
1

? A subset of ANSI-C for use with the RCX
– RCX API

? Running the command line version
C:> nqc –Susb –d –Trcx2 pgm_name.nqc

? GUI Interface to NQC – BricxCC
? Both available for free at:

– http://bricxcc.sourceforge.net/nqc/

? References:
– http://www.cs.binghamton.edu/~reckert/480/NQC Guide.pdf
– Chapters 2-4, Appendix B of Baum textbook

? Two sets of example program listings:
– http://www.cs.binghamton.edu/~reckert/480/480pgms.htm

NQC – Not Quite C

Output Commands (Motors)
? Motor IDs: OUT_A, OUT_B, OUT_C

– Can use combinations: OUT_A + OUT_C

? Motor attributes:
– Modes: OUT_ON, OUT_OFF, OUT_FLOAT
– Directions: OUT_FWD, OUT_REV, OUT_TOGGLE
– Power: 0 - 7

? Basic commands:
– SetOutput(motorIDs, mode)

• e.g., SetOutput(OUT_A, OUT_ON);
– SetDirection(motorIDs, direction)

• e.g., SetDirection(OUT_A+OUT_C, OUT_FWD);
– SetPower(motorIDs, power)

• e.g., SetPower(OUT_B, 4);

? Input Function:
– OutputStatus(n); // n must be 0, 1, or 2

• Returns current power setting for motor n

Motor Convenience Functions
? On (motorIDs)
? Off (motorIDs) ? SetOutput (--, --)
? Float (motorIDs)

? Fwd (motorIDs)
? Rev (motorIDs) ? SetDirection(--, --)
? Toggle (motorIDs)

? OnFwd (motorIDs) ? Fwd(--); On(--);
? OnRev (motorIDs) ? Rev(--); On(--);
? OnFor (motIDs, time) ? OnFwd(--); Wait(time);

– Wait(time); // pauses for ‘time’ 10 msec intervals

Some NQC Program Control
Statements

? while (condition) {body}
– Repeats { } as long as condition is true

? until (condition) { }
– Repeats { } until condition is true
– Equivalent to: while (!condition) { }
– Most frequently used with empty body:

• until(SENSOR_1==1); // wait until SENSOR_1 is pressed

? repeat (expression) { }
– Repeats { } the number of times ‘expression’

evaluates to

More NQC Control Statements
if (condition) then {if clause}

else {then clause}
– Just like regular C ‘if -then-else’ statement

for (statement1; condition; statement2) { }
– Just like regular C ‘for’ statement

switch (expression)
{case (const expression): statements; break
case (const expression): statements; break

etc.
default: statements; break

}
– Just like regular C ‘switch/case’ statement

Some Example Programs
? 1_speed

– Use of motor commands

? 3_spiral
– Make robot turn several times
– Use of repeat, constants, & variable

? 3_random
– While loop and random numbers

• Random(n) -- returns a pseudorandom number between
0 and n

? 4_if
– Turns left or right randomly, uses if -then-else

2

Sounds on RCX
? Built-in speaker can play pre-programmed sounds or

specified tones for specified intervals
? PlaySound(sound_ID_number)

– Predefined sounds: SOUND_CLICK, SOUND_DOUBLE_BEEP,
SOUND_DOWN, SOUND_UP, SOUND_LOW_BEEP, SOUND_FAST_UP

? PlayTone(Frequency, Duration)
– Frequency in Hz
– Duration in 10 msec (1/100 sec) intervals

• must be a constant

? See Piano tool in bricxCC
? Example program: 7_sounds

– Plays all the predefined sounds

? Example program: 7_music
– Plays a tune

Sensors
? 3 of them numbered 0, 1, 2 (1,2,3 on RCX)

– Also named SENSOR-1, SENSOR-2, SENSOR-3
• These names can be used whenever program wants to read

the value of a sensor
x = SENSOR_1; same as x = SensorValue (0);

– Each converted digital value comes from a 10-bit ADC
– Standard firmware samples each sensor every 3 msec.

? Sensor Types
• SENSOR_TYPE_NONE (to read raw values)
• SENSOR_TYPE_TOUCH, SENSOR_TYPE_TEMPERATURE
• SENSOR_TYPE_LIGHT, SENSOR_TYPE_ROTATION

– Determine how RCX interacts with the sensor
• e.g., touch sensor is read passively

• Light sensor must have power supplied to it since it sends out
light and records light reflected back

Sensor Modes & Configurations
? Sensor Modes – how RCX interprets sensor’s value

– SENSOR_MODE_RAW, 0x0, (values 0-1023)
– SENSOR_MODE_BOOL, 0x2, (values 0 or 1) (>562 or <460)
– SENSOR_MODE_PERCENT, 0x8, (values 0 to 100)

– SENSOR_MODE_CELCIUS, 0xA, (values 0 to 100)
– SENSOR_MODE_FAHRENHEIT, 0xC (values 0-212)
– SENSOR_MODE_EDGE, 0x4, (counts incoming Boolean transitions)
– SENSOR_MODE_PULSE, 0x6, (counts incoming rising edges)
– SENSOR_MODE_ROTATION, 0xE (angle: 0-16, 22.5 degree intervals)

