

ANIMATED RADIOSITY APPLICATION

BY

SUZANNE J. PATTERSON

BS, Pennsylvania State University, 2001

PROJECT

Submitted in partial fulfillment of the requirements for
the degree of Master of Science in Computer Science

in the Graduate School of
Binghamton University

State University of New York
2005

 ii

Submitted in partial fulfillment of the requirements for
the degree of Master of Science in Computer Science

in the Graduate School of
Binghamton University

State University of New York
2005

Richard Eckert___August 22, 2005
Department of Computer Science, Binghamton University

Leslie Lander__August 22, 2005
Department of Computer Science, Binghamton University

iii

Abstract

Radiosity, developed in the early 1980s, has become a fundamental part of the
Computer Graphics field. The Radiosity concept can act as a standalone rendering
tool, but actually was developed as a smalle r piece to the grander challenge of
simulating light behavior in a scene. Because of its tradeoffs, Radiosity is often
combined with other techniques in order to take advantage of the different benefits that
each algorithm has to offer. This in turn has created a variety of hybrid versions as well
as new twists on the Radiosity algorithm itself in an attempt to avoid the drawbacks,
namely, its strain on system resources and also its lack of specular reflections.

This project revisits the early fundamental Radiosity algorithm. Understanding the
baseline algorithm is no simple task. The implementation of the algorithm is even more
challenging. Not only does the algorithm itself need to be coded, but an entire
environment for which to apply the algorithm must be created. In this project a tutorial
application has been designed and implemented that helps demystify some of the
concepts behind basic Radiosity. Understanding the fundamental algorithm will provide
the user with a foundation in this area and open the doors to understanding the
complexities of more recent derived algorithms.

The major contribution of this project is to make the basic concept of Radiosity
accessible to everyday programmers with some mathematical background by providing
an animated application. This application will walk the user through all of the required
steps from setting up an environment to the final rendered image. The steps will
provide a combination of insight on mathematical technique and program structure that
guide the user towards understanding and implementing the Gathering Full-Matrix
Radiosity algorithm.

 iv

Table of Contents

1. Introduction ... 1
2. Radiosity Overview.. 4
3. Application Interface ..12

3.1. Modes...12
3.2. Menus ...14

3.2.1. Start ...14
3.2.2. Draw..15
3.2.3. Adjustments ...15
3.2.4. Clear Screen..19
3.2.5. Debug..19
3.2.6. Help ...19

3.3. Toolbar Buttons ...20
3.3.1. Mode ...20
3.3.2. Edit Scene Properties...20
3.3.3. Edit Animation Controls ..21
3.3.4. Reset Animation ..21
3.3.5. Stop ...21
3.3.6. Play..22
3.3.7. Step ...22
3.3.8. AVI Play..22
3.3.9. AVI Stop..23

3.4. Miscellaneous ...23
4. Code structure ..23

4.1. Program State Variables (Booleans) ...24
4.2 Dialog Class Descriptions ..27

4.2.1. CAnimationControls ..27
4.2.2. CSceneAOptions ...29
4.2.3. CHemiOps ..29
4.2.4. CPatchOpsA ..30
4.2.5. CRenPropsA ..31
4.2.6. CWFColorsA ..32
4.2.7. CHelp ..33

4.3. Data Structures ...34
4.3.1. Enumerated Lists ..35
4.3.2. Structs ...37

4.4. Function Descriptions ..41
4.4.1. Setup ...41
4.4.2. Scene Definition ..41
4.4.3. Coordinate System Conversion ..42
4.4.4. Scene Adjustments ...43
4.4.5. Draw Utilities ..52

v

4.4.6. 3D Utilities ..54
4.4.7. Scene Options ...57
4.4.8. Animation..58
4.4.9. Debug, Help & Cleanup ...60

4.5. Coding Challenges ...60
5. Future Work ..61

5.1. Known Code Bugs..61
5.2. Application Improvements ...61

6. References..62

 vi

Figures

Figure 1: Wireframe Scene ...2
Figure 2: Rendered Scene..3
Figure 3: Surface Input/Output ...5
Figure 4: Patch Geometrical Relationship..6
Figure 5: Nusselt Analog - Hemisphere..7
Figure 6: Nusselt Analog – Hemicube ..8
Figure 7: Delta Form Factor Parameters for a Hemicube Top Cell9
Figure 8: Delta Form Factor Parameters for a Hemicube Side Cell10
Figure 9: Free Mode ..13
Figure 10: Animate Mode..14
Figure 11: Start Menu..15
Figure 12: Draw Menu...15
Figure 13: Translate Menu Options ...16
Figure 14: Axis For Scene Adjustments ...16
Figure 15: Rotate Menu Options ..17
Figure 16: Zoom Menu Options ...17
Figure 17: Viewing Parameter Menu Options ..18
Figure 18: Four Parameter Viewing Pipeline ...18
Figure 19: Debug Menu...19
Figure 20: Help Menu ..19
Figure 21: Toolbar Buttons ...20
Figure 22: Mode Button...20
Figure 23: Scene Button ...20
Figure 24: Ctrl Button...21
Figure 25: Reset Button ..21
Figure 26: Stop Button...22
Figure 27: Play Button ...22
Figure 28: Step Button...22
Figure 29: AVI Play Button ...23
Figure 30: AVI Stop Button ...23
Figure 31: Drawing State Controls ..27
Figure 32: Animation Controls Dialog Box...28
Figure 33: Scene A Options Dialog Box ...29
Figure 34: Hemicube Options Dialog Box ..30
Figure 35: Patch Options Dialog Box..31
Figure 36: Render Property Options Dialog Box...32
Figure 37: Wireframe Color Options Dialog Box ...33
Figure 38: Help Dialog Box...34

1

1. Introduction

The Radiosity algorithm is a mathematical method used in modern computer graphics to
render images of visual objects. Historically, it was a natural progression within the field
due to its capabilities in the area of diffuse reflections. That is, an incident straight
beam of light energy reflected in all directions off of a rough surface. Radiosity has
become a significant development in this area, however, it is not without it’s limitations.
For example, in contrast to diffuse reflections, there are specular reflections, or a
sharply defined beam resulting from reflection off of a smooth surface. Radiosity does
not handle specular reflections. Over the years, combinations of various algorithms
have been created in order to take advantage of many different illumination effects.

This project implements an interactive animated application to illustrate the principles
behind the basic Gathering Full-Matrix Radiosity algorithm. The application
demonstrates the mechanisms of this algorithm by walking the user through an
extensive twelve-step tutorial. In addition, the application provides the user with the
freedom to change input parameters through dialog boxes to see how the rendered
scene is affected.

Visual C++ 6.0 and Macromedia Flash MX were used to develop the application. The
interface is made up of menus, toolbar buttons, dialog boxes, and one or more view
spaces. One scene is currently built-in. The scene contains a room, a box, and two
light sources. These objects are immutable. If the scene is translated in any way, all
objects are translated together. In addition, individual objects cannot be added or
removed. Figure 1 shows the simple wireframe scene. The left side shows the scene
before its surfaces are divided into a set of patches. The right side shows the scene's
surfaces divided up into a default set of patches.

 2

Figure 1: Wireframe Scene

Default parameters are set so the user may view the scene without any setup. Figure 2
shows the rendered scene. The left side shows the scene with only Radiosity and
hidden surface removal applied. The manner in which the individual surfaces are
divided is still apparent. The right side shows the scene with Gouraud shading. This
shading technique smoothes the patches out and provides a more finished look to the
scene.

3

Figure 2: Rendered Scene

This application also contains an AVI movie player, which is used during the twelve -step
tutorial. AVIs are incorporated into the tutorial to provide a clearer and more interesting
presentation.

The Gathering Full-Matrix Radiosity algorithm has several advantages and
disadvantages. The application distinctly points these out for this particular Radiosity
algorithm. Understanding the underlying reasons for the pros and cons will prepare the
user to grasp similar, more complex algorithms and create new ones.

Advantages:
?? Photorealism: The Radiosity algorithm models light within a scene based on the

geometry that exists between surfaces. In turn the algorithm can produce some very
realistic images.

?? Energy Transfer: The fundamental concept underlying Radiosity is the transfer of

energy from surface to surface. This energy transfer results in a more accurate and
physically correct solution that leads to more believable rendered images.

?? Soft Shadows: These are a more realistic representation of area light sources. Soft

shadows provide a gradual transition from unlit to lit areas. They contain an umbra
(no light visible) and a penumbra (some light visible).

 4

?? Color Bleeding: The colors from diffuse reflective surfaces bleed into their
surroundings.

?? View Independence: Once the Radiosity values have been calculated for the scene,

the viewpoint can be changed without the Radiosity values having to be recomputed.

Disadvantages:
?? Expensive – Time & Storage: The form factor between every pair of surfaces must

be computed and stored prior to calculating Radiosity values. As the number of
surfaces increase, the time taken to compute Radiosities as well as data storage
requirements also increase.

?? Curved surfaces must be approximated with polygon meshing: The scene used for

this application does not contain curved surfaces. In general though, many small
polygons (or surfaces) that are attached to each other are used to approximate
curved surfaces.

?? No specular reflections (reflection of shiny surfaces): All surfaces within the scene

are considered to be diffuse reflectors. Ideally, we would want the ability to create
both diffuse and specular reflections.

