

H8/300
Programming Manual

Contents

Section 1. CPU... 1

1.1 General CPU Architecture... 2

1.2 Registers .. 5

1.3 Instructions .. 8

Section 2. Instruction Set ... 32

ADD (ADD binary) (byte) .. 37

ADD (ADD binary) (word) ... 38

ADDS (ADD with Sign extension) ... 39

ADDX (ADD with eXtend carry) ... 40

AND (AND logical) .. 41

ANDC (AND Control register) ... 42

BAND (Bit AND) ... 43

Bcc (Branch conditionally) ... 44

BCLR (Bit CLeaR).. 47

BIAND (Bit Invert AND).. 49

BILD (Bit Invert LoaD) .. 50

BIOR (Bit Invert OR).. 51

BIST (Bit Invert STore)... 52

BIXOR (Bit Invert eXclusive OR).. 53

BLD (Bit LoaD) .. 54

BNOT (Bit NOT) .. 55

BOR (Bit inclusive OR) .. 57

BSET (Bit SET)... 59

BSR (Branch to SubRoutine) .. 61

BST (Bit STore)... 62

BTST (Bit TeST) ... 63

BXOR (Bit eXclusive OR).. 65

CMP (CoMPare) (byte) ... 67

CMP (CoMPare) (word).. 68

DAA (Decimal Adjust Add).. 69

DAS (Decimal Adjust Subtract).. 71

DEC (DECrement) .. 73

DIVXU (DIVide eXtend as Unsigned) ... 74

EEPMOV (MOVe data to EEPROM) ... 76

INC (INCrement) .. 78

JMP (JuMP)... 79

JSR (Jump to SubRoutine) .. 80

LDC (LoaD to Control register) .. 81

MOV(MOVe data) (byte) .. 82

MOV(MOVe data) (word)... 83

MOV(MOVe data) (byte) .. 84

MOV(MOVe data) (word)... 85

MOV(MOVe data) (byte) .. 86

MOV(MOVe data) (word)... 87

MOVFPE (MOVe data From Peripheral with E clock) .. 88

MOVTPE (MOVe data To Peripheral with E clock)... 89

MULXU (MULtiply eXtend as Unsigned) ... 90

NEG (NEGate) .. 91

NOP (No OPeration) ... 92

NOT (NOT = logical complement) ... 93

OR (inclusive OR logical) ... 94

ORC (inclusive OR Control register) .. 95

POP (POP data) ... 96

PUSH (PUSH data) ... 97

ROTL (ROTate Left) ... 98

ROTR (ROTate Right) .. 99

ROTXL (ROTate with eXtend carry Left) ..100

ROTXR (ROTate with eXtend carry Right)..101

RTE (ReTurn from Exception) ..102

RTS (ReTurn from Subroutine)...103

SHAL (SHift Arithmetic Left) ..104

SHAR (SHift Arithmetic Right)..105

SHLL (SHift Logical Left)..106

SHLR (SHift Logical Right) ...107

SLEEP (SLEEP)..108

STC (STore from Control register)..109

SUB (SUBtract binary) (byte) ...110

SUB (SUBtract binary) (word)..112

SUBS (SUBtract with Sign extension)..113

SUBX (SUBtract with eXtend carry) ..114

XOR (eXclusive OR logical) ..115

XORC (eXclusive OR Control register) ...116

Appendix A. Operation Code Map ..117

Appendix B. Instruction Set List ..118

Appendix C. Number of Execution States ...124

Preface

The H8/300 CPU forms the common core of all chips in the H8/300 Series. Featuring a

Hitachi-original, high-speed, RISC-like architecture, it has eight 16-bit (or sixteen 8-bit)

general registers and a concise, optimized instruction set.

This manual gives detailed descriptions of the H8/300 instructions. The descriptions apply to

all chips in the H8/300 Series. Assembly-language programmers should also read the separate

H8/300 Series Cross Assembler User's Manual.

For hardware details, refer to the hardware manual of the specific chip.

Section 1. CPU

This document is a reference manual for programming the H8/300, a high-speed central

processing unit with a Hitachi-original RISC-like architecture that is employed as a CPU core

in a series of low-cost single-chip microcomputers intended for applications ranging from

smart cards to office and factory automation.

The H8/300 features a concise instruction set in which most frequently-used instructions are

two bytes long and execute in just two states (0.2µs with a 10MHz system clock). Its general

registers can be accessed as 16-bit word registers or 8-bit byte registers. The instruction set

includes both 8-bit and 16-bit instructions.

Section 1 of this manual summarizes the CPU architecture and instruction set. Section 2 gives

detailed descriptions of the instructions. Appendices give an operation code map, a complete

list of the instruction set, and tables for calculating instruction execution time. Programmers

should also refer to the User's Manual of the chip being programmed for information on bus

cycles, interrupt service, I/O ports, power-down modes, and on-chip facilities such as memory

and timers, and for a memory map.
1

1.1 General CPU Architecture
1.1.1 Features

Table 1-1 summarizes the CPU architecture. Figures 1-1 and 1-2 show how data are
stored in registers and memory.

Table 1-1. CPU Architecture

Notes:
1. Word data stored in memory must be stored at an even address.
2. Instructions must be stored at even addresses.
3. General register R7 is used as the stack pointer (SP).

1.1.2 Data Structure

The H8/300 CPU can process 1-bit data, 4-bit (packed BCD) data, 8-bit (byte) data, and 16-bit
(word) data.
• Bit manipulation instructions operate on 1-bit data specified as bit n (n = 0, 1, 2, ..., 7) in a

byte operand.
• All operational instructions except ADDS and SUBS can operate on byte data.

Item Description

Address space 64K bytes, H'0000 to H'FFFF

Data types Bit, 4-bit (packed BCD), byte, word (2 bytes)

General registers Sixteen 8-bit general registers (R0H, R0L, ..., R7H, R7L),

also accessible as eight 16-bit general registers (R0 to R7)

Control registers Program counter (PC)

Condition code register (CCR)

Addressing modes Rn Register direct

@Rn Register indirect

@(d:16, Rn) Register indirect with 16-bit displacement

@Rn+ Register indirect with post-increment

@–Rn Register indirect with pre-decrement

@aa:8, @aa:16 Absolute address (8 or 16 bits)

#xx:8, #xx:16 Immediate (8-, or 16-bit data)

@(d:8, PC) PC-relative (8-bit displacement)

@@aa:8 Memory indirect

Instruction length 2 or 4 bytes

2

• The DAA and DAS instruction perform decimal arithmetic adjustments on byte data in

packed BCD form. Each 4-bit of the byte is treated as a decimal digit.

• The MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 bits × 8 bits), and

DIVXU (16 bits ÷ 8 bits) instructions operate on word data.

Data Structure in General Registers: Data of all the sizes above can be stored in general

registers as shown in figure 1-1.

Figure 1-1. Register Data Structure

1-Bit data

1-Bit data

Byte data

Byte data

Word data

4-Bit BCD data

Data type

Don't-care
4 37 0

Data format

7 0
7 6 5 4 3 2 1 0 Don't-care

Don't-care 7 6 5 4 3 2 1 0

Don't-care
7 0

Don't-care
7 0

015

Don't-care
4 37 0

RnL

RnH

RnL

RnH

RnL

Rn

RnH

Register No.

7 0

4-Bit BCD data

M
S
B

M
S
B

M
S
B

L
S
B

L
S
B

L
S
B

Upper digit Lower digit

Upper digit Lower digit

RnH: Upper 8 bits of General Register

RnL: Lower 8 bits of General Register

MSB: Most Significant Bit

LSB: Least Significant Bit
3

Memory Data Structure: Figure 1-2 indicates the data structure in memory.
Word data stored in memory must always begin at an even address. In word access the least
significant bit of the address is regarded as “0.” If an odd address is specified, no address error
occurs but the access is performed at the preceding even address. This rule affects MOV.W
instructions and branching instructions, and implies that only even addresses should be stored
in the vector table.

Figure 1-2. Memory Data Formats

The stack is always accessed a word at a time. When the CCR is pushed on the stack, two
identical copies of the CCR are pushed to make a complete word. When they are returned, the
lower byte is ignored.

1.1.3 Address Space

The H8/300 CPU supports a 64K-byte address space. The memory map differs depending on
the particular chip in the H8/300 Series and its operating mode. See the Hardware Manual of
the chip for details.

L
S
B

Upper 8 bits

7 0
7 6 5 4 3 2 1 01-Bit data

Byte data

Word data

Byte data (CCR) on stack

Word data on stack

Data type Data formatAddress

Address n

Address n

Even address

Odd address

Even address

Odd address

Even address

Odd address Lower 8 bits

M
S
B

M
S
B

L
S
B

M
S
B

L
S
B

M
S
B

L
S
B

M
S
B

L
S
B

Upper 8 bits

Lower 8 bits

CCR

CCR *

CCR: Condition code register.

Note: Word data must begin at an even address.

*: Ignored when return.
4

1.2 Registers
Figure 1-3 shows the register structure of the H8/300 CPU. There are sixteen 8-bit general

registers (R0H, R0L, ..., R7H, R7L), which can also be accessed as eight 16-bit registers (R0

to R7). There are two control registers: the 16-bit program counter (PC) and the 8-bit

condition code register (CCR).

Figure 1-3. CPU Registers

0

7
R0H R0L
R1H R1L
R2H R2L

R3LR3H
R4LR4H

R5H R5L
R6H R6L
R7H R7L(SP)

0

15
PC

0

235
CVZH

07

CCR NI
17

SP: Stack Pointer

Program Counter

Condition Code Register

Carry flag

Overflow flag
Zero flag

Half-carry flag

Interrupt mask bit

User bit

Negative flag

U U
6 4
5

1.2.1 General Registers
All the general registers can be used as both data registers and address registers. When used as

address registers, the general registers are accessed as 16-bit registers (R0 to R7). When used

as data registers, they can be accessed as 16-bit registers (R0 to R7), or the high (R0H to R7H)

and low (R0L to R7L) bytes can be accessed separately as 8-bit registers. The register length

is determined by the instruction.

R7 also functions as the stack pointer, used implicitly by hardware in processing interrupts and

subroutine calls. In assembly language, the letters SP can be coded as a synonym for R7. As

indicated in figure 1-4, R7 (SP) points to the top of the stack.

Figure 1-4. Stack Pointer

1.2.2 Control Registers

The CPU has a 16-bit program counter (PC) and an 8-bit condition code register (CCR).

(1) Program Counter (PC): This 16-bit register indicates the address of the next instruction

the CPU will execute. Instructions are fetched by 16-bit (word) access, so the least significant

bit of the PC is ignored (always regarded as 0).

(2) Condition Code Register (CCR): This 8-bit register indicates the internal status of the

CPU with an interrupt mask (I) bit and five flag bits: half-carry (H), negative (N), zero (Z),

overflow (V), and carry (C) flags. The two unused bits are available to the user. The bit

configuration of the condition code register is shown below.

Unused area

Stack area

SP (R7)
6

Bit 7 6 5 4 3 2 1 0
* Undetermined

Bit 7—Interrupt Mask Bit (I): When this bit is set to "1," all interrupts except NMI are

masked. This bit is set to "1" automatically by a reset and at the start of interrupt handling.

Bits 6 and 4—User Bits (U): These bits can be written and read by software for its own

purposes.

Bit 5—Half-Carry (H): This bit is used by add, subtract, and compare instructions to indicate

a borrow or carry out of bit 3 or bit 11. It is referenced by the decimal adjust instructions.

Bit 3—Negative (N): This bit indicates the most significant bit (sign bit) of the result of an

instruction.

Bit 2—Zero (Z): This bit is set to "1" to indicate a zero result and cleared to "0" to indicate a

nonzero result.

Bit 1—Overflow (V): This bit is set to "1" when an arithmetic overflow occurs, and cleared

to "0" at other times.