? Sensor Configurations – combination of Type & Mode
– SENSOR_TOUCH (type Touch, mode Bool)
– SENSOR_LIGHT (type Light, mode percent)
– SENSOR_ROTATION (type Rotation, mode Rotation)

– SENSOR_CELCIUS, CENSOR_FAHRENHEIT (type Temperature)
– SENSOR_PULSE (type Touch, mode Pulse)
– SENSOR_EDGE (type Touch, mode Edge)

Sensor Functions
– SetSensor(SensorID, Configuration)

SetSensor(SENSOR_1, SENSOR_TOUCH);

– SetSensorType(SensorID, Type)
SetSensorType(SENSOR_1, SENSOR_TYPE_NONE);

– SetSensorMode(SensorID, Mode)
SetSensorMode(SENSOR_2, SENSOR_MODE_RAW);

– ClearSensor(SensorID)
• Clears pulse/edge/rotation count to zero

? Reading a Sensor
x=SENSOR_n or x=SensorValue(n)

• Returns current value of sensor
x=SensorValueBool(n)

• Converts value to a 1 or 0

Some Sensor Example Programs

? 5_touch
– Robot backs away and turns right if left touch

sensor is pressed

? 5_light1
– Goes forward until it detects black, then backs and

turns away
• Threshold set to 37

? pulse-sensor-sound
– Plays a sound after 4 presses of touch sensor

Multitasking in NQC
? NQC can run up to 10 “simultaneous” tasks
? Task main() begins automatically
? Any task can start/stop any other task
? Define as follows:

task task_name() { };

? Starting:
start task_name;

? Stopping:
stop task_name;

3

Simple multitasking
examples

? 7_drive_music
– Task main() starts task music() and continually

drives forward and backward
• Task music() plays a tune

? 6_tasks
– RCX moves in a square until it hits an obstacle

– Task main() starts two tasks:
• move_square()
• check_sensors()

Subprograms
? Subroutine

– Code that can be executed from many places in a program
– Like procedures, but with restrictions

• Up to 8 allowed
• No parameters, no result returned

• Cannot be nested
• No recursive calls
• Risky to call from different tasks
• Code is only stored once, so efficient use of memory

– Defining:
sub sub_name() { };

– Example: 6_subs
• Main calls a subroutine that makes RCX turn 360 degrees

several times

Inline Functions
– More like C functions

• No return value (type void)
• Can have value and reference parameters
• Each time invoked a new copy of code is generated

– Can use a lot of memory

• No limit on number of inline functions

– Defining:
void function_name(parameters) { };
• Just like in C

– Example programs:
• 6_inline2 (parameter is value of turn time)
• 6_inline_by_ref)

– Reference parameter increments n, which is used in caller
for delays between outputting a sound

Macros
? Give small pieces of code a name
? Like inline functions in that each time invoked

a new copy of the code is generated
? Can have arguments

– Just placeholders for values to be used when
invoked

? Defining:
#define macro_name(argument_list) statements;
– If more than one line is needed, must use ‘\’ at end

of line

? Example program: 6_macro
– Power & time are arguments to forwards(s,t),

backwards(s,t), turn_right(s,t), turn_left(s,t) macros

RCX Timers
? Four of them

– Count from 0 to 32767 in 1/10 second increments
– Then rollover to zero
– Reading a timer:

x = Timer(n)

– Resetting a timer:
ClearTimer(n) // Reset to zero
SetTimer(n, value) // Reset to specified value

? Timers can also be read more precisely
x = FastTimer(n) // 1/100 sec. (10 msec.) Intervals

? Example program: 12_timers
– Go forward & turn randomly until timer times out

LCD Display
? RCX LCD has 8 display modes

– DISPLAY_WATCH show system time, default

– DISPLAY_SENSOR1 show value of sensor 1
– DISPLAY_SENSOR2 show value of sensor 2

– DISPLAY_SENSOR3 show value of sensor 3
– DISPLAY_OUT_A show setting for output A

– DISPLAY_OUT_B show setting for output B
– DISPLAY_OUT_C show setting for output C

– DISPLAY_USER show something else

? Set mode with SelectDisplay(mode)

4

LCD DISPLAY_USER Mode

?Continually read a source & update
LCD display with value
– Source can be a sensor, timer, global

variable, etc.
– Can display values with a decimal point

SetUserDisplay (source, digits-after-dec-point)

? Example Programs:
– timer_display, timer_display_ok

IR Communication
– RCX can send/receive messages using its IR port
– Message values: 0 to 255
– To retrieve most recently-sent message #:

x = Message(); // 0 returned ? no message received
– Sending a message:

SendMessage(msg_number)
• Receiving is disabled while sending

– Clearing the RCX’s message buffer:
ClearMessage();

– Example programs:
• 11_Master, 11_Slave

– Master RCX sends out messages to tell slave to go forward,
backward, or stop

• 11_leader
– Robots decide who is master and who is slave

• 9_proximity
– Use IR messages & light sensor to get proximity to an object