2. Radiosity Overview

The Radiosity of a surface is the total light energy per unit area leaving a surface per
unit time. Included is the light energy emitted and reflected. Equation (1) shows the
basic Radiosity equation that can be used to render a scene.

ijjiii FBEB ??? ? (1)

Each parameter in equation (1) serves an important purpose:

?? Bi = Radiosity (surface i)
?? Ei = Emission (surface i)
?? pi = Reflectivity (surface i)
?? Bj = Radiosity (surface j)
?? Fij = Form Factor (surface j relative to surface i)

Bi is the Radiosity of a surface and that is to be calculated. It is the total light energy per
unit area leaving a surface per unit time. E i is the emissivity of the surface. Emissivity
is the amount of light energy emitted per unit area per unit time. Light sources for
example, will have some non-zero emission value. Non-light sources will have an
emission value of zero. p i is the reflectivity of the surface. Reflectivity is the fraction of
light energy that is reflected off of a surface. The reflectivity is defined as a number
between 0 and 1. The higher the reflectivity of a surface, the larger the fraction of light
that gets reflected off of that surface. B j is the Radiosity of a surface elsewhere in the

5

scene. This is energy per unit area leaving a surface per unit time. F ij is called a form
factor and it represents a purely geometrical relationship between surfaces i and j. It is
the fraction of light energy leaving patch i that arrives at patch j. It is independent of the
viewpoint or any surface properties of the patches (surfaces).

Figure 3 shows the different energy components arriving at and leaving a surface. The
surface might represent for example, the wall of a room or a smaller area of the wall.

Figure 3: Surface Input/Output

The Radiosity equation itself is based on the Law of Conservation of Energy. The total
energy leaving a patch equals the energy it emits plus the sum of any energy from other
patches that it reflects. Figure 3 shows that there are two energy components leaving
the patch. The emitted light energy that originates from this surface and the reflected
light energy. This reflected light energy takes into account the sum of intensities of
other surfaces multiplied by the form factor from this surface i to that surface j. This
sum is then multiplied by the reflectivity of this patch i in order to determine what fraction
of light energy that arrives at this patch, should leave this patch. There is one energy
component arriving at the current patch i. This is the sum of light energy arriving from
all other surfaces in the scene. This is the same quantity that is used to determine how
much light should leave the patch, except that the full amount is expected to arrive at
the patch and only a fraction is expected to leave.

An important part of the Radiosity calculation is the determination of form factors. The
form factor between two surfaces is the fraction of energy emitted from one patch that is
incident on the other patch. Figure 4 shows the geometric relationship between two
patches of which form factors are based.

 6

Figure 4: Patch Geometrical Relationship

The terms used in Figure 4 are:

?? dA - Represents a differential area of each surface.
?? R - A vector drawn from the center of the one differential area to the other.
?? N - The normal vector drawn from the center of the differential area. It is

perpendicular to the surface.
?? phi - The angle between vector r and the normal vector.

Equation (2) describes this geometrical relationship between two patches.

2

coscos

r
dAdAF ji

ji
?

??
? (2)

The form factors between any two patches follow the Principle of Reciprocity. This
principle says that the percentage of light energy emitted by one patch and received by
the other patch is equal to the percentage of energy going in the other direction. We
can see that this is true by looking at equation (2) for the form factor. Reversing the
sending and receiving patches in that equation yields the same expression. The overall
form factor can be found by performing a double integration on equation (2). Equation
(3) shows this double integration.

??? ji
ji

i
ij dAdA

rA
F 2

coscos1

?

??
 (3)

7

Because equation (3) is rather complex, an approximation method was developed in
order to simplify the Radiosity process. This is called the Nusselt analog. The Nusselt
analog allows the simple and accurate calculation of the form factor between a surface
and a point on a second surface. The method involves centering half of some
symmetrical surface on a patch and dividing that surface into elements. According to the
Nusselt analog, summing up "delta form factors" between an external patch j and each
of the surface elements will give an excellent approximation to the exact form factor
between the two patches that would result from evaluating the double integral. Figure 5
shows a hemisphere with unit radius built on the visible side of a patch. The other patch
is then spherically projected onto this structure.

Figure 5: Nusselt Analog - Hemisphere

It is more convenient to use half a cube (called a hemicube) instead of a hemisphere.
The hemicube is built over the center of the patch and each of its faces is divided into
discrete rectangular elements called cells. The delta form factor for each cell is then
easily computed. This application uses the hemicube to determine form factors
between the patches in the scene. The hemicube is a valid method for determining the
form factors because of the Nusselt analog. Figure 6 shows a hemicube built on the
visible side of a patch with a second patch projected onto the structure.

 8

Figure 6: Nusselt Analog – Hemicube

This project focuses on the gathering version of Radiosity. Gathering means that light
energy is gathered from all other surfaces in the scene. The gathered energy from each
other surface in the scene may be computed by using the precalculated form factors in
the basic radiosity equation. Thus the proportions of light energy received from other
patches in the scene can simply be added together to calculate the total light energy
that the current patch receives. The procedure for finding a form factor between a pair
of patches is outlined in the following pseudocode:

for all patches i
 compute patch i center and build a hemicube over the patch
 for each face of hemicube
 if top face
 for each top face cell
 for all patches j
 if patch i = patch j
 form factor = 0

else
 if ray from patch i center through current

 cell intersects patch j
 get ray length d
 if(size < d)
 save patch j
 if a patch j has been saved
 form factor += delta form factor of current cell
 else if side face
 for each side face cell
 for all patches j
 if patch i = patch j
 form factor = 0
 else
 if ray from patch i center through current

9

 cell intersects patch j
 get ray length d
 if(size < d)
 save patch j
 if a patch j has been saved
 form factor += delta form factor of current cell

There will only be one form factor between a pair of patches. This psuedocode shows
how the form factors between pairs of patches get incremented based on the hemicube
approach. The form factors may only be found once the delta form factors for each
hemicube have been determined.

A delta form factor must be calculated for each cell on a hemicube. The calculation is
done differently depending on whether the cell is located on the top or one of the sides
of the hemicube. Equation (4) shows the calculation for a hemicube top cell.

222)1(??
??

ba
dA

ff
?

 (4)

Figure 7 shows the a and b distances that are used in equation (4). dA represents the
area of the cell on the top face of the hemicube.

Figure 7: Delta Form Factor Parameters for a Hemicube Top Cell

Equation (5) shows the calculation required for the delta form factor on a hemicube side
cell.

222)1(
*

??
??

ba
dAb

ff
?

 (5)

Figure 8 shows the a and b distances that are used in equation (5). dA represents the
area of the cell on the side face of the hemicube.

 10

Figure 8: Delta Form Factor Parameters for a Hemicube Side Cell

Equations (4) and (5) can be used with the following psuedocode to calculate all delta
form factors on every hemicube in the entire scene:

for all patches i
 for each hemicube face on patch I
 if top face
 for each cell on top face
 compute center of cell, dA, a, b
 calculate and save delta form factor
 else if side face
 for each cell on top face
 compute center of cell, dA, a, b
 calculate and save delta form factor

The result of calculating delta form factors and form factors is the ability to solve the
Radiosity equation for each B i in the scene. Equation (1) should first be rearranged to
produce equation (6).

? ?? iijjii EFBB ? (6)

Equation (6) can be broken out into a system of equations. Each i represents a patch,
so there will be as many equations as patches in the scene. Equation (7) shows the
system broken out into matrix form. All rho and E values are user defined. The form
factors have been calculated. The only remaining unknown in the system is B i. Note
that the diagonal of the matrix is all 1’s indicating a patch does not receive energy from
itself.

 (7)

11

The matrices in equation (7) represent one color channel out of red, green, and blue. A
separate set of equations must be maintained for each of the three channels. Since
both the reflectivity ? of a patch and the form factor F ij between a patch i and another
patch j must both be less than one, off-diagonal elements of the matrix are all less than
one, making the matrix "diagonally dominant". Since that is the case, the Gauss-Seidel
iterative method can be used to solve for the radiosities (Bi). This method continuously
calculates new radiosities from old radiosities until a convergence is reached. A
convergence is reached when all new Radiosity values do not change from the previous
values or they only change within a small, predefined amount. Equation (8) shows the
calculation for each new Radiosity. The sum is broken up into two parts. The new
Radiosity value is used for surfaces j if it's been calculated for the current iteration.
Otherwise the previously calculated Radiosity value is used.

??
???

???
esTotalPatch

ij

i

j
i jprevRadiosityjiKjRadiosityjiKEinewRadiosity

11

][_*]][[][*]][[][_ (8)

Once red, green, and blue radiosities have been calculated for every patch in the scene,
the values are proportionally mapped onto a 0 to 255 color scale on a true -color
graphics display device.

In summary, the Radiosity algorithm requires several steps in order to view a final
rendered scene. All of these steps are covered in detail within the application. The
following list summarizes the steps:

?? Define a scene: In order to use the Radiosity algorithm, there must first exist a
defined environment.

?? Divide all surfaces of the scene into distinct patches: A red, blue, and green

Radiosity will be calculated for each individual patch.

?? Build a hemicube on a patch: Divide each face of the hemicube into a finite
number of cells. Calculate a delta form factor for each cell on the hemicube and
store it. Once this is complete, repeat the process on every other patch in the
scene.

?? Calculate the form factors for every pair of patches in the scene: This can be

approximated using delta form factors that were computed in the previous step.

?? Calculate the radiosities for all patches: Once the form factors have been
determined, all information that is required to solve for the radiosities has been
obtained. Use the Gauss-Seidel iterative method to solve the system of
equations.

 12

?? Map all Radiosity values to a color scale: Use a 0 to 255 scale for a graphics
display system that uses true color. Thus, the largest Radiosity value will get
mapped to 255. The remaining values are scaled linearly. Once the values have
been mapped, hidden surface removal can be performed and the rendered
scene can be drawn.

?? Apply Gouraud shading to smooth out the look of the patches: This is technically

not part of the Radiosity algorithm and along with the Z buffer hidden surface
removal technique, is not view independent.

3. Application Interface

This section will discuss the features of the application. The features include the
modes, menus, toolbar buttons, and other miscellaneous items.

3.1. Modes

The application runs in two different modes. These modes are Free and Animate.
Once the scene is intialized by selecting Scene A from the Start menu, the user can
toggle between the two modes by pressing the appropriate toolbar button.