Bit 0—Carry (C): This bit is used by:

• Add, subtract, and compare instructions, to indicate a carry or borrow at the most

significant bit

• Shift and rotate instructions, to store the value shifted out of the most or least significant

bit

• Bit manipulation instructions, as a bit accumulator

System control instructions can load and store the CCR, and perform logic operations to set,

clear, or toggle selected bits.

1.2.3 Initial Register Values

When the CPU is reset, the program counter (PC) is loaded from the vector table and the

interrupt mask bit (I) in the CCR is set to “1.” The other CCR bits and the general registers are

not initialized.

I U H U N Z V C

Initial value 1 * * * * * * *

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

7

In particular, the stack pointer (R7) is not initialized. To prevent program crashes the stack

pointer should be initialized by software, by the first instruction executed after a reset.

1.3 Instructions

Features:

• The H8/300 has a concise set of 57 RISC-like instructions.

• Arithmetic and logic are performed as register-to-register operations, or with immediate

data.

• All instructions are 2 or 4 bytes long.

• Fast multiply/divide instructions; extensive bit manipulation instructions.

• Eight addressing modes.

1.3.1 Types of Instructions

Table 1-2 classifies the H8/300 instructions by type. Tables 1-3 to 1-10 briefly describe their

functions. Section 2, Instruction Set, gives detailed descriptions.

Table 1-2. Instruction Classification

* POP Rn is equivalent to MOV.W @SP+, Rn.

PUSH Rn is equivalent to MOV.W Rn, @-SP.

** Bcc is a conditional branch instruction in which cc represents a condition .

Function Instructions Types

Data transfer MOV, MOVFPE, MOVTPE, POP*, PUSH* 3

Arithmetic operations ADD, SUB, ADDX, SUBX, INC, DEC, ADDS, SUBS, 14

DAA, DAS, MULXU, DIVXU, CMP, NEG

Logic operations AND, OR, XOR, NOT 4

Shift SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, 8

ROTXR

Bit manipulation BSET, BCLR, BNOT, BTST, BAND, BIAND, BOR 14

BIOR, BXOR, BIXOR, BLD, BILD, BST, BIST

Branch Bcc**, JMP, BSR, JSR, RTS 5

System control RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP 8

Block data transfer EEPMOV 1

Total 57

8

1.3.2 Instruction Functions
Tables 1-3 to 1-10 give brief descriptions of the instructions in each functional group.

The following notation is used.

:3, :8, :16 3-bit, 8-bit, or 16-bit length.

Notation

Rd General register (destination)

Rs General register (source)

Rn General register

(EAd) Destination operand

(EAs) Source operand

CCR Condition code register

N N (negative) bit of CCR

Z Z (zero) bit of CCR

V V (overflow) bit of CCR

C C (carry) bit of CCR

PC Program counter

SP Stack pointer (R7)

#Imm Immediate data

#xx:3 3-Bit immediate data

#xx:8 8-Bit immediate data

#xx:16 16-Bit immediate data

op Operation field

disp Displacement

+ Addition

– Subtraction

× Multiplication

÷ Division

∧ AND logical

∨ OR logical

⊕ Exclusive OR logical

→ Move

¬ Not
9

Table 1-3. Data Transfer Instructions
Instruction Size* Function

MOV B/W (EAs) → Rd, Rs → (EAd)

Moves data between two general registers or between a general

register and memory, or moves immediate data to a general register.

The Rn, @Rn, @(d:16, Rn), @aa:16, #xx:8 or #xx:16, @–Rn, and

@Rn+ addressing modes are available for byte or word data. The

@aa:8 addressing mode is available for byte data only.

The @–R7 and @R7+ modes require word operands. Do not

specify byte size for these two modes.

MOVFPE B (EAs) → Rd

Transfers data from memory to a general register in

synchronization with the E clock.

MOVTPE B Rs → (EAd)

Transfers data from a general register to memory in

synchronization with the E clock.

POP W @SP+ → Rn

Pops a 16-bit general register from the stack.

Equivalent to MOV.W @SP+, Rn.

PUSH W Rn → @–SP

Pushes a 16-bit general register onto the stack.

Equivalent to MOV.W Rn, @-SP.

* Size: Operand size

B: Byte

W: Word
10

Table 1-4. Arithmetic Instructions
Instruction Size* Function

ADD B/W Rd ± Rs → Rd, Rd + #Imm → Rd

SUB Performs addition or subtraction on data in two general registers,

or addition on immediate data and data in a general register.

Immediate data cannot be subtracted from data in a general register.

Word data can be added or subtracted only when both words are in

general registers.

ADDX B Rd ± Rs ± C → Rd, Rd ± #Imm ± C → Rd

SUBX Performs addition or subtraction with carry or borrow on byte data

in two general registers, or addition or subtraction on immediate data

and data in a general register.

INC B Rd ± 1 → Rd

DEC Increments or decrements a general register.

ADDS W Rd ± 1 → Rd, Rd ± 2 → Rd

SUBS Adds or subtracts immediate data to or from data in a general

register. The immediate data must be 1 or 2.

DAA B Rd decimal adjust → Rd

DAS Decimal-adjusts (adjusts to packed BCD) an addition or

subtraction result in a general register by referring to the CCR.

MULXU B Rd × Rs → Rd

Performs 8-bit × 8-bit unsigned multiplication on data in two

general registers, providing a 16-bit result.

DIVXU B Rd ÷ Rs → Rd

Performs 16-bit ÷ 8-bit unsigned division on data in two general

registers, providing an 8-bit quotient and 8-bit remainder.

CMP B/W Rd – Rs, Rd – #Imm

Compares data in a general register with data in another general

register or with immediate data. Word data can be compared only

between two general registers.

NEG B 0 – Rd → Rd

Obtains the two’s complement (arithmetic complement) of data in

a general register.

* Size: Operand size

B: Byte

W: Word
11

Table 1-5. Logic Operation Instructions
Instruction Size* Function

AND B Rd ∧ Rs → Rd, Rd ∧ #Imm → Rd

Performs a logical AND operation on a general register and

another general register or immediate data.

OR B Rd ∨ Rs → Rd, Rd ∨ #Imm → Rd

Performs a logical OR operation on a general register and another

general register or immediate data.

XOR B Rd ⊕ Rs → Rd, Rd ⊕ #Imm → Rd

Performs a logical exclusive OR operation on a general register

and another general register or immediate data.

NOT B ¬ Rd → Rd

Obtains the one’s complement (logical complement) of general

register contents.

* Size: Operand size

B: Byte

Table 1-6. Shift Instructions

Instruction Size* Function

SHAL B Rd shift → Rd

SHAR Performs an arithmetic shift operation on general register contents.

SHLL B Rd shift → Rd

SHLR Performs a logical shift operation on general register contents.

ROTL B Rd rotate → Rd

ROTR Rotates general register contents.

ROTXL B Rd rotate through carry → Rd

ROTXR Rotates general register contents through the C (carry) bit.

* Size: Operand size

B: Byte
12

Table 1-7. Bit-Manipulation Instructions
Instruction Size* Function

BSET B 1 → (<bit-No.> of <EAd>)

Sets a specified bit in a general register or memory to “1.” The bit

is specified by a bit number, given in 3-bit immediate data or the lower

three bits of a general register.

BCLR B 0 → (<bit-No.> of <EAd>)

Clears a specified bit in a general register or memory to “0.” The

bit is specified by a bit number, given in 3-bit immediate data or the

lower three bits of a general register.

BNOT B ¬ (<bit-No.> of <EAd>) → (<bit-No.> of <EAd>)

Inverts a specified bit in a general register or memory. The bit is

specified by a bit number, given in 3-bit immediate data or the lower

three bits of a general register.

BTST B ¬ (<bit-No.> of <EAd>) → Z

Tests a specified bit in a general register or memory and sets or

clears the Z flag accordingly. The bit is specified by a bit number,

given in 3-bit immediate data or the lower three bits of a general

register.

BAND B C ∧ (<bit-No.> of <EAd>) → C

ANDs the C flag with a specified bit in a general register or

memory.

BIAND B C ∧ [¬ (<bit-No.> of <EAd>)] → C

ANDs the C flag with the inverse of a specified bit in a general

register or memory.

The bit number is specified by 3-bit immediate data.

BOR B C ∨ (<bit-No.> of <EAd>) → C

ORs the C flag with a specified bit in a general register or memory.

BIOR B C ∨ [¬ (<bit-No.> of <EAd>)] → C

ORs the C flag with the inverse of a specified bit in a general

register or memory.

The bit number is specified by 3-bit immediate data.
13

Table 1-7. Bit-Manipulation Instructions (Cont.)
Instruction Size* Function

BXOR B C ⊕ (<bit-No.> of <EAd>) → C

Exclusive-ORs the C flag with a specified bit in a general register

or memory.

BIXOR B C ⊕ [¬ (<bit-No.> of <EAd>)] → C

Exclusive-ORs the C flag with the inverse of a specified bit in a

general register or memory.

The bit number is specified by 3-bit immediate data.

BLD B (<bit-No.> of <EAd>) → C

Copies a specified bit in a general register or memory to the C flag.

BILD B ¬ (<bit-No.> of <EAd>) → C

Copies the inverse of a specified bit in a general register or

memory to the C flag.

The bit number is specified by 3-bit immediate data.

BST B C → (<bit-No.> of <EAd>)

Copies the C flag to a specified bit in a general register or memory.

BIST B ¬ C → (<bit-No.> of <EAd>)

Copies the inverse of the C flag to a specified bit in a general

register or memory.

The bit number is specified by 3-bit immediate data.

* Size: Operand size

B: Byte
14

Table 1-8. Branching Instructions
Instruction Size Function

Bcc — Branches if condition cc is true.

Mnemonic cc Field Description Condition

BRA (BT) 0 0 0 0 Always (True) Always

BRN (BF) 0 0 0 1 Never (False) Never

BHI 0 0 1 0 High C ∨ Z = 0

BLS 0 0 1 1 Low or Same C ∨ Z = 1

BCC (BHS) 0 1 0 0 Carry Clear C = 0

(High or Same)

BCS (BLO) 0 1 0 1 Carry Set (Low) C = 1

BNE 0 1 1 0 Not Equal Z = 0

BEQ 0 1 1 1 Equal Z = 1

BVC 1 0 0 0 Overflow Clear V = 0

BVS 1 0 0 1 Overflow Set V = 1

BPL 1 0 1 0 Plus N = 0

BMI 1 0 1 1 Minus N = 1

BGE 1 1 0 0 Greater or Equal N ⊕ V = 0

BLT 1 1 0 1 Less Than N ⊕ V = 1

BGT 1 1 1 0 Greater Than Z ∨ (N ⊕ V) = 0

BLE 1 1 1 1 Less or Equal Z ∨ (N ⊕ V) = 1

JMP — Branches unconditionally to a specified address.

BSR — Branches to a subroutine at a specified address.

JSR — Branches to a subroutine at a specified displacement from the current

address.

RTS — Returns from a subroutine.
15

Table 1-9. System Control Instructions
Instruction Size* Function

RTE — Returns from an exception-handling routine.

SLEEP — Causes a transition to the power-down state.

LDC B Rs → CCR, #Imm → CCR

Moves immediate data or general register contents to the condition

code register.

STC B CCR → Rd

Copies the condition code register to a specified general register.

ANDC B CCR ∧ #Imm → CCR

Logically ANDs the condition code register with immediate data.

ORC B CCR ∨ #Imm → CCR

Logically ORs the condition code register with immediate data.

XORC B CCR ⊕ #Imm → CCR

Logically exclusive-ORs the condition code register with immediate

data.

NOP — PC + 2 → PC

Only increments the program counter.

