n* hy/n cells in
the grid.

Nirav Patel Voronoi Diagrams



Reordering of generators

To order the insertion of generators such that the size of the
structure to be deleted remains close to constant. This can be
achieved if generators are uniformly distributed during insertion.
Method:

@ All generators are placed on a regular grid where each grid cell
has an associated number m indicating the number of
generators present within the cell.

® The grid cells are then sorted in ascending order based on m.

© The generators are ordered according to the index of their grid
cell in the sorted list and by x-coordinate for generators that
are within the same grid cell.

Nirav Patel Voronoi Diagrams



Trimming/Skeletonization algorithm

e A simple approach: Compute the orientation of each Voronoi
vertex with respect to the closed contour associated with a
region.

e Multiple Voronoi vertices lie on boundary points of the region.
Due to numerical inaccuracy, determining the orientation of
these points with respect to the contour becomes unreliable.

e Proposed approach: Label different types of vertices and
edges when computing Voronoi diagram. Using this labeling if
at least one of vertices can be determine to be "in" or "out”
then all the other vertices in the primary cycle can be reliably
determined.

Nirav Patel Voronoi Diagrams



Converge Vertices - Primary cycle structure

L separator
converge

.~"

separator . ,
~~

Sk

Key:
—® Generators
® Voronoi Vertices
— Voronoi Edges
©  Skeleton Vertices

(a)

Nirav Patel Voronoi Diagrams



Converge Vertices - Skeleton

ouT IN IN ouT
- ———P - ——p
1, L
p@ r@

(b) ()

Nirav Patel Voronoi Diagrams



Parallel Vertices - Primary cycle structure
/\!t;?/_\

By
e

o7
separator **
parallel
IN

/ /
1 P ’ out
_____ \ 4 _separator

R(p,) -~ parallel

Nirav Patel Voronoi Diagrams



Parallel Vertices - Skeleton

Nirav Patel Voronoi Diagrams



Nirav Patel




Automated embroidery generation

@ Voronoi diagram is constructed for a given shape.

® Skeleton for the given shape is generated from the Voronoi
diagram.

© The automation system then uses it in conjunction with
outline and thickness/distance transform information to
interpret and convert it to higher level embroidery design
primitives.

O These primitives are then used to generate detailed sequences
of individual stitch locations that when sewn on embroidery
equipment reproduce a visual representation of the shape in
an aesthetically pleasing manner.

Nirav Patel Voronoi Diagrams



AR SN
,____‘I'._z!!l nh!t!’»ﬂﬂ‘
A

NN 5

Q¢

LTSS

o

@

I

o)
o
(]
)
(@)
=
o)
S
(]
o)
Q
-
()
£
(@)
+—
>
(]
—
L
(]
+
T
e
=
O
5=
4+
0
e
Q
-
T
—
()
c
()
O

Voronoi Diagrams

Nirav Patel



Structural Indexing

A rich source of information in visual data is present in the
geometric structure of two dimensional shape. Structural Indexing
tries to exploit this fact and the Voronoi skeletal is useful here to
further decompose the structure of a shape. In the implementation
presented here, Voronoi diagrams are used generate the skeletons
of shapes using their edge contours as discussed previously. The
edge contours are generated either from scanned images or from
True Type Fonts.

Nirav Patel Voronoi Diagrams



Metrics used for structural indexing

-
C) ( “-... Angle of Concavity
O

~¥——_ CEP Norms

e
Pas

CEP Shape Vectors

o Characteristic edge
points (CEPs)

Nirav Patel Voronoi Diagrams



Steps for structural indexing

@ The Voronoi skeletons are analyzed and converted to a set of
skeletal nodes and connecting skeletal branches.

@ Several geometric metrics are computed from these skeletal
nodes.

©® The metrics related to a skeleton node are encoded as a
junction node and saved within a GTree (a database
supporting multidimensional range queries).

O Given the skeletal representation of an object, similar objects
can be retrieved from the database.

Nirav Patel Voronoi Diagrams



Nirav Patel




Nirav Patel




Types of tests peformed

Manual input
e Testing particular parts of code.
e Creating degenerate cases.
e Gaining better visual understanding of the
functioning of the algorithm.
Random input
o Large scale testing of the code. The data-sets
usually ranged from 10,000 to 100,000
generators.
e Comparing performance of code with other
implementations.
True Type Font outlines
e Automated testing of all the characters for a
font at various sizes, orientations and positions
in the plane.
e 12 million test cases in one such test.

Nirav Patel Voronoi Diagrams



Random point generators - Test results

Point Generator Test

[}

2 250.00

8

@ 200.00 -

2 —o— No reordering
E 150.00

£ 100.00 - —— Reordering based on
2 grid

£ 50,00 -

& 0.00

(%)

No. of points

Nirav Patel Voronoi Diagrams



Random segment generators - Test results

Line generator test

12000.00

10000.00 -
8000.00 - ——No reordering

6000.00 - )
—a— Reordering based on
4000.00 - grid

2000.00 -
0.00

CPU time in milliseconds

No. of lines

Nirav Patel Voronoi Diagrams



Comparision Tests

The code was then tested against existing publicly available
implementations:

@ Seel's avd: This implementation is based on the exact
arithmetic library from LEDA. Hence, the output of the
algorithm can be verified if the implementation is correct.

@® Sethia’s pvd: It is restricted to clean polygon data that forms
the boundary of a multiple-connected area. pvd cannot deal
with individual line segments.

Nirav Patel Voronoi Diagrams



Comparison Test results

CPU time comparision
£
=  0.1400
c
g 01200
g’§ 0.1000 |
5 8 00600 .;.__.__._.—I——“'/.?A/. *—pvd
2 & 0.0600 - —m—ours
2 F 0.0400 |
= 0.0200 4
?5 0.0000 —____ SIS
XD O T gx D O X D
@ & X R P F &
N N R R
No. of line segments

Nirav Patel Voronoi Diagrams



Nirav Patel




Contributions of the thesis

e Implemented existing algorithms and techniques for Voronoi
diagrams of point, segment and polygon generators by filling
out missing details in the description of algorithms

e Extended the techniques to enhance efficiency of execution

e Ensuring robustness of the algorithm in presence of numerical
inaccuracy resulting from floating point calculations

e Demonstrated the application of Voronoi diagrams

Nirav Patel Voronoi Diagrams



e Somehow manage to get Held's code for comparison!
e Extending the work to compute Voronoi diagrams for

e Curves
e Points, segments and polygons in 3-dimensional space

e Testing using different types of structures as input data like
spikes, circles, eclipse.

Nirav Patel Voronoi Diagrams



Questions




Thank You




