NQC —Not Quite C

= A subset of ANSI-C for use with the RCX
— RCX API

= Running the command line version

C:>nqc —Susb —d -Trcx2 pgm_name.nqc

GUI Interface to NQC — BricxCC

Both available for free at:

- http://bricxce.sourceforge.net/ingd/

References:

iy

Ly

Y

— Chapters 2-4, Appendix B of Baum textbook
= Two sets of example program listings:
— http://www.cs.binghamton.edu/~reckert/480/480pams.htm

Some NQC Program Control
Statements
= while (condition) {body}

— Repeats { } as long as condition is true
& until (condition) { }
— Repeats { } until condition is true
— Equivalent to: while (!condition) { }
— Most frequently used with empty body:
« until(SENSOR_1==1); // wait until SENSOR_1 is pressed
= repeat (expression) { }

— Repeats { } the number of times ‘expression’
evaluates to

Output Commands (Motors)

= Motor IDs: OUT_A, OUT_B, OUT_C
— Can use combinations: OUT_A + OUT_C

=« Motor attributes:
— Modes: OUT_ON, OUT_OFF, OUT_FLOAT
— Directions: OUT_FWD, OUT_REV, OUT_TOGGLE
— Power: 0-7
= Basic commands:
— SetOutput(motorlDs, mode)
« e.g., SetOutput(OUT_A, OUT_ON);
— SetDirection(motorlDs, direction)
* e.g., SetDirection(OUT_A+OUT_C, OUT_FWD);
— SetPower (motorlDs, power)
* e.g., SetPower(OUT_B, 4);
Input Function:
— OutputStatus(n); // n must be 0, 1, or 2

X

More NQC Control Statements

if (condition) then {if clause}
else {then clause}
— Just like regular C ‘if -then-else’ statement
for (statementl; condition; statement2) { }
— Just like regular C ‘for’ statement
switch (expression)
{case (const expression): statements; break
case (const expression): statements; break
etc.
default: statements; break

}

Motor Convenience Functions

= On (motorIDs)
Off (motorIDs) =  SetOutput(--, --)
= Float (motorIDs)

&

#« Fwd (motorIDs)
= Rev (motorIDs) =  SetDirection( --, --)
=« Toggle (motorIDs)

= OnFwd (motorIDs) & Fwd(--); On(--);

= OnRev (motorIDs) =  Rev(--); On(--);

= OnFor (motIDs, time) &« OnFwd(--); Wait(time);
— Wait(time); // pauses for time' 10 msec intervals

Some Example Programs

= 1 _speed

— Use of motor commands
« 3_spiral

— Make robot turn several times

— Use of repeat, constants, & variable
« 3_random

— While loop and random numbers
« Random(n) -- returns a pseudorandom number between
Oandn

= 4jf
— Turns left or right randomly, uses if then-else




Sounds on RCX

# Built-in speaker can play pre-programmed sounds or
specified tones for specified intervals

= PlaySound(sound_ID_number)

— Predefined sounds: SOUND_CLICK, SOUND_DOUBLE_BEEP,
SOUND_DOWN, SOUND_UP, SOUND_LOW_BEEP, SOUND_FAST_UP

= PlayTone(Frequency, Duration)
— Frequency in Hz
— Duration in 10 msec (1/100 sec) intervals
« must be a constant
= See Piano tool in bricxCC
= Example program: 7_sounds
— Plays all the predefined sounds
= Example program: 7_music
— Plays a tune

Sensor Functions

— SetSensor(SensorID, Configuration)
SetSensor (SENSOR_1, SENSOR_TOUCH);
— SetSensorType(SensorID, Type)
SetSensorTypg(SENSOR_1, SENSOR_TYPE_NONE);
— SetSensorMode(SensorID, Mode)
SetSensorMode(SENSOR_2, SENSOR_MODE_RAW);
— ClearSensor(SensorID)
« Clears pulse/edge/rotation count to zero
= Reading a Sensor
x=SENSOR_n or x=SensorValue(n)
« Returns current value of sensor
x=SensorValueBool(n)
« Converts valuetoa 1 or 0

Sensors

= 3 of them numbered 0, 1,2  (1,2,3 on RCX)
— Also named SENSOR-1, SENSOR-2, SENSOR-3
« These names can be used whenever program wants to read
the value of a sensor
x = SENSOR_1; same as x = SensorValue (0);
— Each converted digital value comes from a 10-bit ADC
— Standard firmware samples each sensor every 3 msec.