* Size: Operand size

B: Byte

Table 1-10. Block Data Transfer Instruction

Instruction Size Function

EEPMOV — if R4L ≠ 0 then

repeat @R5+ → @R6+

R4L – 1 → R4L

until R4L = 0

else next;

Moves a data block according to parameters set in general registers

R4L, R5, and R6.

R4L: size of block (bytes)

R5: starting source address

R6: starting destination address

Execution of the next instruction starts as soon as the block transfer is

completed.
16

Notes on Bit Manipulation Instructions: BSET, BCLR, BNOT, BST, and BIST are read-
modify-write instructions. They read a byte of data, modify one bit in the byte, then write the

byte back. Care is required when these instructions are applied to registers with write-only

bits and to the I/O port registers.

Example 1: BCLR is executed to clear bit 0 in the port 4 data direction register (P4DDR)

under the following conditions.

P47: Input pin, Low, MOS pull-up transistor on

P46: Input pin, High, MOS pull-up transistor off

P45 – P40: Output pins, Low

The intended purpose of this BCLR instruction is to switch P40 from output to input.

Before Execution of BCLR Instruction

Execution of BCLR Instruction

BCLR #0 @P4DDR ;clear bit 0 in data direction register

After Execution of BCLR Instruction

Sequence Operation

1 Read Read one data byte at the specified address

2 Modify Modify one bit in the data byte

3 Write Write the modified data byte back to the specified address

P47 P46 P45 P44 P43 P42 P41 P40

Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low Low

DDR 0 0 1 1 1 1 1 1

DR 1 0 0 0 0 0 0 0

Pull-up On Off Off Off Off Off Off Off

P47 P46 P45 P44 P43 P42 P41 P40

Input/output Output Output Output Output Output Output Output Input

Pin state Low High Low Low Low Low Low High

DDR 1 1 1 1 1 1 1 0

DR 1 0 0 0 0 0 0 0

Pull-up Off Off Off Off Off Off Off Off
17

Explanation: To execute the BCLR instruction, the CPU begins by reading P4DDR. Since
P4DDR is a write-only register, it is read as H'FF, even though its true value is H'3F.

Next the CPU clears bit 0 of the read data, changing the value to H'FE.

Finally, the CPU writes this value (H'FE) back to P4DDR to complete the BCLR instruction.

As a result, P40DDR is cleared to "0," making P40 an input pin. In addition, P47DDR and

P46DDR are set to "1," making P47 and P46 output pins.

Example 2: BSET is executed to set bit 0 in the port 4 data register (P4DR) under the

following conditions.

P47: Input pin, Low, MOS pull-up transistor on

P46: Input pin, High, MOS pull-up transistor off

P45 – P40: Output pins, Low

The intended purpose of this BSET instruction is to switch the output level at P40 from Low to

High.

Before Execution of BSET Instruction

Execution of BSET Instruction

BSET #0 @PORT4 ;set bit 0 in port-4 data register

P47 P46 P45 P44 P43 P42 P41 P40

Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low Low

DDR 0 0 1 1 1 1 1 1

DR 1 0 0 0 0 0 0 0

Pull-up On Off Off Off Off Off Off Off
18

After Execution of BSET Instruction
Explanation: To execute the BSET instruction, the CPU begins by reading port 4. Since P47

and P46 are input pins, the CPU reads the level of these pins directly, not the value in the data

register. It reads P47 as Low ("0") and P46 as High ("1").

Since P45 to P40 are output pins, for these pins the CPU reads the value in the data register

("0"). The CPU therefore reads the value of port 4 as H'40, although the actual value in P4DR

is H'80.

Next the CPU sets bit 0 of the read data to "1," changing the value to H'41.

Finally, the CPU writes this value (H'41) back to P4DR to complete the BSET instruction.

As a result, bit P40 is set to "1," switching pin P40 to High output. In addition, bits P47 and

P46 are both modified, changing the on/off settings of the MOS pull-up transistors of pins P47

and P46.

Programming Solution: The switching of the pull-ups for P47 and P46 in example 2 can be

avoided by storing the same data in both the port-4 data register and in a work area in RAM.

Bit manipulations are performed on the data in the work area, after which the result is moved

into the port-4 data register. In the following example RAM0 is a symbol for the user-selected

address of the work area.

Before Execution of BSET Instruction

MOV.B #80 R0L ;write data (H'80) for data register

MOV.B R0L @RAM0 ;write to DR work area (RAM0)

MOV.B R0L @PORT4 ;write to DR

P47 P46 P45 P44 P43 P42 P41 P40

Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low High

DDR 0 0 1 1 1 1 1 1

DR 0 1 0 0 0 0 0 1

Pull-up Off On Off Off Off Off Off Off
19

P47 P46 P45 P44 P43 P42 P41 P40
Execution of BSET Instruction

BSET #0 @RAM0 ;set bit 0 in DR work area (RAM0)

After Execution of BSET Instruction

MOV.B @RAM0 R0L ;get value in work area (RAM0)

MOV.B R0L @PORT4 ;write value to DR

Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low Low

DDR 0 0 1 1 1 1 1 1

DR 1 0 0 0 0 0 0 0

Pull-up On Off Off Off Off Off Off Off

RAM0 1 0 0 0 0 0 0 0

P47 P46 P45 P44 P43 P42 P41 P40

Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low High

DDR 0 0 1 1 1 1 1 1

DR 1 0 0 0 0 0 0 1

Pull-up On Off Off Off Off Off Off Off

RAM0 1 0 0 0 0 0 0 1
20

1.3.3 Machine-Language Coding
Figure 1-5. Machine-Language Coding of Data Transfer Instructions

15 8 7 0 MOV

op r r Rm → Rn

r r Rn → @Rm, or @Rm → Rn

r r @(d:16, Rm) → Rn, or
disp. Rn → @(d:16, Rm)

r @Rm+ → Rn, or Rn → @–Rm

abs. @aa:8 → Rn, or Rn → @aa:8

r @aa:16 → Rn, or

abs. Rn → @aa:16

IMM #xx:8 → Rn

#xx:16 → Rn
IMM

r MOVFPE, MOVTPE
abs.

r

m n

m

m

rn

n

n

n

n

rn

rn

n

m

15 8 7 0

op

15 8 7 0
op

15 8 7 0

op

15 8 7 0

op

15 8 7 0

op

15 8 7 0

op

15 8 7 0

op

15 8 7 0

op

15 0

op rn POP, PUSH

8 7

Notation

op: Operation field

rm, rn: Register field

disp: Displacement

abs.: Absolute address

IMM: Immediate data
21

15 8 7 0
Figure 1-6. Machine-Language Coding of Arithmetic, Logic, and Shift Instruction Codes

r ADD, SUB, CMP (Rm)

ADDX, SUBX (Rm)

r m nop

r ADDS, SUBS, INC, DEC, DAA,

DAS, NEG, NOT

n

15 8 7 0

op

r IMM ADD, ADDX, SUBX, CMP

(#xx:8)

r IMM AND, OR, XOR (#xx:8)

n

n

15 8 7 0

op

r r AND, OR, XOR (Rm)m n

15 8 7 0

op

15 8 7 0

op

r SHAL, SHAR, SHLL, SHLR,

ROTL, ROTR, ROTXL, ROTXR
n

15 8 7 0

op

r MULXU, DIVXUn

15 0

op r m

8 7

Notation

op: Operation field

rm, rn: Register field

IMM: Immediate data
22

Figure 1-7. Machine-Language Coding of Bit Manipulation Instructions

BSET, BCLR, BNOT, BTST

IMM r Operand: register direct (Rn)

Bit No.: immediate (#xx:3)

r r Operand: register direct (Rn)

r Operand: register indirect (@Rn)

r Bit No.: register direct (Rm)

abs. Operand: absolute (@aa:8)

IMM Bit No.: immediate (#xx:3)

abs. Operand: absolute (@aa:8)

r Bit No.: register direct (Rm)

BAND, BOR, BXOR, BLD, BST

IMM Operand: register direct (Rn)

Bit No.: immediate (#xx:3)

r Operand: register indirect (@Rn)

IMM Bit No.: immediate (#xx:3)

abs. Operand: absolute (@aa:8)

IMM Bit No.: immediate (#xx:3)

m

n

m

n

n

m

r n

n

15 8 7 0

op

15 8 7 0

op
Bit No.: register direct (Rm)

r Operand: register indirect (@Rn)

IMM Bit No.: immediate (#xx:3)

n

15 8 7 0

op

op

15 8 7 0
op

15 8 7 0
op

op

15 8 7 0
op

op

15 8 7 0

op

15 8 7 0

op
op

15 8 7 0
op
op

op

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0

Notation

op: Operation field

rm, rn: Register field

abs.: Absolute address

IMM: Immediate data
23

Figure 1-7. Machine-Language Coding of Bit Manipulation Instructions (Cont.)

BIAND, BIOR, BIXOR, BILD, BIST

IMM Operand: register direct (Rn)

Bit No.: immediate (#xx:3)

r Operand: register indirect (@Rn)

IMM Bit No.: immediate (#xx:3)

abs. Operand: absolute (@aa:8)
IMM Bit No.: immediate (#xx:3)

rn

n

15 8 7 0
op

op

15 8 7 0

op
op

15 8 7 0

op

0 0 0 0
0 0 0 0

0 0 0 0

Notation

op: Operation field

rm, rn: Register field

abs.: Absolute address

IMM: Immediate data
24

Figure 1-8. Machine-Language Coding of Branching Instructions

cc disp. Bcc

r JMP (@Rm)

JMP (@aa:16)
abs.

abs. JMP (@@aa:8)

disp. BSR

JSR (@Rm)

JSR (@aa:16)
abs.

abs. JSR (@@aa:8)

RTS

rm

m

15 8 7 0

op

15 8 7 0

op

15 8 7 0

op

15 8 7 0

op

15 8 7 0

op

15 8 7 0

op

15 8 7 0

op

15 8 7 0

op

15 8 7 0

op

0 0 0 0

0 0 0 0

Notation

op: Operation field

cc: Condition field

rm: Register field

disp.: Displacement

abs.: Absolute address
25

Figure 1-9. Machine-Language Coding of System Control Instructions

Figure 1-10. Machine-Language Coding of Block Data Transfer Instruction

15 8 7 0

RTE, SLEEP, NOP

r LDC, STC (Rn)

IMM ANDC, ORC, XORC, LDC

(#xx:8)

n

op

15 8 7 0

op

15 8 7 0

op

Notation

op: Operation field

rn: Register field

IMM: Immediate data

15 8 7 0

EEPMOV
op

op
26

1.3.4 Addressing Modes and Effective Address Calculation
Table 1-11 lists the eight addressing modes and their assembly-language notation. Each

instruction can use a specific subset of these addressing modes.

Table 1-11. Addressing Modes

(1) Register Direct—Rn: The register field of the instruction specifies an 8- or 16-bit

general register containing the operand. In most cases the general register is accessed as an 8-

bit register. Only the MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 bits × 8

bits), and DIVXU (16 bits ÷ 8 bits) instructions have 16-bit operands.

(2) Register indirect—@Rn: The register field of the instruction specifies a 16-bit general

register containing the address of the operand.

(3) Register Indirect with Displacement—@(d:16, Rn): This mode, which is used only in

MOV instructions, is similar to register indirect but the instruction has a second word (bytes 3

and 4) which is added to the contents of the specified general register to obtain the operand

address. For the MOV.W instruction, the resulting address must be even.

(4) Register Indirect with Post-Increment or Pre-Decrement—@Rn+ or @–Rn:

• Register indirect with post-increment—@Rn+

The @Rn+ mode is used with MOV instructions that load register from memory.