In Free mode, the user can view the scene in wireframe mode with or without patches.
They can view the final rendered scene with or without Gouraud shading. The scene
can also be adjusted by translating, rotating, or scaling. In addition, the four viewing
parameters theta, rho, phi, and distance can be adjusted. The user can do all of this as
well as bring up dialog boxes to set various scene properties. Free mode essentially
provides an experimental environment for the user to see how various scene properties
affect the Radiosity algorithm. The animation controls are not available for use in this
mode. If the user attempts to use an animation control, a message box will pop up
indicating that the application should be toggled to Animate mode in order to use the
button. Figure 9 shows a screenshot of the application in Free mode.

13

Figure 9: Free Mode

Animate mode provides the tutorial on the Radiosity algorithm. The user is no longer
free to adjust the scene in any way. However, all of the animation controls can be used.
Animate mode has divider bars that appear on the screen. This distinguishes its
appearance from Free mode. The divider bars provide some modularity to the screen in
order for the animation to make efficient use of the screen space. Figure 10 shows a
screenshot of the application in Animate mode.

 14

Figure 10: Animate Mode

3.2. Menus

There are six menus located at the top of the application. These are Start, Draw,
Adjustments, Clear Screen, Debug, and Help.

3.2.1. Start

The Start menu is used to initialize or reinitialize a scene. Figure 11 shows the contents
of the Start menu.

15

Figure 11: Start Menu

There is currently only one scene available for selection. Scene A must be selected
prior to using the Draw menu and also prior to switching to Animate mode.

3.2.2. Draw

Any selection from the Draw menu can be used in Free mode only. Figure 12 shows
the selections available.

Figure 12: Draw Menu

The scene can be drawn to the screen in a wireframe mode either with or without
patches shown. The Radiosity menu item will show the rendered scene without
Gouraud shading to smooth out the patches. Apply Gouraud Shading will show the final
rendered scene and can only be selected after Radiosity has been selected. The Draw
menu is useful for viewing the scene after it has been adjusted and also after various
scene properties are set using the Edit Scene Properties toolbar button.

3.2.3. Adjustments

There are various ways to adjust the scene. The scene can be translated, scaled, and
rotated. The viewing parameters can also be increased or decreased. Once a
selection is made, left clicking anywhere in the viewing space of the window will
continue to adjust the scene in that manner.

Figure 13 shows the options available for translating the scene. The scene can be
translated in the positive or negative X, Y, or Z direction.

 16

Figure 13: Translate Menu Options

Each time the scene is adjusted, the World Coordinates are recalculated. Because of
this, the new World Coordinates must be converted to Screen Coordinates through the
viewing pipeline. Figure 14 shows how translating the scene along the different axis’
will adjust it to a new position. The arrow along the axis’ indicate a positive direction.

Figure 14: Axis For Scene Adjustments

Figure 15 shows the options available for rotating the scene. The scene can be rotated
in the positive or negative X, Y, or Z direction. Figure 14 shows how rotating the scene
about a different axis will adjust it to a new position. The arrows around each axis
indicate a positive direction. When looking down each axis towards the origin, counter-
clockwise is the positive direction for rotation.

17

Figure 15: Rotate Menu Options

Figure 16 shows the options available for zooming. The scene can be zoomed in or
out. These menu items will scale the scene up or down around a specific point.

Figure 16: Zoom Menu Options

Finally, the Viewing Parameters for the 4 -Parameter Viewing Pipeline can be adjusted
up or down. Figure 17 shows the menu options for this. In this viewing pipeline "Rho"
(not to be confused with radiosity reflectivities) is the distance between the observer and
the origin of the world coordinates system, "Theta" the observer's azimuthal angle, "Phi"
the observer's polar angle, and "Distance" the distance between the observer and the
projection plane.

 18

Figure 17: Viewing Parameter Menu Options

Figure 18 shows the 4-parameter viewing system. Scene vertices are initially defined
as world coordinates. Those vertices are then converted to viewing coordinates.
Viewing coordinates are located behind a specific viewpoint. Next the 3D vertices are
projected onto a 2D plane and converted to vertices in a viewport, or screen coordinates
that the user can see.

Figure 18: Four Parameter Viewing Pipeline

19

3.2.4. Clear Screen

The Clear Screen menu item can be chosen to clear the entire screen. If in Free mode,
the screen will be completely blanked out. In Animate mode, the screen will be blanked
out except for the divider bars. The Clear Screen menu item shown in Figure 17 does
not have any submenus.

3.2.5. Debug

This menu can be used for debugging purposes while code is being developed.
Selecting Data Dump from this menu dumps data into the output file out.txt within the
workspace folder. This menu option may be useful for future application improvements.
Figure 19 shows the contents of the Debug menu.

Figure 19: Debug Menu

3.2.6. Help

Figure 20 shows the contents of the Help menu.

Figure 20: Help Menu

The Getting Started menu will display a dialog box containing some basic instructions
for using the application. The dialog box is non-modal so the user may keep it open
while continuing to use the application interface. Selecting About RadiosityF from the
help menu will display the version information.

 20

3.3. Toolbar Buttons

Figure 21 shows the entire toolbar. Dividers have been strategically placed in order to
provide a more intuitive interface. Both controls for the AVI player are located together.
The regular animation buttons have been placed together and colored red. The step
button contains dividers around it to set it off among the rest of the animation controls
since it is the most frequently used button.

Figure 21: Toolbar Buttons

3.3.1. Mode

There must be an interface item to allow the user to toggle between Free and Animate
modes in order to access the functionality of both. The Mode toolbar button
accomplishes this. When this button is pressed within the application, the
OnScreenMode handler is called to complete the transition. Figure 22 shows the Mode
button.

Figure 22: Mode Button

3.3.2. Edit Scene Properties

This toolbar button lets the user access various dialog panels in order to set some
scene properties. These properties include setting:

?? Colors for the wireframe scene
?? Reflectivities and emissivities for rendered scene
?? The number of patches in the scene
?? The number of cells in the hemicubes

When this button is pressed within the application, the OnSceneProperties handler is
called. If the application is in Animate mode, a message box will appear asking the user
to switch to Free mode first. Figure 23 shows the Scene button.

Figure 23: Scene Button

21

3.3.3. Edit Animation Controls

Clicking this toolbar button will open a dialog box giving the user two options to set. The
first option will ask the user how many seconds he or she would like the animation to
wait in between frames. When the user plays the animation, the application will wait
that particular number of seconds after showing each frame. The other option asks
which section number the user would like the animation to start at. The tutorial is
subdivided into section numbers, each of which explains and/or demonstrates one set
of features of the radiosity algorithm. Since the animation is lengthy, this provides an
intuitive way for the user to jump to the material that he or she would like to see without
watching the animation from the beginning. If the application is in Free Mode, a
message box will appear asking the user to switch to Animate mode first. This button
calls the OnAnimationControls handler. Figure 24 shows the Ctrl button.

Figure 24: Ctrl Button

3.3.4. Reset Animation

At any time while the user is either stepping through or playing the animation, this
button can be pressed to reinitialize the animation. Once this button is pressed, the
user can select play or step to start the animation from the beginning. Pressing this
button will call the OnAnimateRestart handler. If the application is in Free mode, a
message box will appear asking the user to switch to Animate mode first. Otherwise,
any Windows timers are killed and the frame number of the animation is set back to 0.
Figure 25 shows the Reset button.

Figure 25: Reset Button

3.3.5. Stop

The Stop button will call the OnPauseAnimation handler. If the application is in Free
mode, a message box will appear asking the user to switch to Animate mode first.
Otherwise, this button kills the Windows timer. If the animation is playing and the timer
is killed, the application will cease stepping through the animation automatically. It will
hold at the current frame number until the user selects something. The user may
choose to press the play button. A new timer will be started and the animation will
continue automatically stepping through frames. The user may also choose to step
through the rest of the animation manually. This button simply provides the user with
more control over the animation. Figure 26 shows the Stop button.

 22

Figure 26: Stop Button

3.3.6. Play

Pressing this button will call the OnAnimateFwd handler. If the application is in Free
mode, a message box will appear asking the user to switch to Animate mode first.
Otherwise, this button will allow the user to play the animation through, starting with the
current frame number. This button sets a Windows timer and calls the
OnAnimateStepFwd for each next frame in the animation. The OnAnimateStepFwd
actually dictates what gets drawn to the screen for each frame. OnAnimateFwd simply
starts the timer to automate the calling of each next frame. The timer value is either the
default value or the value that the user set in the Edit Animation Controls dialog. Figure
27 shows the Play button.

Figure 27: Play Button

3.3.7. Step

Pressing this button will call the OnAnimateStepFwd handler. If the application is in
Free mode, a message box will appear asking the user to switch to Animate mode first.
Otherwise, this button will allow the user to step through to the next frame of the
animation. No Windows timers are set. This button essentially allows the user to walk
through the animation at his or her own pace. Figure 28 shows the Step button.

Figure 28: Step Button

3.3.8. AVI Play

The AVI Play button can be used to play or replay any AVI animation that is
encountered within the application. This button calls the OnAviPlay handler. This
button will not resume a paused AVI animation, but will restart the AVI from the first
frame. Figure 29 shows the AVI Play button.

23

Figure 29: AVI Play Button

3.3.9. AVI Stop

The AVI Stop button can be used to pause any AVI animation that is encountered within
the application. This button calls the OnAviStop handler. Figure 30 shows the AVI Stop
button.

Figure 30: AVI Stop Button

3.4. Miscellaneous

The following features are intentionally included:

?? The window is specifically sized to 700 x 550 and is centered on the screen when

the application starts. The user cannot resize the window. This is to maintain better
control over how the data is presented within the application.

?? The toolbar buttons contain tooltips. If the user mouses over the toolbar buttons, a

box will pop up giving the user the name of the button. This makes the purpose of
each button more clear.