= Sensor Types
+ SENSOR_TYPE_NONE (to read raw values)
« SENSOR_TYPE_TOUCH, SENSOR_TYPE_TEMPERATURE
+ SENSOR_TYPE_LIGHT, SENSOR_TYPE_ROTATION
— Determine how RCX interacts with the sensor
* e.g., touch sensor is read passively

« Light sensor must have power supplied to it since it sends out
light and records light reflected hack

« 5_touch
— Robot backs away and turns right if left touch
sensor is pressed

~ 5_lightl

turns away
« Threshold set to 37

=« pulse-sensor-sound
— Plays a sound after 4 presses of touch sensor

Some Sensor Example Programs

— Goes forward until it detects black, then backs and

Sensor Modes & Configurations

= Sensor Modes — how RCX interprets sensor’s value
— SENSOR_MODE_RAW, 0x0, (values 0-1023)
— SENSOR_MODE_BOOL, 0x2, (values 0 or 1) (>562 or <460)
— SENSOR_MODE_PERCENT, 0x8, (values O to 100)
— SENSOR_MODE_CELCIUS, 0xA, (values 0 to 100)
— SENSOR_MODE_FAHRENHEIT, 0xC (values 0-212)
— SENSOR_MODE_EDGE, 0x4, (counts incoming Boolean transitions)
— SENSOR_MODE_PULSE, 0x6, (counts incoming rising edges)
SENSOR_MODE_ROTATION, OxE (angle: 0-16, 22.5 degree intervals)

= Sensor Configurations —combination of Type & Mode
— SENSOR_TOUCH (type Touch, mode Bool)

— SENSOR_LIGHT (type Light, mode percent)

— SENSOR_ROTATION (type Rotation, mode Rotation)

— SENSOR_CELCIUS, CENSOR_FAHRENHEIT (type Temperature)
— SENSOR_PULSE (type Touch, mode Pulse)

Multitasking in NQC

« NQC can run up to 10 “simultaneous” tasks
« Task main() begins automatically
« Any task can start/stop any other task
« Define as follows:
task task_name() { }
= Starting:
start task_name;
« Stopping:

stop task_name;

[———SENSOREBGE{iypeFouehode—dge)




Simple multitasking
examples

=« 7_drive_music
— Task main() starts task music() and continually

drives forward and backward
« Task music() plays a tune

= 6_tasks
— RCX moves in a square until it hits an obstacle
— Task main() starts two tasks:

* move_square()
« check_sensors()

Macros
« Give small pieces of code a name
« Like inline functions in that each time invoked
a new copy of the code is generated
=« Can have arguments
— Just placeholders for values to be used when
invoked
&« Defining:
#define macro_name(argument_list) statements;

— If more than one line is needed, must use ‘\" at end
of line

« Example program: 6_macro

— Power & time are arguments to forwards(s,t),
backwards(s,t), turn_right(s,t), turn_left(s,t) macros

Subprograms

« Subroutine

Code that can be executed from many places in a program
Like procedures, but with restrictions

+ Up to 8 allowed

+ No parameters, no result returned

« Cannot be nested

« No recursive calls

« Risky to call from different tasks

« Code is only stored once, so efficient use of memory
Defining:

sub sub_name(){ }
Example: 6_subs

« Main calls a subroutine that makes RCX turn 360 degrees

several times

RCX Timers

= Four of them
— Count from 0 to 32767 in 1/10 second increments
— Then rollover to zero
— Reading a timer:
x = Timer(n)
— Resetting a timer:
ClearTimer(n) // Reset to zero
SetTimer(n, value) // Reset to specified value
=« Timers can also be read more precisely
x = FastTimer(n) // 1/100 sec. (10 msec.) Intervals
« Example program: 12_timers
— Go forward & turn randomly until timer times out

Inline Functions
More like C functions
« No return value (type void)
« Can have value and reference parameters
« Each time invoked a new copy of code is generated
— Can use a lot of memory
« No limit on number of inline functions
Defining:
void function_name(parameters) { }
« Justlikein C
Example programs:
* 6_inline2 (parameter is value of turn time)
« 6_inline_by_ref)
— Reference parameter increments n, which is used in caller

LCD Display

« RCX LCD has 8 display modes

— DISPLAY_WATCH show system time, default
— DISPLAY_SENSOR1 show value of sensor 1
— DISPLAY_SENSOR2 show value of sensor 2
— DISPLAY_SENSOR3 show value of sensor 3
— DISPLAY_OUT_A show setting for output A
— DISPLAY_OUT_B show setting for output B
— DISPLAY_OUT_C show setting for output C
— DISPLAY_USER show something else

= Set mode with SelectDisplay (mode)




LCD DISPLAY_USER Mode

= Continually read a source & update
LCD display with value

— Source can be a sensor, timer, global
variable, etc.

— Can display values with a decimal point
SetUserDisplay (source, digits-after-dec-point)

= Example Programs:
— timer_display, timer_display_ok

IR Communication

— RCX can send/receive messages using its IR port
— Message values: 0 to 255
— To retrieve most recently-sent message #:
x = Message(); // 0 returned 2 no message received
— Sending a message:
SendMessage(msg_number)
« Receiving is disabled while sending
— Clearing the RCX's message buffer:
ClearMessage();
Example programs:
* 11_Master, 11_Slave

— Master RCX sends out messages to tell slave to go forward,
backward, or stop

* 11_leader
— Robots decide who is master and who is slave
* 9_proximity

il ) - .