It is similar to the register indirect mode, but the 16-bit general register specified in the

register field of the instruction is incremented after the operand is accessed. The size of

the increment is 1 or 2 depending on the size of the operand: 1 for a byte operand; 2 for a

No. Mode Notation

(1) Register direct Rn

(2) Register indirect @Rn

(3) Register indirect with 16-bit displacement @(d:16, Rn)

(4) Register indirect with post-increment @Rn+

Register indirect with pre-decrement @–Rn

(5) Absolute address (8 or 16 bits) @aa:8, @aa:16

(6) Immediate (3-, 8-, or 16-bit data) #xx:3, #xx:8, #xx:16

(7) PC-relative (8-bit displacement) @(d:8, PC)

(8) Memory indirect @@aa:8
27

word operand. For a word operand, the original contents of the 16-bit general register
must be even.

• Register indirect with pre-decrement—@–Rn

The @–Rn mode is used with MOV instructions that store registers contents to memory.

It is similar to the register indirect mode, but the 16-bit general register specified in the

register field of the instruction is decremented before the operand is accessed. The size of

the decrement is 1 or 2 depending on the size of the operand: 1 for a byte operand; 2 for a

word operand. For a word operand, the original contents of the 16-bit general register

must be even.

(5) Absolute Address—@aa:8 or @aa:16: The instruction specifies the absolute address of

the operand in memory. The @aa:8 mode uses an 8-bit absolute address of the form H’FFxx.

The upper 8 bits are assumed to be 1, so the possible address range is H’FF00 to H’FFFF

(65280 to 65535). The MOV.B, MOV.W, JMP, and JSR instructions can use 16-bit absolute

addresses.

(6) Immediate—#xx:8 or #xx:16: The instruction contains an 8-bit operand in its second

byte, or a 16-bit operand in its third and fourth bytes. Only MOV.W instructions can contain

16-bit immediate values.

The ADDS and SUBS instructions implicitly contain the value 1 or 2 as immediate data.

Some bit manipulation instructions contain 3-bit immediate data (#xx:3) in the second or

fourth byte of the instruction, specifying a bit number.

(7) PC-Relative—@(d:8, PC): This mode is used to generate branch addresses in the Bcc

and BSR instructions. An 8-bit value in byte 2 of the instruction code is added as a sign-

extended value to the program counter contents. The result must be an even number. The

possible branching range is –126 to +128 bytes (–63 to +64 words) from the current address.

(8) Memory Indirect—@@aa:8: This mode can be used by the JMP and JSR instructions.

The second byte of the instruction code specifies an 8-bit absolute address from H’0000 to

H’00FF (0 to 255). Note that the initial part of the area from H'0000 to H'00FF contains the

exception vector table. See the hardware manual of the specific chip for details. The word

located at this address contains the branch address.

If an odd address is specified as a branch destination or as the operand address of a MOV.W

instruction, the least significant bit is regarded as “0,” causing word access to be performed at

the address preceding the specified address. See the memory data structure description in

section 1.1.2, Data Structure.

28

Calculation of Effective Address: Table 1-12 shows how the H8/300 calculates effective
addresses in each addressing mode.

Arithmetic, logic, and shift instructions use register direct addressing (1). The ADD.B,

ADDX, SUBX, CMP.B, AND, OR, and XOR instructions can also use immediate addressing

(6).

The MOV instruction uses all the addressing modes except program-counter relative (7) and

memory indirect (8).

Bit manipulation instructions use register direct (1), register indirect (2), or absolute (5)

addressing to identify a byte operand and 3-bit immediate addressing to identify a bit within

the byte. The BSET, BCLR, BNOT, and BTST instructions can also use register direct

addressing (1) to identify the bit.

Effective Address Calculation

Table 1-12 explains how the effective address is calculated in each addressing mode.

Table 1-12, Effective Address Calculation (1)

Addressing mode, Effective address Effective
No. instruction format calculation address

1 Register direct Rn. None

2 Register indirect @Rn

15 8 7 0

Operand is at address
indicated by register

15 07 6 4 3

OP reg

16-bit register contents

15 0

15 0

15 8 7 0

OP reg m reg n

4 3

3 0 3 0

reg m reg n

Operand are contained in
registers m and n

Operand is at address
indicated by register

15 07 6 4 3

OP reg

16-bit register contents

15 0

15 0
29

Table 1-12, Effective Address Calculation (2)
Addressing mode, Effective address Effective
No. instruction format calculation address

3 Register indirect with displacement
@(d:16, Rn)

4 Register indirect with pre-decrement
@-Rn

Register indirect with post-increment
@Rn+

5 Immediate #xx:8. None

Immediate #xx:16 None

16-bit register contents

15 0

15 0

16-bit displacement

+
15 0

disp

Operand address is sum
of register contents and
displacement

OP reg

7 6 4 3

15 07 6 4 3

OP reg

16-bit register contents

15 0

-

1 or 2*

15 0

Register is decremented
before operand access

16-bit register contents

15 0

15 0

16-bit displacement

15 07 6 4 3

OP reg

16-bit register contents

15 0

+

1 or 2*

15 0

Register is incremented
after operand access

Register is incremented
after operand access

16-bit register contents

15 0

15 0

16-bit displacement

OP

15 8 7 0

IMM Operand is 1-byte
immediate data

16-bit register contents

15 0

15 0

16-bit displacement

15 0

OP

IMM
Operand is 2-byte
immediate data

* 1 for a byte operand,
2 for a word operand
30

Table 1-12, Effective Address Calculation (3)
Addressing mode, Effective address Effective
No. instruction format calculation address

6 Absolute address None
@aa:8

Absolute address
@aa:16

7 PC-relative @(d:8, PC)

8 Memory indirect @@aa:8

reg, regm, regn: General register
op: Operation field
disp: Displacement
abs: Absolute address
IMM: Immediate data

OP

15 8 7 0

abs

H'FF

15 8 7 0

Operand address is in range
from H'FF00 to H'FFFF

15 0

OP

15 0

Arbitrary address
abs

PC contents

15 0
PC contents

15 0

15 0

Destination address

+

OP

15 8 7 0

disp

dispSign extension

16-bit memory contents

OP

15 8 7 0

abs

H'00

15 8 7 0

16-bit memory contents

15 0 15 0

Destination address
31

Section 2. Instruction Set

Section 2 gives full descriptions of all the H8/300 instructions, presenting them in alphabetic

order. Each instruction is explained in a table like the following:

ADD (ADD binary) (byte) ADD

<Description>

This instruction adds the source operand to the contents of an 8-bit general register and places

the result in the 8-bit general register .

The source operand can be an 8-bit register value or immediate byte data.

Immediate ADD.B #xx:8, Rd 8 rd IMM 2

Register direct ADD.B Rs, Rd 0 8 rs rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

<Operation>

Rd + (EAs) → Rd

<Assembly-Language Format>

ADD.B <EAs>, Rd

<Examples>

ADD.B R0H, R1H

ADD.B #H'64, R2L

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Set to "1" when there is a carry from bit

3; otherwise cleared to "0."

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Set to "1" if an overflow occurs;

otherwise cleared to "0."

C: Set to "1" if there is a carry from bit 7;

otherwise cleared to "0."

I H N Z V C

— — ↕ — ↕ ↕ ↕ ↕
32

<Instruction Formats>
Name: The full and mnemonic names of the instruction are given at the top of the page.

Operation: Describes the instruction in symbolic notation. The following symbols are used.

Symbol Meaning

(EAs) Source operand

(EAd) Destination operand

Rs, Rd, Rn 8-bit or 16-bit general register (s—source; d—destination)

#xx:3, #xx:8, #xx:16 3-bit, 8-bit, or 16-bit immediate data

d:8, d:16 8-bit or 16-bit displacement

PC Program counter

SP Stack pointer

CCR Condition code register

Z Zero flag in CCR

C Carry flag in CCR

→ The result of the operation on the left is assigned to the operand on the

right (For compare instructions, the resulting condition code is

assigned.)

+ Addition

– Subtraction

× Multiplication

÷ Division

∧ AND logical

∨ OR logical

⊕ Exclusive OR logical

↔ Exchange

¬ Not

Assembly-Language

Format: The assembly-

language coding of the

instruction. An example is:

ADD. B <EAs>, Rd

Mnemonic Size Source Destination
33

The operand size is indicated by the letter B (byte) or W (word). The size is indicated
explicitly in this manual, but for instructions that permit only one size, the size designation can

be omitted in source-program coding.

The abbreviation EAs or EAd (effective address of source or destination) is used for operands

that permit more than one addressing mode.

Examples: Examples of the assembly-language coding of the instruction are given.

Operand size: Word or byte. Byte size is indicated for bit-manipulation instructions because

these instructions access a full byte in order to read or write one bit.

Condition code: The effect of instruction execution on the flag bits in the CCR is indicated.

The following notation is used:

Symbol Meaning

↕ The flag is altered according to the result of the instruction.

0 The flag is cleared to "0."

— The flag is not changed.

* Undetermined; the flag is left in an unpredictable state.

Description: A detailed explanation is given of the action of the instruction.

Instruction Formats: Each possible format of the instruction is shown explicitly, indicating

the addressing mode, the object code, and the number of states required for execution when the

instruction and its operands are located in on-chip memory. The following symbols are used:

Symbol Meaning

Imm. Immediate data (3, 8, or 16 bits)

abs. An absolute address (8 bits or 16 bits)

disp. Displacement (8 bits or 16 bits)

rs, rd, rn General register number (3 bits or 4 bits) The s, d, and n correspond to the letters

in the operand notation
34

16-bit general registers are indicated by a 3-bit rs, rd, or rn value. 8-bit registers are indicated
by a 4-bit rs, rd, or rn value. Address registers used in the @Rn, @(disp:16, Rn), @Rn+, and

@–Rn addressing modes are always 16-bit registers. Data registers are 8-bit or 16-bit registers

depending on the size of the operand. For 8-bit registers, the lower three bits of rs, rd, or rn

give the register number. The most significant bit is "1" if the lower byte of the register is

used, or "0" if the upper byte is used. Registers are thus indicated as follows:

16-Bit register

rs, rd, or rn

Register

0 0 0 R0

0 0 1 R1

: :

1 1 1 R7

Bit Data Access: Bit data are accessed as the n-th bit of a byte operand in a general register or

memory. The bit number is given by 3-bit immediate data, or by a value in a general register.

When a bit number is specified in a general register, only the lower three bits of the register are

significant. Two examples are shown below.

BSET R1L, R2H

8-Bit registers

rs, rd, or rn Register

0 0 0 0 R0H

0 0 0 1 R1H

: :

0 1 1 1 R7H

1 0 0 0 R0L

1 0 0 1 R1L

: :

1 1 1 1 R7L

R1L don't care 0 1 1

R2H 0 1 1 0 0 1 0 1

Bit number = 3

Bit 3 is set to "1"
35

BLD #5, @H'FF02:8
The addressing mode and operand size apply to the register or memory byte containing the bit.

Number of States Required for Execution: The number of states indicated is the number

required when the instruction and any memory operands are located in on-chip ROM or RAM.

If the instruction or an operand is located in external memory or the on-chip register field,

additional states are required for each access. See Appendix C.

1 0 1 0 0 1 1 0H'FF02

Loaded to C (carry)
flag in CCR

C

Bit No. 5
36

ADD (ADD binary) (byte) ADD

<Description>

This instruction adds the source operand to the contents of an 8-bit general register and places

the result in the 8-bit general register .

The source operand can be an 8-bit register value or immediate byte data.

<Instruction Formats>

Immediate ADD.B #xx:8, Rd 8 rd IMM 2

Register direct ADD.B Rs, Rd 0 8 rs rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

<Operation>

Rd + (EAs) → Rd

<Assembly-Language Format>

ADD.B <EAs>, Rd

<Examples>

ADD.B R0H, R1H

ADD.B #H'64, R2L

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Set to "1" when there is a carry from bit

3; otherwise cleared to "0."

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Set to "1" if an overflow occurs;

otherwise cleared to "0."