?? A status bar is located at the bottom of the application. The status bar indicates

which mode the application is in (Free or Animate). If in Free mode, the status bar
will also appropriately indicate what is drawn to the screen. If in Animate mode, the
status bar will also indicate what section the animation is in.

4. Code structure

This section describes the program state variables, dialog classes, enumerated lists,
structs, and functions that were created for the application. Each plays an important
role in the overall functionality of the application. The implemented animation describes
some of these if they pertain directly to the Radiosity algorithm.

The code is mostly procedural with as few classes as possible. This is so that the
animation can be clearer on how the Radiosity algorithm works without the algorithm
being performed using complex classes.

 24

4.1. Program State Variables (Booleans)

Several Boolean variables are declared in the RadiosityFView.h file. These variables
keep track of specific events that have occurred in order to provide some program
control.

initComplete:
Set to False when application is started. This variable is set to True when the OnInitA
handler is called indicating that the scene has been initialized, or the data structures
have been filled. In Free mode, nothing from the Draw menu may be selected until
Scene A has been initialized. The user may not toggle to Animate mode until Scene A
has been initialized. Scene A can be initialized by selecting Scene A from the Start
menu.

True: Scene initialized
False: Scene not initialized

RadiosityCalculated:
Set to False when application is started. This variable is set to True at the end of the
OnRender function indicating that the Radiosity values have been calculated. The
OnShading function will not perform Gouraud shading on the scene until the Radiosities
have been calculated.

True: Radiosities calculated
False: Radiosities not calculated

justStarted:
Set to True when application is started. This variable is set to True in the OnInitA
handler. When the user selects Scene A from the Start menu, the message box that
pops up will indicate if the scene has been initialized for the first time or if the scene has
been reinitialized.

True: Initialization message box indicates scene is being initialized for the first time.
False: Initialization message box indicates scene is being reinitialized.

callFormFactors:
Set to True when application is started. Set to False during the Radiosity Demo section
of the animation after the form factors have been calculated once. This provides some
efficiency as the animation steps through the patches being calculated. The form
factors only need to be calculated once. In the OnRender handler, the form factors will
only be calculated if callFormFactors is set to True.

True: OnRender calculates form factors before calculating Radiosities.
False: OnRender does not calculate form factors before calculating Radiosities.

25

wireframe_key:
When the application is started, this variable is set to False. In Free mode, the handlers
OnNoPatchesAllFaces and OnPatchesAllFaces may be freely accessed by the user to
draw the wireframe scene to the screen. This is done when the user selects a
wireframe option from the Draw menu. In Animate mode, the wireframe options from
the Draw menu are unavailable. The handlers OnNoPatchesAllFaces and
OnPatchesAllFaces are inaccessible unless the Boolean variable wireframe_key is set
to True. The animation steps call these handlers to display the scene. In order to
access the handlers, wireframe_key is set to TRUE and then set back to False once the
call has been made.

True: Access to OnNoPatchesAllFaces and OnPatchesAllFaces granted in Animate
mode.
False: Access not granted in Animate mode.

render_key:
When the application is started, this variable is set to False. In Free mode, the handler
OnRender may be freely accessed by the user to draw the rendered scene to the
screen. This is done when the user selects the Radiosity option from the Draw menu.
In Animate mode, the Radiosity option from the Draw menu is unavailable. The handler
OnRender is inaccessible unless the Boolean variable render_key is set to True. The
animation steps call this handler to display the scene. In order to access the handler,
render_key is set to True and then set back to False once the call has been made.

True: Access to OnRender granted in Animate mode.
False: Access not granted in Animate mode.

enableAVICtrls:
When the application is started, this variable is set to False. It remains False until
Animate mode is selected and a step is reached where the application plays an AVI.
enableAVICtrls is set to True in order to access the OnAVIPlay and OnAVIStop
handlers. It is set back to False as soon as the AVI is closed. This is to indicate to the
user when the AVI Play and Stop buttons cannot be used.

True: Access to OnAVIPlay and OnAVIStop granted.
False: Access not granted.

Drawing State Variables:
In order for the application to refresh the screen properly, the OnDraw handler is used
for anything drawn to the screen except for an AVI animation. When the application is
minimized, dragged across the screen, or put in the background, it will resume showing
the correct contents of the screen. Boolean variables are used to control what is visible.
The following Boolean variables are set to True in OnDraw to show their corresponding
contents and set to False when the contents should be hidden.

 26

drawFrameBuffer: Controls the display of whatever is located within the 2D frame
buffer. The frame buffer is used to hold pixel colors for a rendered scene.

drawAnimationScreen: The animation screen refers to the vertical and horizontal bars
that appear when in animate mode. This variable controls when the bars should
appear.

drawBitmapL1, drawBitmapL2, drawBitmapR1, drawBitmapR2: This application has the
ability to display four bitmaps at one time. The assumption is that two bitmaps could be
displayed in each of the left and right windows in animation mode. DrawBitmapL1 and
drawBitmapL2 are set to True in order to display bitmaps in the left window. Likewise,
drawBitmapR1 and drawBitmapR2 are set to True in order to display bitmaps in the
right window.

drawTextRight[17]: This array of 17 Booleans is used to display text in the right window
of the application. Each array entry corresponds to one line of text.

drawTextRight[5]: This array of 5 Booleans is used to display text in the lower window of
the application. Each array entry corresponds to one line of text.

The following variables control which objects in the wireframe scene are displayed:

?? drawRoomPatches
?? drawRoomNoPatches
?? drawBoxPatches
?? drawBoxNoPatches
?? drawLight1Patches
?? drawLight1NoPatches
?? drawLight2Patches
?? drawLight2NoPatches

The application always displays all objects in the wireframe scene as opposed to a few.

Figure 31 summarizes the available drawing controls and shows which type of content
can be displayed in which windows.

27

Figure 31: Drawing State Controls

4.2 Dialog Class Descriptions

Although the majority of the application is procedural without the use of complex object-
oriented programming, some classes are still needed in order to make use of MFC
dialog boxes. The dialog boxes can be accessed by clicking on toolbar buttons within
the application. Each dialog box has an associated class. The dialog options provide
the user with more application versatility, though the application will use default values if
the dialog box options are not chosen.

4.2.1. CAnimationControls

Editing Animation Controls provides a way for the user to set a timer and select a
section from which to begin. Setting a timer will specify the number of seconds the
animation should wait in between frames before proceeding. This only applies if the

 28

user chooses to play the animation, not step through it. The animation contains many
steps, but is divided into several sections. If the user does not wish to start from the
beginning of the animation, a section may be selected in this dialog box.

AnimationControls.cpp converts the user input strings into usable data and ensures that
the entries are within the valid range. RadiosityFView.cpp creates the
CAnimationControls object. The dialog object is set as modal, meaning all other
application functionality freezes until the user makes a selection within the dialog box. If
the user set a timer value, then the Windows timer variable is set. If the user set a
section number, the step_ctr variable is set. This dialog box may only be used in
Animate mode. Figure 32 shows the Animation Controls dialog box.

Figure 32: Animation Controls Dialog Box

29

4.2.2. CSceneAOptions

Editing Scene A Options provides a way for the user to access four other dialog boxes.
These are Wireframe Colors, Render Properties, Patches, and Hemicubes.
CSceneAOptions creates a dialog object for each and sets them to modal so all other
functionality freezes until a selection is made. This dialog box may only be accessed in
Free mode. Figure 33 shows the Scene A Options dialog box.

Figure 33: Scene A Options Dialog Box

4.2.3. CHemiOps

Editing Hemicube Options provides a way for users to choose how many cells they
would like on each hemicube face. The top face and the side faces of the hemicube are
set separately. All hemicubes that are created for every patch will then be divided into
the specified number of cells.

HemiOps.cpp converts the user input strings into usable data and ensures that the
entries are within the valid range. The range is quite strict since the storage
requirements and time taken to make calculations escalates significantly as the number
of hemicube cells increases. Figure 34 shows the Hemicube Options dialog box.

 30

Figure 34: Hemicube Options Dialog Box

4.2.4. CPatchOpsA

Editing Patch Options provides a way for users to choose how many patches they
would like to be created on various parts of Scene A. The dialog box setup is intuitive
once the user sees at least a wireframe version of the scene. The entries are labeled
appropriately from the users’ perspective. For example, the left wall of the room is the
wall on the users’ left side.

PatchOpsA.cpp converts the user input strings into usable data and ensures that the
entries are within the valid range. The range is quite strict since the storage
requirements and time taken to make calculations escalates significantly as the number
of patches increases. Figure 35 shows the Patch Options dialog box.

31

Figure 35: Patch Options Dialog Box

4.2.5. CRenPropsA

Editing Render Options provides a way for the user to set reflection and emission
values for each part of Scene A. Every object in the scene has red, green and blue
reflectivities, but only light sources have emission values.

RenPropsA.cpp converts the user input strings into usable data and ensures that the
entries are within the valid range. Reflectivities must be a value between 0 and 1 in
order for the Gauss-Seidel iteration to be guaranteed to converge. The limits on the
emission values were set somewhat arbitrarily. Figure 36 shows the Render Options
dialog box.

 32

Figure 36: Render Property Options Dialog Box

4.2.6. CWFColorsA

Editing Wireframe Color Options provides a way for the user to set colors for Scene A.
Setting these colors has no impact on the final rendered scene, only the wireframe
model.

WFColorsA.cpp converts the user input strings into usable data and ensures that the
entries are within the valid range. The 0 to 255 RGB scale dictates the range of values
allowed. Figure 37 shows the Wireframe Color Options dialog box.

33

Figure 37: Wireframe Color Options Dialog Box

4.2.7. CHelp

The CHelp class creates a modeless dialog box containing general instructions for the
application. The dialog box does not contain any inputs or outputs except for an ‘OK’
button.

The OnInstructions handler in RadiosityFView.cpp creates a CHelp object when the
Help/Getting Started menu item is selected. Figure 38 shows the Help dialog box.