C: Set to "1" if there is a carry from bit 7;

otherwise cleared to "0."

I H N Z V C

— — ↕ — ↕ ↕ ↕ ↕
37

ADD (ADD binary) (word) ADD
<Description>

This instruction adds word data in two general registers and places the result in the second

general register.

<Instruction Formats>

Register direct ADD.W Rs, Rd 0 9 0 rs 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

<Operation>

Rd + Rs → Rd

<Assembly-Language Format>

ADD.W Rs, Rd

<Examples>

ADD.W R0, R1

<Operand Size>

Word

<Condition Code>

I: Previous value remains unchanged.

H: Set to "1" when there is a carry from bit

11; otherwise cleared to "0."

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Set to "1" if an overflow occurs;

otherwise cleared to "0."

C: Set to "1" if there is a carry from bit 15;

otherwise cleared to "0."

I H N Z V C

— — ↕ — ↕ ↕ ↕ ↕
38

ADDS (ADD with Sign extension) ADDS
<Description>

This instruction adds the immediate value 1 or 2 to word data in a general register. Differing

from the ADD instruction, it does not affect the condition code flags.

<Instruction Formats>

Note: This instruction cannot access byte size data.

<Operation>

Rd + 1 → Rd

Rd + 2 → Rd

<Assembly-Language Format>

ADDS #1, Rd

ADDS #2, Rd

<Examples>

ADDS #1, R4

ADDS #2, R5

<Operand Size>

Word

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

Register direct ADDS #1, Rd 0 B 0 0 rd 2

Register direct ADDS #2, Rd 0 B 8 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
39

ADDX (ADD with eXtend carry) ADDX
<Description>

This instruction adds the source operand and carry flag to the contents of an 8-bit general

register and places the result in the 8-bit general register.

The source operand can be an 8-bit register value or immediate byte data.

<Instruction Formats>

<Operation>

Rd + (EAs) + C → Rd

<Assembly-Language Format>

ADDX <EAs>, Rd

<Examples>

ADDX R0L, R1L

ADDX #H'0A, R2H

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Set to "1" if there is a carry from bit 3;

otherwise cleared to "0."

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Set to "1" if an overflow occurs;

otherwise cleared to "0."

C: Set to "1" if there is a carry from bit 7;

otherwise cleared to "0."

I H N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Immediate ADDX #xx:8, Rd 9 rd IMM 2

Register direct ADDX Rs, Rd 0 E rs rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
40

AND (AND logical) AND
<Description>

This instruction ANDs the source operand with the contents of an 8-bit general register and

places the result in the 8-bit general register.

The source operand can be an 8-bit register value or immediate byte data.

<Instruction Formats>

Immediate AND #xx:8, Rd E rd IMM 2

Register direct AND Rs, Rd 1 6 rs rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

<Operation>

Rd ∧ (EAs) → Rd

<Assembly-Language Format>

AND <EAs>, Rd

<Examples>

AND R6H, R6L

AND #H'FD, R0H

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Cleared to "0."

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ 0 —

41

ANDC (AND Control register) ANDC
<Description>

This instruction ANDs the condition code register (CCR) with immediate data and places the

result in the condition code register. Bits 6 and 4 are ANDed as well as the flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts, including

the nonmaskable interrupt (NMI), are deferred until after the next instruction.

<Instruction Formats>

Immediate ANDC #xx:8, CCR 0 6 IMM 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

<Operation>

CCR ∧ #IMM→ CCR

<Assembly-Language Format>

ANDC #xx:8, CCR

<Examples>

ANDC #H'7F, CCR

<Operand Size>

Byte

<Condition Code>

I: ANDed with bit 7 of the immediate data.

H: ANDed with bit 5 of the immediate data.

N: ANDed with bit 3 of the immediate data.

Z: ANDed with bit 2 of the immediate data.

V: ANDed with bit 1 of the immediate data.

C: ANDed with bit 0 of the immediate data.

I H N Z V C

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕
42

BAND (Bit AND) BAND

<Description>

This instruction ANDs a specified bit with the carry flag and places the result in the carry flag.

The specified bit can be located in a general register or memory. The bit number is specified

by 3-bit immediate data. The operation is shown schematically below.

The value of the specified bit is not changed.

<Instruction Formats>

* Register direct, register indirect, or absolute addressing.

Register direct BAND #xx:3, Rd 7 6 0 IMM rd 2

Register indirect BAND #xx:3,@Rd 7 C 0 rd 0 7 6 0 IMM 0 6

Absolute address BAND #xx:3,@aa:8 7 E abs 7 6 0 IMM 0 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

<Operation>

C ∧ (<Bit No.> of <EAd>) → C

<Assembly-Language Format>

BAND #xx:3, <EAd>

<Examples>

BAND #0, R1L

BAND #4, @R3

BAND #7, @H'FFE0:8

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: ANDed with the specified bit.

I H N Z V C

— — — — — — — ↕

C ∧ C

Bit No. 7 0#xx:3

Byte data in register or memory<EAd>*→
43

Bcc (Branch conditionally) Bcc
<Operation>

If cc then

PC + d:8 → PC

else next;

<Assembly-Language Format>

(For mnemonics, see the table on the

next page.)

<Examples>

BHI H'42

BEQ H'–7E

<Operand Size>

—

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

∧Bcc
Condition code field

d:8
44

Bcc (Branch conditionally) Bcc
<Description>

If the specified condition is false, this instruction does nothing; the next instruction is

executed. If the specified condition is true, a signed displacement is added to the address of

the next instruction and execution branches to the resulting address.

The displacement is a signed 8-bit value which must be even. The branch destination address

can be located in the range –126 to +128 bytes from the address of the Bcc instruction.

The available conditions and their mnemonics are given below.

BT, BF, BHS, and BLO are synonyms for BRA, BRN, BCC, and BCS, respectively.

Mnemonic cc Field Description Condition Meaning

BRA (BT) 0 0 0 0 Always (True) Always true

BRN (BF) 0 0 0 1 Never (False) Never

BHI 0 0 1 0 HIgh C ∨ Z = 0 X > Y (Unsigned)

BLS 0 0 1 1 Low or Same C ∨ Z = 1 X ≤ Y (Unsigned)

BCC (BHS) 0 1 0 0 Carry Clear C = 0 X ≥ Y (Unsigned)
(High or Same)

BCS (BLO) 0 1 0 1 Carry Set (LOw) C = 1 X < Y (Unsigned)

BNE 0 1 1 0 Not Equal Z = 0 X ≠ Y (Signed or
unsigned)

BEQ 0 1 1 1 EQual Z = 1 X = Y (Signed or
unsigned)

BVC 1 0 0 0 oVerflow Clear V = 0

BVS 1 0 0 1 oVerflow Set V = 1

BPL 1 0 1 0 PLus N = 0

BMI 1 0 1 1 MInus N = 1

BGE 1 1 0 0 Greater or Equal N ⊕ V = 0 X ≥ Y (Signed)

BLT 1 1 0 1 Less Than N ⊕ V = 1 X < Y (Signed)

BGT 1 1 1 0 Greater Than Z ∨ (N ⊕ V) = 0 X > Y (Signed)

BLE 1 1 1 1 Less or Equal Z ∨ (N ⊕ V) = 1 X ≤ Y (Signed)
45

Bcc (Branch conditionally) Bcc
<Instruction Formats>

* The branch address must be even.

1st byte 2nd byte 3rd byte 4th byte
Mnem. Operands

Instruction code No . ofAdressing
mode states

BRA (BT)

BRN (BF)

PC relative

PC relative

PC relative

PC relative

PC relative

PC relative

PC relative

PC relative

PC relative

PC relative

PC relative

PC relative

4

4

4

4

4

4

PC relative

PC relative

PC relative

PC relative

4

4

4

4

d:8

d:8

d:8

d:8

d:8

d:8

d:8

d:8

d:8

d:8

d:8

d:8

d:8

d:8

d:8

d:8

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

0

1

2

3

4

5

6

8

7

9

A

B

C

D

E

F

disp.

disp.

disp.

disp.

disp.

disp.

disp.

disp.

disp.

disp.

disp.

disp.

disp.

disp.

disp.

disp.

BHI

BLS

BCC (BHS)

BCS (BLO)

BNE

BEQ

BVC

BVS

BPL

BMI

BGE

BLT

BGT

BLE
46

BCLR (Bit CLeaR) BCLR
<Description>

This instruction clears a specified bit in the destination operand to "0." The bit number can be

specified by 3-bit immediate data, or by the lower three bits of an 8-bit general register. The

destination operand can be located in a general register or memory.

The specified bit is not tested before being cleared. The condition code flags are not altered.

*Register direct, register indirect, or absolute addressing.

#xx:3 or Rn

Bit No. 7 0

0

Byte data in register or memory<EAd>*→

<Operation>

0 → (<Bit No.> of <EAd>)

<Assembly-Language Format>

BCLR #xx:3, <EAd>

BCLR Rn, <EAd>

<Examples>

BCLR #0, ROL

BCLR #1, @R5

BCLR R6L, @H'FFCO:8

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —
47

BCLR (Bit CLeaR) BCLR
<Instruction Formats>

Register direct BCLR #xx:3, Rd 7 2 0 IMM rd 2

Register indirect BCLR #xx:3,@Rd 7 D 0 rd 0 7 2 0 IMM 0 8

Absolute address BCLR #xx:3,@aa:8 7 F abs 7 2 0 IMM 0 8

Register direct BCLR Rn, Rd 6 2 rn rd 2

Register indirect BCLR Rn, @Rd 7 D 0 rd 0 6 2 rn 0 8

Absolute address BCLR Rn, @aa:8 7 F abs 6 2 rn 0 8

Addressing
mode Mnem. Operands

1st byte

Instruction code No. of
states

2nd byte 3rd byte 4th byte
48

BIAND (Bit Invert AND) BIAND
<Description>

This instruction ANDs the inverse of a specified bit with the carry flag and places the result in

the carry flag. The specified bit can be located in a general register or memory. The bit

number is specified by 3-bit immediate data. The operation is shown schematically below.

The value of the specified bit is not changed.

<Instruction Formats>

*Register direct, register indirect, or absolute addressing.

I H N Z V C

— — — — — — — ↕

<Operation>

C ∧ [¬ (<Bit No.> of <EAd>)] → C

<Assembly-Language Format>

BIAND #xx:3, <EAd>

<Examples>

BIAND #0, R1H

BIAND #2, @R5

BIAND #4, @H'FFDE:8

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: ANDed with the inverse of the specified

bit.

I H N Z V C

— — — — — — — ↕

Register direct BIAND #xx:3, Rd 7 6 1 IMM rd 2

Register indirect BIAND #xx:3,@Rd 7 C 0 rd 0 7 6 1 IMM 0 6

Absolute address BIAND #xx:3,@aa:8 7 E abs 7 6 1 IMM 0 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

Bit No.

Byte data in register or memory<EAd>*→

7 0

C ∧ C

#xx:3

Invert
49

BILD (Bit Invert LoaD) BILD
<Description>

This instruction loads the inverse of a specified bit into the carry flag. The specified bit can be

located in a general register or memory. The bit number is specified by 3-bit immediate data.

The operation is shown schematically below.

The value of the specified bit is not changed.

<Instruction Formats>

*Register direct, register indirect, or absolute addressing.

<Operation>

¬ (<Bit No.> of <EAd>) → C

<Assembly-Language Format>

BILD #xx:3, <EAd>

<Examples>

BILD #3, R4L

BILD #5, @R5

BILD #7, @H'FFA2:8

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Loaded with the inverse of the specified

bit.