 34

Figure 38: Help Dialog Box

4.3. Data Structures

The methods of storage in this application were designed to provide an easy way to
access data. Enumerated lists provide an intuitive way to organize lists of items.
Structs group similar data together. All enumerated lists and structs are defined in the
RadiosityFView.h file.

35

4.3.1. Enumerated Lists

View Mode:
The view mode keeps track of what is currently drawn to the screen. By doing this, the
application will know what work needs to be done if another mode is selected. There
are five possible modes:

typedef enum {

CLEAR,
 WIREFRAME_NOPATCHES_ALLFACES,
 WIREFRAME_PATCHES_ALLFACES,
 RENDERED,
 SHADED
} viewModeType;

This variable keeps track of the current view mode at all times while the application is
running. It is initialized to CLEAR when the application is started:

int viewMode;

Screen Mode:
There are two possible screen modes, Free and Animate. Only certain operations can
be performed in each mode. By keeping track of the mode, the application maintains
easy control over which selections that the user makes can be performed. If the user
makes a selection that is not allowed in the current mode, a message box will appear
telling the user to toggle to the other mode. By having multiple modes, the application
provides more versatility to the user:

typedef enum {
 FREE,
 ANIMATE
} screenModeType;

This variable keeps track of the current screen mode at all times while the application is
running. It is initialized to FREE when the application is started:

int screenMode;

Translation Type:
The application offers the user several options for adjusting the scene in Free mode.
The current translation (adjustment) type is maintained so the user may select the
adjustment once and then left click in the window to continue performing that operation.
When the current translation type is maintained, the LButtonDown message handler will
know what operation to perform on the scene:

 36

typedef enum {
 NONE,
 TRANSXPLUS,
 TRANSXMINUS,
 TRANSYPLUS,
 TRANSYMINUS,
 TRANSZPLUS,
 TRANSZMINUS,
 ZOOMPLUS,
 ZOOMMINUS,
 ROTXPLUS,
 ROTXMINUS,
 ROTYPLUS,
 ROTYMINUS,
 ROTZPLUS,
 ROTZMINUS,
 THETAPLUS,
 THETAMINUS,
 PHIPLUS,
 PHIMINUS,
 RHOPLUS,
 RHOMINUS,
 DISTANCEPLUS,
 DISTANCEMINUS

} currentTranslationType;

This variable keeps track of the current translation type at all times while the application
is running:

int currentTranslation;

Axis Type:
The axis type is used for rotate adjustment operations. When the application calls the
rotate function, it must specify which axis to rotate about. The rotate function is
designed to accept one of the following three axis types:

typedef enum {
 XAXIS,
 YAXIS,
 ZAXIS
} axisType;

Since this is not an enumerated list to keep track of the program state, there is no
variable that must maintain a value at all times while the program is running.

37

Scene Type:
Originally the application was designed with the idea that multiple scenes might later be
added. At this time, there is only one possible scene. The scene type keeps track of
which scene is currently selected. When no scene is selected, very few operations can
be performed. The user can select a scene from the Start menu. If Scene A is
selected, then the current scene will be set to SCENEA:

typedef enum {
 NOSCENE,
 SCENEA
} sceneType;

This variable keeps track of the current scene type at all times while the application is
running. It is initialized to NOSCENE when the application is started:

int currentSceneType;

Object ID:
The patch list keeps track of what object each patch belongs to. This is important
because each object in the scene has different properties (i.e. reflection and emission
values) that are used for Radiosity calculations. In addition, the non-visible front wall of
the room maintains its own object ID so that it is easier for the application to not draw it
to the screen, yet include it in all other calculations.

typedef enum {
 ROOM1,
 NVROOM1,
 BOX1,
 LIGHT1,
 LIGHT2
} objectType;

Since this is not an enumerated list to keep track of the program state, there is no
variable that must maintain a value at all times while the program is running.

4.3.2. Structs

3D Coordinate:
This struct allows a 3D floating point coordinate to be declared. This is useful whenever
working with World or View coordinates:

typedef struct {
 float x;
 float y;
 float z;

 38

} float_coord_3d_type;

Here is an example of how this struct can be used:

// Declaration
float_coord_3d_type myCoordinate;

// Set the x-coordinate to 10
myCoordinate.x = 10.1f;

Number of Patches:
This struct allows the application to declare the number of patches wide and high
required for a polygon or the number cells wide and high for a hemicube face:

typedef struct {
 int w;
 int h;
} int_num_patches_type;

Here is an example of how this struct can be used:

// Declaration
int_num_patches_type myPatches;

// Set the number of patches to 5x4
myPatches.w = 5;
myPatches.h = 4;

Edge Definition:
The interpolation_utility function uses this struct for Hidden Z Buffer and Gouraud
shading operations.

typedef struct {
 int a;
 int b;
 int ia_red;
 int ia_green;
 int ia_blue;
 int ib_red;
 int ib_green;
 int ib_blue;
} int_edge_define_type;

The following local declaration is made within the interpolation_utility function:

int_edge_define_type edge_list[4];

39

Here is an example of how an item may be accessed:

// Sets the endpoint b of edge 2 to vertex 3 of the current polygon
edge_list[2].b = 3;

An array of 4 is declared, so that each item in the struct will be maintained for a different
edge of a 4-vertex polygon. a and b contain the integer vertex number of the endpoints
of the edge. ia and ib contain the intensity values for each edge endpoint. There is a
red, green, and blue value. These are necessary in order to perform Gouraud shading.

Color Definition:
This struct allows for storage of a color. It is intended to be used with the 0 to 255 RGB
scale. For example, the frame buffer uses this struct to store colors in a 2D array.

typedef struct {
 int r;
 int g;
 int b;
} int_color_type;

Here is an example of how this struct can be used:
// Declaration
int_color_type myColor;

// Sets myColor to bright red
myColor.r = 255;
myColor.g = 0;
myColor.b = 0;

3D Vector:
This struct allows a 3D vector to be declared. Though this is similar to the 3d
coordinate struct, there is an important distinction between a 3d coordinate and vector
that is observed within the application. A struct for each is provided to avoid confusion
within the code.

typedef struct {
 float i;
 float j;
 float k;
} float_vector_3d_type;

Here is an example of how this struct can be used:

// Declaration
float_vector_3d_type myVector;

 40

// The vector 3.2i + 4.2j + 5.2k is defined:
myVector.i = 3.2f;
myVector.j= 4.2f;
myVector.k = 5.2f;

Patch List:
The patch list contains an entry for every patch in the entire scene. This struct is set up
to keep track of the important properties of each patch:

typedef struct {
 float_coord_3d_type patch_coords[4];

int obj_id;
 float area;
 float rad_red;
 float rad_green;
 float rad_blue;
 int_color_type vertex_intensity[4];
} patch_list_type;

patch_coords are a list of the four corner vertices of the patch.
The obj_id tells what object the patch belongs to (i.e. room, box, etc).
area stores the area of the patch
rad provides storage for the Radiosities that are calculated for red, green, and blue
channels. The Radiosity mapped 0 to 255 values are also stored here.

The following declaration is made in the RadiosityFView.h file:

patch_list_type *patch_list;

The patch list array is dynamically allocated since the user has the ability to change the
number of patches through a dialog box option.

Hemicube and Delta Form Factor Data:
This struct is used to store hemicube vertex data and delta form factor data The
following struct items are intended to be stored for every cell of every face of every
hemicube:

typedef struct {
 float *dff; // Delta form factor
 float *d; // Closest patch so far seen by a cell.
 int *ff; // Holds index to most recent FF for a particular cell
 float_coord_3d_type *cell_vertices; // All Hemicube cell vertices
} hemicube_type;

dff stores the delta form factor for the current hemicube cell.

41

d stores the distance of the closest patch projecting to that cell.
ff stores the patch index of the closest patch projecting to that cell. The patch index is
the index into the patch_list array.
cell_vertices stores the four corner vertices of the hemicube cell.

The following declaration is made in the RadiosityFView.h file:

hemicube_type (*hemicube_attributes)[5];

This is declared as a 2D array: number of patches x 5 hemicube faces. The bottom
face of the hemicube is disregarded since no other patches in the scene will project to
that face. Note that the number of patches part of the array is dynamically allocated
since the user can change the number of patches within the application.

4.4. Function Descriptions

Each function defined within the application plays an important role. This section
describes each function in the RadiosityFView.cpp file in detail.

4.4.1. Setup

PreCreateWindow:
Return: Bool (Part of MFC setup)
Parameters: None used.
Calls functions: None
Creates Object: None
Description: Sets color defaults, etc

4.4.2. Scene Definition

OnInitA:
Return: None
Parameters: None
Calls functions: OnClearScreen, GetSceneA, wcs_to_scs
Creates Object: None
Description: Message handler to initialize Scene A. Initializes buffers.

GetSceneA:
Return: None
Parameters: None
Calls functions: object_patch_setup
Creates Object: None
Description: Local helper function to fill data structures with additional Scene A
information.

patch_list_setup:

 42

Return: None
Parameters:
 Out - patch_list_type patch_list_update[]: Contains the updated patch list
Calls functions: None
Creates Object: None
Description: Local helper function to update information in the patch list. The patch list
needs to be updated whenever the scene is adjusted.

4.4.3. Coordinate System Conversion

wcs_to_vcs:
Return: None
Parameters:
 In - int num_vertices: Number of vertices to be converted
 In - float_coord_3d_type wcs_in[]: Listing of 3D World Coordinate vertices
 Out - float_coord_3d_type vcs_out[]: Output listing of 3D Viewing Coordinate
 vertices
 In - float theta_deg_in: Azimuthal angle in Degrees
 In - float phi_deg_in: Polar angle in Degrees
 In - float rho_in: Distance from World Coordinate System origin

Calls functions: get_view_matrix
Creates Object: None
Description: Local helper function to convert vertices from the 3D World Coordinate
System to the 3D Viewing Coordinate Sys tem.

This function is part of the 4-parameter viewing pipeline.

vcs_to_scs:
Return: None
Parameters:
 In - int num_vertices: Number of vertices to be converted
 In - float_coord_3d_type vcs_in[]: Listing of 3D Viewing Coordinate vertices
 Out - Point scs_xy_out[]: Output listing of 2D Screen Coordinate vertices
 In - float d_in: Distance from Viewing Coordinate System origin
 In - float window_viewport_setup[]: 2D Viewing Transformation matrix
Calls functions: None
Creates Object: None
Description: Local helper function to convert vertices from the 3D Viewing Coordinate
System to the 2D Screen Coordinate System.

wcs_to_scs:
Return: None
Parameters:
 In - int num_vertices: Number of vertices to be converted
 In - float_coord_3d_type wcs_in[]: Listing of 3D World Coordinate vertices

43

 Out - Point scs_xy_out[]: Output listing of 2D Screen Coordinate vertices
 In - float theta_deg_in: Azimuthal angle in Degrees
 In - float phi_deg_in: Polar angle in Degrees
 In - float rho_in: Distance from World Coordinate System origin
 In - float d_in: Distance from Viewing Coordinate System origin
 In - float window_viewport_setup[]: 2D Viewing Transformation matrix

Calls functions: get_view_matrix
Creates Object: None
Description: Local helper function to convert vertices from the 3D World Coordinate
System to the 2D Screen Coordinate System.

get_view_matrix:
Return: None
Parameters:
 Out - float out[]: Output 4x4 viewing transformation matrix
 In - float theta_deg_in: Azimuthal angle in Degrees
 In - float phi_deg_in: Polar angle in Degrees
 In - float rho_in: Distance from World Coordinate System origin

Calls functions: None
Creates Object: None
Description: Local helper function to set up a 3D viewing transformation matrix for
translation operations.

4.4.4. Scene Adjustments

OnTransXPlus:
Return: None
Parameters: None
Calls functions:
 OnDraw
 translate
 wcs_to_scs
 patch_list_setup

Creates Object: None
Description: Menu Message Handler to translate the scene in +X direction. Can only be
selected in Free Mode. Can only be selected in a Wireframe Mode.

OnTransXMinus:
Return: None
Parameters: None
Calls functions:
 OnDraw
 translate

 44

 wcs_to_scs
 patch_list_setup

Creates Object: None
Description: Menu Message Handler to translate the scene in -X direction. Can only be
selected in Free Mode. Can only be selected in a Wireframe Mode.

OnTransYPlus:
Return: None
Parameters: None
Calls functions:
 OnDraw
 translate
 wcs_to_scs
 patch_list_setup

Creates Object: None
Description: Menu Message Handler to translate the scene in +Y direction. Can only be
selected in Free Mode. Can only be selected in a Wireframe Mode.

OnTransYMinus:
Return: None
Parameters: None
Calls functions:
 OnDraw
 translate
 wcs_to_scs
 patch_list_setup

Creates Object: None
Description: Menu Message Handler to translate the scene in -Y direction. Can only be
selected in Free Mode. Can only be selected in a Wireframe Mode.

OnTransZPlus:
Return: None
Parameters: None
Calls functions:
 OnDraw
 translate
 wcs_to_scs
 patch_list_setup

Creates Object: None
Description: Menu Message Handler to translate the scene in +Z direction. Can only be
selected in Free Mode. Can only be selected in a Wireframe Mode.

45

OnTransZMinus:
Return: None
Parameters: None
Calls functions:
 OnDraw
 translate
 wcs_to_scs
 patch_list_setup

Creates Object: None
Description: Menu Message Handler to translate the scene in -Z direction. Can only be
selected in Free Mode. Can only be selected in a Wireframe Mode.

OnZoomPlus:
Return: None
Parameters: None
Calls functions:
 OnDraw
 scale
 wcs_to_scs
 patch_list_setup

Creates Object: None
Description: Menu Message Handler to zoom out on the scene. Can only be selected in
Free Mode. Can only be selected in a Wireframe Mode.

OnZoomMinus:
Return: None
Parameters: None
Calls functions:
 OnDraw
 scale
 wcs_to_scs
 patch_list_setup

Creates Object: None
Description: Menu Message Handler to zoom in on the scene. Can only be selected in
Free Mode. Can only be selected in a Wireframe Mode.

OnRotXPlus:
Return: None
Parameters: None
Calls functions:
 OnDraw
 rotate
 wcs_to_scs

 46

 patch_list_setup

Creates Object: None
Description: Menu Message Handler to rotate the scene in the +X direction. Can only
be selected in Free Mode. Can only be selected in a Wireframe Mode.

OnRotXMinus:
Return: None
Parameters: None
Calls functions:
 OnDraw
 rotate
 wcs_to_scs
 patch_list_setup

Creates Object: None
Description: Menu Message Handler to rotate the scene in the -X direction. Can only be
selected in Free Mode. Can only be selected in a Wireframe Mode.

OnRotYPlus:
Return: None
Parameters: None
Calls functions:
 OnDraw
 rotate
 wcs_to_scs
 patch_list_setup

Creates Object: None
Description: Menu Message Handler to rotate the scene in the +Y direction. Can only
be selected in Free Mode. Can only be selected in a Wireframe Mode.

OnRotYMinus:
Return: None
Parameters: None
Calls functions:
 OnDraw
 rotate
 wcs_to_scs
 patch_list_setup

Creates Object: None
Description: Menu Message Handler to rotate the scene in the -Y direction. Can only be
selected in Free Mode. Can only be selected in a Wireframe Mode.

OnRotZPlus:

47

Return: None
Parameters: None
Calls functions:
 OnDraw
 rotate
 wcs_to_scs
 patch_list_setup

Creates Object: None
Description: Menu Message Handler to rotate the scene in the +Z direction. Can only
be selected in Free Mode. Can only be selected in a Wireframe Mode.

OnRotZMinus:
Return: None
Parameters: None
Calls functions:
 OnDraw
 rotate
 wcs_to_scs
 patch_list_setup

Creates Object: None
Description: Menu Message Handler to rotate the scene in the -Z direction. Can only be
selected in Free Mode. Can only be selected in a Wireframe Mode.

OnThetaPlus:
Return: None
Parameters: None
Calls functions:
 OnDraw
 wcs_to_scs
 patch_list_setup

Creates Object: None
Description: Menu Message Handler to adjust the Theta viewing parameter in the (+)
direction. Can only be selected in Free Mode. Can only be selected in a Wireframe
Mode.

OnThetaMinus:
Return: None
Parameters: None
Calls functions:
 OnDraw
 wcs_to_scs
 patch_list_setup

 48

Creates Object: None
Description: Menu Message Handler to adjust the Theta viewing parameter in the (-)
direction. Can only be selected in Free Mode. Can only be selected in a Wireframe
Mode.

OnPhiPlus:
Return: None
Parameters: None
Calls functions:
 OnDraw
 wcs_to_scs
 patch_list_setup

Creates Object: None
Description: Menu Message Handler to adjust the Phi viewing parameter in the (+)
direction. Can only be selected in Free Mode. Can only be selected in a Wireframe
Mode.

OnPhiMinus:
Return: None
Parameters: None
Calls functions:
 OnDraw
 wcs_to_scs
 patch_list_setup

Creates Object: None
Description: Menu Message Handler to adjust the Phi viewing parameter in the (-)
direction. Can only be selected in Free Mode. Can only be selected in a Wireframe
Mode.

OnRhoPlus:
Return: None
Parameters: None
Calls functions:
 OnDraw
 wcs_to_scs
 patch_list_setup

Creates Object: None
Description: Menu Message Handler to adjust the Rho viewing parameter in the (+)
direction. Can only be selected in Free Mode. Can only be selected in a Wireframe
Mode.

OnRhoMinus:
Return: None

49

Parameters: None
Calls functions:
 OnDraw
 wcs_to_scs
 patch_list_setup

Creates Object: None
Description: Menu Message Handler to adjust the Rho viewing parameter in the (-)
direction. Can only be selected in Free Mode. Can only be selected in a Wireframe
Mode.

OnDistancePlus:
Return: None
Parameters: None
Calls functions:
 OnDraw
 wcs_to_scs
 patch_list_setup

Creates Object: None
Description: Menu Message Handler to adjust the Distance viewing parameter in the (+)
direction. Can only be selected in Free Mode. Can only be selected in a Wireframe
Mode.

OnDistanceMinus:
Return: None
Parameters: None
Calls functions:
 OnDraw
 wcs_to_scs
 patch_list_setup

Creates Object: None
Description: Menu Message Handler to adjust the Distance viewing parameter in the (-)
direction. Can only be selected in Free Mode. Can only be selected in a Wireframe
Mode.