I H N Z V C

— — — — — — — ↕

Bit No. 7 0

C

#xx:3

Invert

Byte data in register or memory<EAd>*→

Register direct BILD #xx:3, Rd 7 7 1 IMM rd 2

Register indirect BILD #xx:3,@Rd 7 C 0 rd 0 7 7 1 IMM 0 6

Absolute address BILD #xx:3,@aa:8 7 E abs 7 7 1 IMM 0 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
50

BIOR (Bit Invert OR) BIOR
<Description>

This instruction ORs the inverse of a specified bit with the carry flag and places the result in

the carry flag. The specified bit can be located in a general register or memory. The bit

number is specified by 3-bit immediate data. The operation is shown schematically below.

The value of the specified bit is not changed.

<Instruction Formats>

*Register direct, register indirect, or absolute addressing.

#xx:3
Bit No.

Byte data in register or memory<EAd>*→

7 0

C C

Invert

∧

Register direct BIOR #xx:3, Rd 7 4 1 IMM rd 2

Register indirect BIOR #xx:3,@Rd 7 C 0 rd 0 7 4 1 IMM 0 6

Absolute address BIOR #xx:3,@aa:8 7 E abs 7 4 1 IMM 0 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

<Operation>

C ∨ [¬ (<Bit No.> of <EAd>)] → C

<Assembly-Language Format>

BIOR #xx:3, <EAd>

<Examples>

BIOR #6, R1H

BIOR #3, @R2

BIOR #0, @H'FFF0:8

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: ORed with the inverse of the specified

bit.

I H N Z V C

— — — — — — — ↕
51

BIST (Bit Invert STore) BIST
<Description>

This instruction stores the inverse of the carry flag to a specified bit location in a general

register or memory. The bit number is specified by 3-bit immediate data. The operation is

shown schematically below.

The values of the unspecified bits are not changed.

<Instruction Formats>

* Register direct, register indirect, or absolute addressing.

Bit No. 7 0

C

#xx:3

Invert

Byte data in register or memory<EAd>*→

<Operation>

¬ C → (<Bit No.> of <EAd>)

<Assembly-Language Format>

BIST #xx:3, <EAd>

<Examples>

BIST #0, R0L

BIST #6, @R3

BIST #7, @H'FFBB:8

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

Register direct BIST #xx:3, Rd 6 7 1 IMM rd 2

Register indirect BIST #xx:3,@Rd 7 D 0 rd 0 6 7 1 IMM 0 8

Absolute address BIST #xx:3,@aa:8 7 F abs 6 7 1 IMM 0 8

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
52

BIXOR (Bit Invert eXclusive OR) BIXOR
<Description>

This instruction exclusive-ORs the inverse of a specified bitwith the carry flag and places the

result in the carry flag. The specified bit can be located in a general register or memory. The

bit number is specified by 3-bit immediate data. The operation is shown schematically below.

The value of the specified bit is not changed.

<Instruction Formats>

* Register direct, register indirect, or absolute addressing.

⊕

Bit No.

Byte data in register or memory<EAd>*→

7 0

C C

#xx:3

Invert

Register direct BIXOR #xx:3, Rd 7 5 1 IMM rd 2

Register indirect BIXOR #xx:3,@Rd 7 C 0 rd 0 7 5 1 IMM 0 6

Absolute address BIXOR #xx:3,@aa:8 7 E abs 7 5 1 IMM 0 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

<Operation>

C ⊕ [¬ (<Bit No.> of <EAd>)] → C

<Assembly-Language Format>

BIXOR #xx:3, <EAd>

<Examples>

BIXOR #1, R4L

BIXOR #2, @R5

BIXOR #3, @H'FF60:8

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Exclusive-ORed with the inverse of the

specified bit.

I H N Z V C

— — — — — — — ↕
53

BLD (Bit LoaD) BLD
<Description>

This instruction loads a specified bit into the carry flag. The specified bit can be located in a

general register or memory. The bit number is specified by 3-bit immediate data. The

operation is shown schematically below.

The value of the specified bit is not changed.

<Instruction Formats>

* Register direct, register indirect, or absolute addressing.

Bit No. 7 0

C

#xx:3

Byte data in register or memory<EAd>*→

<Operation>

(<Bit No.> of <EAd>) → C

<Assembly-Language Format>

BLD #xx:3, <EAd>

<Examples>

BLD #1, R3H

BLD #2, @R2

BLD #4, @H'FF90:8

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Loaded with the specified bit.

I H N Z V C

— — — — — — — ↕

Register direct BLD #xx:3, Rd 7 7 0 IMM rd 2

Register indirect BLD #xx:3,@Rd 7 C 0 rd 0 7 7 0 IMM 0 6

Absolute address BLD #xx:3,@aa:8 7 E abs 7 7 0 IMM 0 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
54

BNOT (Bit NOT) BNOT
<Description>

This instruction inverts a specified bit in a general register or memory location. The bit

number is specified by 3-bit immediate data, or by the lower three-bits of a general register.

The operation is shown schematically below.

The bit is not tested before being inverted. The condition code flags are not altered.

*Register direct, register indirect, or absolute addressing.

#xx:3 or Rn
Bit No. 7 0

Invert

Byte data in register or memory<EAd>*→

<Operation>

¬ (<Bit No.> of <EAd>)

→ (<Bit No.> of <EAd>)

<Assembly-Language Format>

BNOT #xx:3, <EAd>

BNOT Rn, <EAd>

<Examples>

BNOT #7, R1H

BNOT R1L, @R6

BNOT #3, @H'FFB4:8

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —
55

BNOT (Bit NOT) BNOT
<Instruction Formats>

Register direct BNOT #xx:3, Rd 7 1 0 IMM rd 2

Register indirect BNOT #xx:3,@Rd 7 D 0 rd 0 7 1 0 IMM 0 8

Absolute address BNOT #xx:3,@aa:8 7 F abs 7 1 0 IMM 0 8

Register direct BNOT Rn, Rd 6 1 rn rd 2

Register indirect BNOT Rn, @Rd 7 D 0 rd 0 6 1 rn 0 8

Absolute address BNOT Rn, @aa:8 7 F abs 6 1 rn 0 8

Addressing
mode Mnem. Operands

1st byte

Instruction code No. of
states

2nd byte 3rd byte 4th byte
56

BOR (Bit inclusive OR) BOR

<Description>

This instruction ORs a specified bit with the carry flag and places the result in the carry flag.

The specified bit can be located in a general register or memory. The bit number is specified

by 3-bit immediate data. The operation is shown schematically below.

The value of the specified bit is not changed.

*Register direct, register indirect, or absolute addressing.

<Operation>

C ∨ (<Bit No.> of <EAd>) → C

<Assembly-Language Format>

BOR #xx:3, <EAd>

<Examples>

BOR #5, R2H

BOR #4, @R1

BOR #5, @H'FFB6:8

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: ORed with the specified bit.

I H N Z V C

— — — — — — — ↕

C C

Bit No. 7 0#xx:3

Byte data in register or memory<EAd>*→

∨

57

BOR (Bit inclusive OR) BOR

<Instruction Formats>

Register direct BOR #xx:3, Rd 7 4 0 IMM rd 2

Register indirect BOR #xx:3,@Rd 7 C 0 rd 0 7 4 0 IMM 0 6

Absolute address BOR #xx:3,@aa:8 7 E abs 7 4 0 IMM 0 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
58

BSET (Bit SET) BSET
<Description>

This instruction sets a specified bit in the destination operand to "1." The bit number can be

specified by 3-bit immediate data, or by the lower three-bits of an 8-bit general register. The

destination operand can be located in a general register or memory.

The specified bit is not tested before being cleared. The condition code flags are not altered.

*Register direct, register indirect, or absolute addressing.

<Operation>

1 → (<Bit No.> of <EAd>)

<Assembly-Language Format>

BSET #xx:3,<EAd>

BSET Rn,<EAd>

<Examples>

BSET #3, R2L

BSET R2H, @R6

BSET #7, @H'FFE4:8

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

1

#xx:3 or Rn

Bit No. 7 0

Byte data in register or memory<EAd>*→
59

BSET (Bit SET) BSET
<Instruction Formats>

Register direct BSET #xx:3, Rd 7 0 0 IMM rd 2

Register indirect BSET #xx:3,@Rd 7 D 0 rd 0 7 0 0 IMM 0 8

Absolute address BSET #xx:3,@aa:8 7 F abs 7 0 0 IMM 0 8

Register direct BSET Rn, Rd 6 0 rn rd 2

Register indirect BSET Rn, @Rd 7 D 0 rd 0 6 0 rn 0 8

Absolute address BSET Rn, @aa:8 7 F abs 6 0 rn 0 8

Addressing
mode Mnem. Operands

1st byte

Instruction code No. of
states

2nd byte 3rd byte 4th byte
60

BSR (Branch to SubRoutine) BSR
<Description>

This instruction pushes the program counter (PC) value onto the stack, then adds a specified

displacement to the program counter value and branches to the resulting address. The program

counter value used is the address of the instruction following the BSR instruction.

The displacement is a signed 8-bit value which must be even. The possible branching range is

–126 to +128 bytes from the address of the BSR instruction.

<Instruction Formats>

<Operation>

PC → @–SP

PC + d:8 → PC

<Assembly-Language Format>

BSR d:8

<Examples>

BSR H'76

<Operand Size>

—

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

PC-relative BSR d:8 5 5 disp 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
61

BST (Bit STore) BST
<Description>

This instruction stores the carry flag to a specified flag location in a general register or

memory. The bit number is specified by 3-bit immediate data. The operation is shown

schematically below.

<Instruction Formats>

* Register direct, register indirect, or absolute addressing.

<Operation>

C → (<Bit No.> of <EAd>)

<Assembly-Language Format>

BST #xx:3, <EAd>

<Examples>

BST #7, R4L

BST #2, @R3

BST #6, @H'FFD1:8

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

Bit No. 7 0

C

#xx:3

Byte data in register or memory<EAd>*→

Register direct BST #xx:3, Rd 6 7 0 IMM rd 2

Register indirect BST #xx:3,@Rd 7 D 0 rd 0 6 7 0 IMM 0 8

Absolute address BST #xx:3,@aa:8 7 F abs 6 7 0 IMM 0 8

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
62

BTST (Bit TeST) BTST
<Description>

This instruction tests a specified bit in a general register or memory location and sets or clears

the Zero flag accordingly. The bit number can be specified by 3-bit immediate data, or by the

lower three bits of an 8-bit general register. The operation is shown schematically below.

The value of the specified bit is not altered.

*Register direct, register indirect, or absolute addressing.

<Operation>

¬ (<Bit No.> of <EAd>) → Z

<Assembly-Language Format>

BTST #xx:3, <EAd>

BTST Rn, <EAd>

<Examples>

BTST #4, R6L

BTST R1H, @R5

BTST #7, @H'FF6C:8

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: See to "1" if the specified bit is zero;

otherwise cleared to "0".

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — ↕ — —

#xx:3 or Rn
Bit No. 7 0

Test

Byte data in register or memory<EAd>*→
63

BTST (Bit TeST) BTST
<Instruction Formats>

Register direct BTST #xx:3, Rd 7 3 0 IMM rd 2

Register indirect BTST #xx:3,@Rd 7 C 0 rd 0 7 3 0 IMM 0 6

Absolute address BTST #xx:3,@aa:8 7 E abs 7 3 0 IMM 0 6

Register direct BTST Rn, Rd 6 3 rn rd 2

Register indirect BTST Rn, @Rd 7 C 0 rd 0 6 3 rn 0 6

Absolute address BTST Rn, @aa:8 7 E abs 6 3 rn 0 6

Addressing
mode Mnem. Operands

1st byte

Instruction code No. of
states

2nd byte 3rd byte 4th byte
64

BXOR (Bit eXclusive OR) BXOR
<Description>

This instruction exclusive-ORs a specified bit with the carry flag and places the result in the

carry flag. The specified bit can be located in a general register or memory. The bit number is

specified by 3-bit immediate data. The operation is shown schematically below.

The value of the specified bit is not changed.

*Register direct, register indirect, or absolute addressing.

<Operation>

C ⊕ (<Bit No.> of <EAd>) → C

<Assembly-Language Format>

BXOR #xx:3, <EAd>

<Examples>

BXOR #4, R6H

BXOR #2, @R0

BXOR #1, @H'FFA0:8

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Exclusive-ORed with the specified bit.

I H N Z V C

— — — — — — — ↕

Bit No.

Byte data in register or memory<EAd>*→

7 0

⊕C C

#xx:3
65

BXOR (Bit eXclusive OR) BXOR
<Instruction Formats>

Register direct BXOR #xx:3, Rd 7 5 0 IMM rd 2

Register indirect BXOR #xx:3,@Rd 7 C 0 rd 0 7 5 0 IMM 0 6

Absolute address BXOR #xx:3,@aa:8 7 E abs 7 5 0 IMM 0 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
66

CMP (CoMPare) (byte) CMP
<Description>

This instruction subtracts an 8-bit source register or immediate data from an 8-bit destination

register and sets the condition code flags according to the result. The destination register is not

altered.

<Instruction Formats>

Immediate CMP.B #xx:8,Rd A rd IMM 2

Register direct CMP.B Rs, Rd 1 C rs rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

<Operation>

Rd – (EAs); set condition code

<Assembly-Language Format>

CMP.B <EAs>, Rd

<Examples>

CMP.B #H'E5, R1H

CMP.B R3L, R4L

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Set to "1" when there is a borrow from

bit 3; otherwise cleared to "0."

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Set to "1" if an overflow occurs;

otherwise cleared to "0."

C: Set to "1" if there is a borrow from bit 7;

otherwise cleared to "0."

I H N Z V C

— — ↕ — ↕ ↕ ↕ ↕
67

CMP (CoMPare) (word) CMP
<Description>

This instruction subtracts a source register from a destination register and sets the condition

code flags according to the result. The destination register is not altered.

<Instruction Formats>

Register direct CMP.W Rs, Rd 1 D 0 rs 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

<Operation>

Rd – Rs; set condition code

<Assembly-Language Format>

CMP.W Rs, Rd

<Examples>

CMP.W R5, R6

<Operand Size>

Word

<Condition Code>

I: Previous value remains unchanged.

H: Set to "1" when there is a borrow from

bit 11; otherwise cleared to "0."

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Set to "1" if an overflow occurs;

otherwise cleared to "0."

C: Set to "1" if there is a borrow from bit

15; otherwise cleared to "0."

I H N Z V C

— — ↕ — ↕ ↕ ↕ ↕
68

DAA (Decimal Adjust Add) DAA

<Description>

Given that the result of an addition operation performed by the ADD.B or ADDX instruction

on 4-bit BCD data is contained in an 8-bit general register and the carry and half-carry flags,

the DAA instruction adjusts the result by adding H'00, H'06, H'60, or H'66 to the general

register according to the table below.

Valid results are not assured if this instruction is executed under conditions other than those

stated above.

<Operation>

Rd (decimal adjust) → Rd

<Assembly-Language Format>

DAA Rd

<Examples>

DAA R5L

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Unpredictable.

N: Set to "1" if the adjusted result is

negative; otherwise cleared to "0."

Z: Set to "1" if the adjusted result is zero;

otherwise cleared to "0."

V: Unpredictable.

C: Set to "1" if there is a carry from bit 7;

otherwise left unchanged.

I H N Z V C

— — * — ↕ ↕ * ↕

0 0 – 9 0 0 – 9 H'00 0
0 0 – 8 0 A – F H'06 0
0 0 – 9 1 0 – 3 H'06 0
0 A – F 0 0 – 9 H'60 1
0 9 – F 0 A – F H'66 1
0 A – F 1 0 – 3 H'66 1
1 0 – 2 0 0 – 9 H'60 1
1 0 – 2 0 A – F H'66 1
1 0 – 3 1 0 – 3 H'66 1

C flag Upper nibble H flag Lower nibble

Value
added

Resulting
C flag

Status before adjustment
69

DAA (Decimal Adjust Add) DAA

<Instruction Formats>

Register direct DAA Rd 0 F 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
70

DAS (Decimal Adjust Subtract) DAS
<Description>

Given that the result of a subtraction operation performed by the SUB.B, SUBX, or NEG

instruction on 4-bit BCD data is contained in an 8-bit general register and the carry and half-

carry flags, the DAA instruction adjusts the result by adding H'00, H'FA, H'A0, or H'9A to the

general register according to the table below.

Valid results are not assured if this instruction is executed under conditions other than those

stated above.

<Operation>

Rd (decimal adjust) → Rd

<Assembly-Language Format>

DAS Rd

<Examples>

DAS R0H

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Unpredictable.

N: Set to "1" if the adjusted result is

negative; otherwise cleared to "0."

Z: Set to "1" if the adjusted result is zero;

otherwise cleared to "0."

V: Unpredictable.

C: Previous value remains unchanged.

I H N Z V C

— — * — ↕ ↕ * —

0 0 – 9 0 0 – 9 H'00 0
0 0 – 8 1 6 – F H'FA 0
1 7 – F 0 0 – 9 H'A0 1
1 6 – F 1 6 – F H'9A 1

C flag Upper nibble H flag Lower nibble

Value
added

Resulting
C flag

Status before adjustment
71

DAS (Decimal Adjust Subtract) DAS

<Instruction Formats>

Register direct DAS Rd 1 F 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
72

DEC (DECrement) DEC
<Description>

This instruction decrements an 8-bit general register and places the result in the 8-bit general

register.

<Instruction Formats>

<Operation>

Rd – 1 → Rd

<Assembly-Language Format>

DEC Rd

<Examples>

DEC R2L

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" if the result is negative;

otherwise cleared to "0."

Z: Set to "1" if the result is zero; otherwise

cleared to "0."

V: Set to "1" if an overflow occurs (the

previous value in Rd was H'80);

otherwise cleared to "0."

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ ↕ —

Register direct DEC Rd 1 A 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
73

DIVXU (DIVide eXtend as Unsigned) DIVXU
<Description>

This instruction divides a 16-bit general register by an 8-bit general register and places the

result in the 16-bit general register. The quotient is placed in the lower byte. The remainder is

placed in the upper byte. The operation is shown schematically below.

Valid results are not assured if division by zero is attempted or an overflow occurs. Division

by zero is indicated in the Zero flag. Overflow can be avoided by the coding shown on the

next page.

<Instruction Formats>

<Operation>

Rd ÷ Rs → Rd

<Assembly-Language Format>

DIVXU Rs, Rd

<Examples>

DIVXU R0L, R1

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" if the divisor is negative;

otherwise cleared to "0."

Z: Set to "1" if the divisor is zero;

otherwise cleared to "0."

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ — —

Rd Rs (RdH)

Dividend ÷ Divisor → Remainder Quotient

16 8 8 8

(RdL)

Rd

Register direct DIVXU Rs, Rd 5 1 rs 0 rd 14

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
74

DIVXU (DIVide eXtend as Unsigned) DIVXU

<Note: DIVXU Overflow>

Since the DIVXU instruction performs 16-bit ÷ 8-bit → 8-bit division, an overflow will occur

if the divisor byte is equal to or less than the upper byte of the dividend. For example, H'FFFF

÷ H'01 → H'FFFF causes an overflow. (The quotient has more than 8 bits.)

Overflows can be avoided by using a subprogram like the following. A work register is

required.

R0L Divisor

R1 Dividend

R1 Remainder Quotient (*1)

R1

R2 H'00 Dividend (High)(*2)

R1 Partial remainderDividend (Low)

R2

R1

R2 (*4)

Dividend

Partial remainderQuotient(High)

Remainder Quotient (Low)

Quotient

(*3)

DIVXU R0L, R1:

MOV.B #H'00, R2H

CMP.B R0L, R1H

BCC L1

DIVXU R0L, R1 (*1)

MOV.B R1L, R2L

BRA L2

L1 MOV.B R1H, R2L (*2)

DIVXU R0L, R2

 MOV.B R2H, R1H (*3)

DIVXU R0L, R1

MOV.B R2L, R2H

MOV.B R1L, R2L

L2 RTS (*4)

To perform
75

EEPMOV (MOVe data to EEPROM) EEPMOV
<Description>

This instruction moves a block of data from the memory location specified in general register

R5 to the memory location specified in general register R6. General register R4L gives the

byte length of the block.

Data are transferred a byte at a time. After each byte transfer, R5 and R6 are incremented and

R4L is decremented. When R4L reaches 0, the transfer ends and the next instruction is

executed. No interrupt requests are accepted during the data transfer.

At the end of this instruction, R4L contains H'00. R5 and R6 contain the last transfer address

+1.

Chips in the H8/300 Series having large on-chip EEPROM memories use this instruction to

write data in the EEPROM. For details, see the hardware manual for the particular chip.

The memory locations specified by general registers R5 and R6 are read before the block

transfer is performed.

<Operation>

if R4L ≠ 0 then

repeat @R5+ → @R6+

R4L – 1 → R4L

until R4L = 0

else next;

<Assembly-Language Format>

EEPMOV

<Examples>

MOV.B #H'20, R4L

MOV.W #H'FEC0, R5

MOV.W #H'6000, R6

EEPMOV

<Operand Size>

—

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —
76

EEPMOV (MOV data to EEPROM) EEPMOV
<Instruction Formats>

* n is the initial value in R4L (0 ≤ n ≤ 255). Although n bytes of data are transferred, memory

is accessed 2(n+1) times, requiring 4(n+1) states.

Notes on EEPMOV Instruction

1. The EEPMOV instruction is a block data transfer instruction. It moves the number of bytes

specified by R4L from the address specified by R5 to the address specified by R6.

2. When setting R4L and R6, make sure that the final destination address (R6 + R4L) does not

exceed H'FFFF. The value in R6 must not change from H'FFFF to H'0000 during execution

of the instruction.

R5 →

R5 + R4L →
← R6

← R6 + R4L

H'FFFF

Not allowed

R5 →

R5 + R4L →
← R6

← R6 + R4L

EEPMOV 7 B 5 C 5 9 8 F 8+4n*

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
77

INC (INCrement) INC
<Description>

This instruction increments an 8-bit general register and places the result in the 8-bit general

register.

<Instruction Formats>

<Operation>

Rd + 1 → Rd

<Assembly-Language Format>

INC Rd

<Examples>

INC R3L

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" if the result is negative;

otherwise cleared to "0."

Z: Set to "1" if the result is zero; otherwise

cleared to "0."

V: Set to "1" if an overflow occurs (the

previous value in Rd was H'7F);

otherwise cleared to "0."

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ ↕ —

Register direct INC Rd 0 A 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
78

JMP (JuMP) JMP
<Description>

This instruction branches unconditionally to a specified destination address.

The destination address must be even.

<Instruction Formats>

Register indirect JMP @Rn 5 9 0 rn 0 4

Absolute address JMP @aa:16 5 A 0 0 abs. 6

Memory indirect JMP @@aa:8 5 B abs. 8

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

<Operation>

(EAd) → PC

<Assembly-Language Format>

JMP <EA>

<Examples>

JMP @R6

JMP @H'2000

JMP @@H'9A

<Operand Size>

—

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —
79

JSR (Jump to SubRoutine) JSR
<Description>

This instruction pushes the program counter onto the stack, then branches to a specified

destination address. The program counter value pushed on the stack is the address of the

instruction following the JSR instruction. The destination address must be even.