OnLButtonDown:
Return: None
Parameters: None used.
Calls functions:
 OnTransXPlus
 OnTransXMinus
 OnTransYPlus
 OnTransYMinus
 OnTransZPlus

 50

 OnTransZMinus
 OnZoomPlus
 OnZoomMinus
 OnRotXPlus
 OnRotXMinus
 OnRotYPlus
 OnRotYMinus
 OnRotZPlus
 OnRotZMinus
 OnThetaPlus
 OnThetaMinus
 OnPhiPlus
 OnPhiMinus
 OnRhoPlus
 OnRhoMinus
 OnDistancePlus
 OnDistanceMinus

Creates Object: None
Description: Menu Message Handler to adjust for left mouse button clicks. If a scene
adjustment is active, left clicking anywhere within the window will continue to adjust the
scene (i.e. if the user selects the Translate X+ menu item and then clicks in the window
area, the scene will translate in the X+ direction again).

translate:
Return: None
Parameters:
 In - int num_vertices: Number of vertices to be translated
 In - float_coord_3d_type p_in[]: Listing of 3D input vertices
 Out - float_coord_3d_type p_out[]: Listing of 3D output vertices
 In - int tx: x-distance that vertices will be translated
 In - int ty: y-distance that vertices will be translated
 In - int tz: z-distance that vertices will be translated

Calls functions:
 get_translate_matrix
 get_transformed_vertices

Creates Object: None
Description: Local helper function to translate 3D vertices a specified amount.

scale:
Return: None
Parameters:
 In - int num_vertices: Number of vertices to be scaled
 In - float_coord_3d_type p_in[]: Listing of 3D input vertices to be scaled

51

 Out - float_coord_3d_type p_out[]: Listing of 3D scaled output vertices
 In - float sx: x-direction scale factor
 In - float sy: y-direction scale factor
 In - float sz: z-direction scale factor
 In - float x_in: x-coordinate to scale about
 In - float y_in: y-coordinate to scale about
 In - float z_in: z-coordinate to scale about

Calls functions:
 get_translate_matrix
 get_composite_matrix
 get_transformed_vertices

Creates Object: None
Description: Local helper function to scale 3D vertices a specified amount about a
specified point.

rotate:
Return: None
Parameters:
 In - int rot_axis: Which axis to rotate about (x, y, or z)
 In - int num_vertices: Number of vertices to be rotated
 In - float_coord_3d_type p_in[]: Listing of 3D input vertices to be rotated
 Out - float_coord_3d_type p_out[]: Listing of 3D rotated output vertices
 In - float theta_deg: Angle of rotation in Degrees
 In - float x_in: x-coordinate to rotate about
 In - float y_in: y-coordinate to rotate about
 In - float z_in: z-coordinate to rotate about

Calls functions:
 get_translate_matrix
 get_composite_matrix
 get_transformed_vertices

Creates Object: None
Description: Local helper function to rotate 3D vertices about a specified axis and point.

get_transformed_vertices:
Return: None
Parameters:
 In - int num_vertices: Number of vertices to be computed
 In - float_coord_3d_type p_in[]: Listing of 3D input vertices
 Out - float_coord_3d_type p_out[]: Listing of 3D output vertices
 In - float c[]: Composite matrix

Calls functions: None

 52

Creates Object: None
Description: Local helper function for translating, rotating, and scaling vertices.
Multiplies vertices by a composite matrix.

get_translate_matrix:
Return: None
Parameters:
 Out - float a_out[]: Translation matrix
 In - float dx: x-distance to be translated
 In - float dy: y-distance to be translated
 In - float dz: z-distance to be translated

Calls functions: None
Creates Object: None
Description: Local helper function to set up a translation matrix. Used by other functions
when translating, scaling, or rotating vertices, or whenever vertices need to be
translated.

get_composite_matrix:
Return: None
Parameters:
 Out - float c[]: Output 4x4 matrix
 In - float a[]: First 4x4 matrix to be multiplied
 In - float b[]: Second 4x4 matrix to be multiplied

Calls functions: None
Creates Object: None
Description: Local helper function to multiply two 4x4 matrices.

4.4.5. Draw Utilities

OnNoPatchesAllFaces:
Return: None
Parameters: None
Calls functions: OnDraw
Creates Object: None
Description: Menu message handler to draw the currently selected wireframe scene
without patches to the screen. Scene A must first be initialized by selecting Start/Scene
A.

OnPatchesAllFaces:
Return: None
Parameters: None
Calls functions: OnDraw
Creates Object: None
Description: Menu message handler to draw the currently selected wireframe scene

53

with patches to the screen. Scene A must first be initialized by selecting Start/Scene A.

OnRender:
Return: None
Parameters: None
Calls functions:
 get_hemicube
 wcs_to_scs
 object_patch_setup
 compute_patch_center
 dot_product_3d
 line_plane_intersection_test
 line_segment_size
 interpolation_utility
 OnDraw

Creates Object: None
Description: Menu message handler to draw the currently selected rendered scene to
the screen. The rendered scene includes Radiosity intensities for patches with hidden
surface removal applied. Scene A must first be initialized by selecting Start/Scene A.

OnShading:
Return: None
Parameters: None
Calls functions:
 interpolation_utility
 OnDraw

Creates Object: None
Description: Menu message handler to apply Gouraud shading and hidden surface
removal to a rendered image. The frame buffer is updated with the new intensities in
this function.

OnDraw:
Return: None
Parameters:
 In – CDC* pDC: Pointer to a device context

Calls functions: Calls no user created functions
Creates Object: None
Description: Handles all drawing operations to the screen except for AVI animations.

OnClearScreen:
Return: None
Parameters: None
Calls functions: None

 54

Creates Object: None
Description: Menu message handler to clear the entire screen. In Free mode, the entire
screen is cleared. In Animate mode, the entire screen is cleared except for the divider
bars.

clear_text_area:
Return: None
Parameters: None
Calls functions: None
Creates Object: None
Description: Local helper function to clear the text area of the screen. Intended to be
used for animation.

clear_right_area:
Return: None
Parameters: None
Calls functions: None
Creates Object: None
Description: Local helper function to clear the right area of the screen. Intended to be
used for animation.

clear_left_area:
Return: None
Parameters: None
Calls functions: None
Creates Object: None
Description: Local helper function to clear the left area of the screen. Intended to be
used for animation.

4.4.6. 3D Utilities

get_hemicube:
Return: None
Parameters:
 In - float_coord_3d_type patch_in[]: Vertices of patch in World Coordinates
 In - float_coord_3d_type hemicube_out[]: Hemicube vertices in World Coordinates
 In - int hemicube_faces_out[6][4]: y-offset to display bitmap in Screen Coordinates

Calls functions:
 compute_patch_center
 cross_product_3d

Creates Object: None
Description: Local helper function to compute the 3D vertices of a hemicube on a patch.
The patch_in array must have the patch vertices defined from 0 to 3 in a clockwise
direction when viewing the patch from the visible side. Otherwise the hemicube will be

55

built on the wrong side of the patch.

interpolation_utility:
Return: None
Parameters:
 In - float_coord_3d_type wcs_in[]: Patch World Coordinates
 In - int red: Red intensity if Gouraud shading not selected
 In - int green: Green intensity if Gouraud shading not selected
 In - int blue: Blue intensity if Gouraud shading not selected
 In - BOOL shade: True selects Gouraud shading + hidden surface removal
 False selects only hidden surface removal
 In - int patch_number: Patch number in scene patch list

Calls functions:
 wcs_to_vcs
 wcs_to_scs

Creates Object: None
Description: Local helper function for hidden surface removal and Gouraud shading.
Performs double interpolation on an input patch. Calculates Z Buffer values for a
specific patch and can calculate Gouraud shading intensity values upon request. The Z
Buffer must be reinitialized prior to calling this function for the first patch in a scene.
The shading option cannot be selected unless the current scene mode is RENDERED.
This function is tailored to the patch_list_type struct and will expect a 4-vertex patch
input.

line_plane_intersection_test:
Return: BOOL intersect: True if line intersects plane, otherwise False.
Parameters:
 In - float_coord_3d_type line_vertex1_in: Center of patch and center-bottom of
 hemicube. Line begins here (World Coordinates).
 In - float_coord_3d_type line_vertex2_in: Center of cell on a hemicube face.
 provides a direction to project the ray (World Coordinates).
 In - float_coord_3d_type plane_in[4]: Four vertices of patch to which the
 intersection test is being performed.
 Out - float_coord_3d_type intersection_pt:If the line intersects the plane, the
 intersection point is returned, otherwise a code is returned.

Calls functions:
 cross_product_3d
 dot_product_3d

Creates Object: None
Description: Local helper function to determine whether a ray originating from a
hemicube intersects a patch within the 3D scene. The vertices of the plane_in array
must define the patch in either a clockwise or counter-clockwise manner. The

 56

application uses a counter-clockwise manner. The code that is returned if the line does
not intersect the plane indicates which test failed in this function:
 -999999, -999999, -999999: The line is parallel to the plane.
 -677777, -677777, -677777: The intersection point calculated does not lie
 within the bounded plane.
 -888888, -888888, -888888: The line is finite in one direction. This code means

 that the calculated intersection point lies on the line’s infinite path, but not on a
 defined part.

line_segment_size:
Return: float line_size
Parameters:
 In - float_coord_3d_type line_vertex1_in: Start vertex in World Coordinates
 In - float_coord_3d_type line_vertex2_in: End vertex in World Coordinates

Calls functions: None
Creates Object: None
Description: Local helper function that computes the length of a 3D line segment.

compute_patch_center:
Return: None
Parameters:
 In - float_coord_3d_type wcs_in[]: Vertices of patch in World Coordinates
 Out - float_coord_3d_type center: Center of patch in World Coordinates

Calls functions:
 cross_product_3d
 dot_product_3d

Creates Object: None
Description: Local helper function to computer the center of a 4-vertex polygon in 3D
space. The vertices for the polygon must be defined in a circular manner (either
clockwise or counter-clockwise).

cross_product_3d:
Return: None
Parameters:
 In - float_coord_3d_type vector1_in: First input vector in World Coordinates
 In - float_coord_3d_type vector2_in: Second input vector in World Coordinates
 Out - float_coord_3d_type vector_out: Result of cross product in World Coordinates

Calls functions: None
Creates Object: None
Description: Local helper function to compute the cross product of two 3D vecto rs.
 vector_out = vector1_in X vector2_in

57

dot_product_3d:
Return: None
Parameters:
 In - float_coord_3d_type vector1_in: First input vector in World Coordinates
 In - float_coord_3d_type vector2_in: Second input vector in World Coordinates
 Out - float scalar_out: Result of dot product

Calls functions: None
Creates Object: None
Description: Local helper function to compute the dot product of two 3D vectors.
 scalar_out = vector1_in . vector2_in

object_patch_setup:
Return: None
Parameters:
 In - float_coord_3d_type wcs_vertices_no_patches: List of vertices without patches
 computed in World Coordinates
 In – int poly_mesh_no_patches[][4]: Indices mapped to vertices for the 4 -vertex
 polygon to divide up.
 In – int_num_patches_type num_patches: Number of patches requested (i.e. 10
 wide, 5 high).
 Out – float_coord_3d_type wcs_vertices_patches[]: List of vertices with patches
 computed (World Coordinates).
 Out – int poly_mesh_patches[][4]: Indices mapped to vertices for each patch in the
 input polygon.
 In – int f: Index to the polygon number of a scene object.

Calls functions: None
Creates Object: None
Description: Local helper function to divide a 4-vertex 3D input polygon into a specified
number of smaller 4-vertex polygons. This function is used to divide a scene up into
patches and to divide a hemicube into cells.

4.4.7. Scene Options

OnScreenMode:
Return: None
Parameters: None
Calls functions:
 OnDraw
 OnInitA
 OnClearScreen

Creates Object: None
Description: Toolbar message handler to toggle between Free and Animate modes.

 58

OnSceneProperties:
Return: None
Parameters: None
Calls functions: updatePatches
Creates Object: CSceneAOptions aDlg
Description: Toolbar message handler for changing Scene A properties.

updatePatches:
Return: None
Parameters: None
Calls functions: object_patch_setup
Creates Object: None
Description: Local helper function to recalculate new number of patches. It is a stripped
down version of the GetSceneA function. It only updates the patches data arrays (not
the ‘no patches’ data arrays).

4.4.8. Animation

OnAnimateRestart:
Return: None
Parameters: None
Calls functions: OnClearScreen
Creates Object: None
Description: Toolbar message handler to reinitialize the animation. Can only be used in
Animate mode.

OnAnimateStepFwd:
Return: None
Parameters: None
Calls functions:
 OnClearScreen
 clear_text_area
 clear_text_area
 clear_right_area
 clear_left_area
 OnDraw
 OnNoPatchesAllFaces
 OnPatchesAllFaces
 OnInitA
 OnRender
 interpolation_utility

Creates Object: None
Description: Toolbar message handler to step through the animation. Can only be used
in Animate mode.

59

OnAnimateFwd:
Return: None
Parameters: None
Calls functions: OnAnimateStepFwd
Creates Object: None
Description: Toolbar message handler to play the animation all the way through. Can
only be used in Animate mode.

OnPauseAnimation:
Return: None
Parameters: None
Calls functions: None
Creates Object: None
Description: Toolbar message handler to pause a running animation. Can only be used
in Animate mode.

OnTimer:
Return: None
Parameters:
 In - UINT nIDEvent: Event ID

Calls functions: OnAnimateStepFwd
Creates Object: None
Description: Windows timer used to time the pause between frames in the animation.
The timer is used when the user plays the animation. It is not used for stepping through
the animation.

OnAnimationControls:
Return: None
Parameters: None
Calls functions: OnAnimateRestart
Creates Object: CAnimationControls acDlg
Description: Toolbar message handler for setting animation controls. Can only be used
in Animate mode.

OnAVIPlay:
Return: None
Parameters: None
Calls functions: None
Creates Object: None
Description: Toolbar Message Handler for playing an AVI within the Radiosity
animation.

OnAVIStop:
Return: None
Parameters: None

 60

Calls functions: None
Creates Object: None
Description: Toolbar Message Handler for stopping an AVI within the Radiosity
animation.

4.4.9. Debug, Help & Cleanup

OnDatadump:
Return: None
Parameters: None
Calls functions: None
Creates Object: None
Description: Menu message handler to dump data to an output text file. The text file
out.txt will be located within the workspace folder.

OnInstructions:
Return: None
Parameters: None
Calls functions: None
Creates Object: Pointer to CHelp object
Description: Message Handler for displaying application instructions.

OnDestroy:
Return: None
Parameters: None
Calls functions: None
Creates Object: None
Description: Windows message handler to clean up dynamically allocated space when
the application window is closed.

4.5. Coding Challenges

Some of the coding challenges encountered during the development of the Radiosity
part of the application motivated the design decisions for the animation part. These
included:

?? Organized storage of large amounts of data required for implementing Radiosity.

?? Defining helper functions to reduce the amount of code and provide modularity to the

application.

?? The text that is drawn to the screen in the animation does not appear in a consistent

manner across different operating systems. For example, in Windows 2000, six
lines of text fit in the lower text area of the screen in Animate mode. In Windows XP,
only five lines fit. The animation can be fully viewed on both systems.

61

5. Future Work
This section describes some of the known coding bugs that were discovered as well as
improvements that could be made to the application.

5.1. Known Code Bugs

The following code bugs have been identified, but were not addressed:

?? When in Free mode, if the scene is adjusted in certain ways and then rendered,

there are unexpected artifacts (white spaces) in the scene. This is most likely due to
a floating point problem.

?? If a new scene were to be created, a hemicube that is too large may cause a

problem in the line_plane_intersection_test function. If a patch elsewhere in the
scene intersected the hemicube, it may not be detected as an intersection between
the ray casted from the hemicube to that patch. Any intersection point found inside
the hemicube is not considered to be an intersection and will not be used for a form
factor calculation.

?? Getting Started help menu does not go to the background if the application window

is selected. This is inconvenient for users with lower screen resolution.

5.2. Application Improvements

The following improvements could be made in the future in order to enhance the
application:

?? The code could likely be updated to be more efficient. Depending on the specific PC

the application is being run on, the scene options for number of patches and number
of hemicube cells could possibly use up all system resources if set too high.

?? Add the ability to change the color of individual room walls and box sides. This

would allow more colors to be seen in one rendered image.

?? Add an additional scene for the user to experiment with in Free mode.

?? Implement a Step Back button for the animation so the user does not have to start at

the beginning of the section in order to see a previous step.

?? At this time, the Radiosity renderer only handles 4 -vertex polygons. The code could

be expanded to allow 3-vertex polygons. This will allow more flexibility in designing
a new scene.

?? There are other versions of Radiosity. This application could implement some of

them and provide advanced tutorials for the user. Some of these might include

 62

Progressive Radiosity, Shooting Radiosity, or having the hemicubes centered at
random angles on the patch.

?? Setting a new number of patches in the scene through the Scene Options dialog box

re-initializes the scene to its original location. After adjusting the scene to a new
location, it would be useful to be able to set the number of patches without the scene
moving.

?? Have a dialog box for the user to set specific adjustment parameters. For example,

if the user want to rotate the scene about the x-axis in a positive direction, they must
adjust the scene using the predefined increment instead of being able to set their
own incremental value.

?? Implement an AVI Resume button. When the AVI Stop button is pressed, the only

alternative is to replay the AVI from the beginning.

?? Prepare the application for use on the web. This would make the project more

accessible to others.

6. References

[1] Anton, Howard. Elementary Linear Algebra. Ed. 7. New York: John Wiley &
 Sons Inc, 1994.

[2] Ashdown, Ian. Radiosity, A Programmer’s Perspective. New York: John Wiley &
 Sons, Inc, 1994.

[3] Chen, Shenchang Eric. VI.I Implementing Progressive Radiosity With Use
 Provided Polygon Display Routines. Academic Press Inc, 1991.

[4] Eckert, Richard R. CS-460/560 Notes. 2004. 9 April 2005 <http://
 www.cs.binghamton.edu/~reckert/460/460notes.htm>.

[5] Goldman, Ron. Radiosity. 2004. 9 April 2005 <http://www.owlnet.rice.edu/
 ~comp360/lectures/Radiosity.pdf>.

[6] Greenberg, Donald P., et al. Radiosity. SIGGRAPH Course Notes 21, 1990.

[7] Hanly, Jeri R., Elliot B. Koffman, and Joan C. Horvath. Program Design For
 Engineers. Massachusetts: Addison-Wesley Publishing Company Inc, 1995.

[8] Hearn, Donald, and M. Pauline Baker. Computer Graphics, C Version. Ed. 2.

New Jersey: Prentice Hall Inc, 1997.

[9] Horton, Ivor. Ivor Horton’s Beginning Visual C++ 6. Birmingham, U.K.: Wrox
 Press Ltd, 1998.

63

[10] Main, Michael, and Walter Savitch. Data Structures And Other Objects Using
 C++. Massachusetts: Addison Wesley Longman, 1997.

[11] Marchener, Steve. CS465 Notes, Simple Ray-Triangle Intersection. 2003.

Cornell University. 29 April 2005 < www.cs.cornell.edu/Courses/
 cs465/2003fa/homeworks/raytri.pdf>.

[12] Mathews, John H. Module For Jacobi And Gauss-Seidel Iteration. 2003. 11
 April 2005 <http://math.fullerton.edu/mathews/n2003/GaussSeidelMod.html>

[13] Microsoft Visual C++. 2005. Function X Inc. 9 April 2005 <http://functionx.com/
 visualc/>.

[14] Owen, Scott. Overview Of Radiosity, SIGGRAPH 1993 Education Slide Set.
 1998. 9 April 2005 <http://www.siggraph.org/education/materials/HyperGraph/
 Radiosity/Radiosity.htm>.

[15] Schafer, Stephan. Efficient Object-Based Hierarchical Radiosity Methods. 2000.
 6 June 2005 <www.eg.org/EG/DL/dissonline/doc/schaefer1999.pdf>

[16] Shklyar, Dmitry. 3D Rendering History, Part 2, To Photorealism And Beyond .

2003. CGNetworks. 10 April 2005 <http://www.cgnetworks.com/
 story_custom.php?story_id=1724&page=1>.

[17] Stewart, James. Calculus. Ed. 3. California: Brooks/Cole Publishing Company,
 1995.

[18] Weisstein, Eric, et al. Mathworld . 2005. Wolfram Research. 9 April 2005

<http://mathworld .wolfram.com/>.