<Instruction Formats>

<Operation>

PC → @-SP

(EAd) → PC

<Assembly-Language Format>

JSR <EA>

<Examples>

JSR @R3

JSR @H'1D26

JSR @@H'F0

<Operand Size>

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

Register indirect JSR @Rn 5 D 0 rn 0 6

Absolute address JSR @aa:16 5 E 0 0 abs. 8

Memory indirect JSR @@aa:8 5 F abs. 8

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
80

LDC (LoaD to Control register) LDC
<Description>

This instruction loads the source operand contents into the condition code register (CCR). The

source operand can be an 8-bit general register or 8-bit immediate data. Bits 4 and 6 are

loaded as well as the flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts, including

the nonmaskable interrupt (NMI), are deferred until after the next instruction.

<Instruction Formats>

<Operation>

(EAs) → CCR

<Assembly-Language Format>

LDC <EAs>, CCR

<Examples>

LDC #H'80, CCR

LDC R4H, CCR

<Operand Size>

Byte

<Condition Code>

I: Loaded from the source operand.

H: Loaded from the source operand.

N: Loaded from the source operand.

Z: Loaded from the source operand.

V: Loaded from the source operand.

C: Loaded from the source operand.

I H N Z V C

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

Immediate LDC #xx:8, CCR 0 7 IMM 2

Register direct LDC Rs, CCR 0 3 0 rs 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
81

MOV (MOVe data) (byte) MOV

<Description>

This instruction moves one byte of data from a source register to a destination register and sets

condition code flags according to the data value.

<Instruction Formats>

<Operation>

Rs → Rd

<Assembly-Language Format>

MOV.B Rs, Rd

<Examples>

MOV.B R1L, R2H

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" if the data value is negative;

otherwise cleared to "0."

Z: Set to "1" if the data value is zero;

otherwise cleared to "0."

V: Cleared to "0."

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ 0 —

Register direct MOV.B Rs, Rd 0 C rs rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
82

MOV (MOVe data) (word) MOV
<Description>

This instruction moves one word of data from a source register to a destination register and

sets condition code flags according to the data value.

<Instruction Formats>

<Operation>

Rs → Rd

<Assembly-Language Format>

MOV.W Rs, Rd

<Examples>

MOV.W R3, R4

<Operand Size>

Word

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" if the data value is negative;

otherwise cleared to "0."

Z: Set to "1" if the data value is zero;

otherwise cleared to "0."

V: Cleared to "0."

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ 0 —

Register direct MOV.W Rs, Rd 0 D 0 rs 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
83

MOV (MOVe data) (byte) MOV
<Description>

This instruction moves one byte of data from a source operand to a destination register and

sets condition code flags according to the data value. The source operand can be memory

contents or immediate data.

The MOV.B @R7+, Rd instruction should never be used, because it leaves an odd value in the

stack pointer. This may result in loss of data, since the stack is always accessed a word at a

time at an even address.

<Instruction Formats>

<Operation>

(EAs) → Rd

<Assembly-Language Format>

MOV.B <EAs>, Rd

<Examples>

MOV.B @R1, R2H

MOV.B @R5+, R0L

MOV.B @H'FFF1, R1H

MOV.B #H'A5, R3L

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" if the data value is negative;

otherwise cleared to "0."

Z: Set to "1" if the data value is zero;

otherwise cleared to "0."

V: Cleared to "0."

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ 0 —

Immediate MOV.B #xx:8, Rd F rd IMM 2

Register indirect MOV.B @RS, Rd 6 8 0 rs rd 4

Register indirect
with displacement MOV.B @(d:16,Rs),Rd 6 E 0 rs rd disp. 6

Register indirect
with post-increment MOV.B @Rs+, Rd 6 C 0 rs rd 6

Absolute address MOV.B @aa:8, Rd 2 rd abs 4

Absolute address MOV.B @aa:16, Rd 6 A 0 rd abs. 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
84

MOV (MOVe data) (word) MOV
<Description>

This instruction moves one word of data from a source operand to a destination register and

sets condition code flags according to the data value.

If the source operand is in memory, it must be located at an even address.

MOV.W @R7+, Rd is identical in machine language to POP.W Rd.

<Instruction Formats>

Immediate MOV.W #xx:16, Rd 7 9 0 0 rd IMM 4

Register indirect MOV.W @RS, Rd 6 9 0 rs 0 rd 4

Register indirect
with displacement MOV.W @(d:16,Rs),Rd 6 F 0 rs 0 rd disp. 6

Register indirect
with post-increment MOV.W @Rs+, Rd 6 D 0 rs 0 rd 6

Absolute address MOV.W @aa:16, Rd 6 B 0 0 rd abs. 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

<Operation>

(EAs) → Rd

<Assembly-Language Format>

MOV.W <EAs>, Rd

<Examples>

MOV.W @R3, R4

MOV.W @(H'0004,R5), R6

MOV.W @R7+, R0

MOV.W #H'B00A, R1

<Operand Size>

Word

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" if the data value is negative;

otherwise cleared to "0."

Z: Set to "1" if the data value is zero;

otherwise cleared to "0."

V: Cleared to "0."

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ 0 —
85

MOV (MOVe data) (byte) MOV
<Description>

This instruction moves one byte of data from a source register to memory and sets condition

code flags according to the data value.

The MOV.B Rs, @–R7 instruction should never be used, because it leaves an odd value in the

stack pointer. This may result in loss of data, since the stack is always accessed a word at a

time at an even address.

The instruction MOV.B RnH, @–Rn or MOV.B RnL, @–Rn decrements register Rn, then

moves the upper or lower byte of the decremented result to memory.

<Instruction Formats>

<Operation>

Rs → (EAd)

<Assembly-Language Format>

MOV.B Rs, <EAd>

<Examples>

MOV.B R1L, @R0

MOV.B R3H, @(H'8001, R0)

MOV.B R5H, @–R4

MOV.B R6L, @H'FE77

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" if the data value is negative;

otherwise cleared to "0."

Z: Set to "1" if the data value is zero;

otherwise cleared to "0."

V: Cleared to "0."

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ 0 —

Register indirect MOV.B Rs, @Rd 6 8 1 rd rs 4

Register indirect Rs,
with displacement MOV.B @(d:16,Rd) 6 E 1 rd rs disp. 6

Register indirect
with pre-decrement MOV.B Rs, @-Rd 6 C 1 rs rs 6

Absolute address MOV.B Rs,@aa:8 3 rs abs 4

Absolute address MOV.B Rs,@aa:16 6 A 8 rs abs. 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
86

MOV (MOVe data) (word) MOV
<Description>

This instruction moves one word of data from a general register to memory and sets condition

code flags according to the data value.

The destination address in memory must be even.

MOV.W Rs, @–R7 is identical in machine language to PUSH.W Rs.

The instruction MOV.W Rn, @–Rn decrements register Rn by 2, then moves the decremented

result to memory.

<Instruction Formats>

<Operation>

Rs → (EAd)

<Assembly-Language Format>

MOV.W Rs, <EAd>

<Examples>

MOV.W R3, @R4

MOV.W R2, @(H,0030,R5)

MOV.W R1, @–R7

MOV.W R0, @H'FED6

<Operand Size>

Word

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" if the data value is negative;

otherwise cleared to "0."

Z: Set to "1" if the data value is zero;

otherwise cleared to "0."

V: Cleared to "0."

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ 0 —

Register indirect MOV.W Rs, @Rd 6 9 1 rd 0 rs 4

Register indirect Rs,
with displacement MOV.W @(d:16, Rd) 6 F 1 rd 0 rs disp. 6

Register indirect
with pre-decrement MOV.W Rs, @-Rd 6 D 1 rd 0 rs 6

Absolute address MOV.W Rs, @aa:16 6 B 8 0 rs abs. 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
87

MOVFPE (MOVe data From Peripheral with E clock) MOVFPE

<Description>

This instruction moves one byte of data from an absolute address location to a destination

register, and sets the condition code flags according to the data value. The transfer is

performed in synchronization with the E (enable) clock used by peripheral devices. The

transfer requires 9 to 16 states, so the execution time is variable. For further information on

basic timing, See the each Hardware Manuals .

This instruction should not be used with chips not having an E clock output pin or in single-

chip mode.

When the source operand is located in on-chip memory or the on-chip register field, the

MOVFPE instruction is identical in operation to MOV.B @aa:16, Rd.

Note that only 16-bit absolute addressing can be used, and word data cannot be transferred.

<Instruction Formats>

Absolute address MOVFPE @aa:16, Rd 6 A 4 rd abs. 13-20

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

<Operation>

synchronization with the E clock

(EAs) → Rd

<Assembly-Language Format>

MOVFPE @aa:16, Rd

<Examples>

MOVFPE @H'FF81, R0H

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" if the data value is negative;

otherwise cleared to "0."

Z: Set to "1" if the data value is zero;

otherwise cleared to "0."

V: Cleared to "0."

C: Previous value remains unchanged

I H N Z V C

— — — — ↕ ↕ 0 —
88

MOVTPE (MOVe data To Peripheral with E clock) MOVTPE
<Description>

This instruction moves one byte of data from a source register to an absolute address location,

and sets the condition code flags according to the data value. The transfer is performed in

synchronization with the E (enable) clock used by peripheral devices. The transfer requires 9

to 16 states, so the execution time is variable. For further information on basic timing, see the

each Hardware Manuals .

This instruction should not be used with chips not having an E clock output pin or in single-

chip mode.

When the destination operand is located in on-chip memory or the on-chip register field, the

MOVTPE instruction is identical in operation to MOV.B Rs, @aa:16.

Note that only 16-bit absolute addressing can be used, and word data cannot be transferred.

<Instruction Formats>

<Operation>

synchronization with the E clock

Rs → (EAd)

<Assembly-Language Format>

MOVTPE Rs, @aa:16

<Examples>

MOVTPE R2L, @H'FF8D

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" if the data value is negative;

otherwise cleared to "0."

Z: Set to "1" if the data value is zero;

otherwise cleared to "0."

V: Cleared to "0."

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ 0 —

Absolute address MOVTPE Rs, @aa:16 6 A C rs abs. 13-20

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
89

MULXU (MULtiply eXtend as Unsigned) MULXU
<Description>

This instruction performs 8-bit × 8-bit → 16-bit multiplication. It multiplies a destination

register by a source register and places the result in the destination register. The source

register is an 8-bit register. The destination register is a 16-bit register containing the data to

be multiplied in the lower byte. (The upper byte is ignored). The result is placed in both bytes

of the destination register. The operation is shown schematically below.

The multiplier can occupy either the upper or lower byte of the source register.

<Instruction Formats>

<Operation>

Rd × Rs → Rd

<Assembly-Language Format>

MULXU Rs, Rd

<Examples>

MULXU R0H, R3

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

Rd Rs Rd

Don't-care × Multiplier → Product

8 8 16

Multiplicand

Register direct MULXU Rs, Rd 5 0 rs 0 rd 14

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
90

NEG (NEGate) NEG
<Description>

This instruction replaces the contents of an 8-bit general register with its two's complement.

(subtracts the register contents from H'00).

If the original contents of the destination register was H'80, the register value remains H'80

and the overflow flag is set.

<Instruction Formats>

<Operation>

0 – Rd → Rd

<Assembly-Language Format>

NEG Rd

<Examples>

NEG R0L

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Set to "1" when there is a borrow from

bit 3; otherwise cleared to "0."

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Set to "1" if an overflow occurs (the

previous contents of the destination

register was H'80); otherwise cleared to

"0."

C: Set to "1" if there is a borrow from bit 7

(the previous contents of the destination

register was not H'00); otherwise

cleared to "0."

I H N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Register direct NEG Rd 1 7 8 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
91

NOP (No OPeration) NOP
<Description>

This instruction only increments the program counter, causing the next instruction to be

executed. The internal state of the CPU does not change.

The NOP instruction can be used to fill in gaps in programs, or for software synchronization.

<Instruction Formats>

NOP 0 0 0 0 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

<Operation>

PC + 2 → PC

<Assembly-Language Format>

NOP

<Examples>

NOP

<Operand Size>

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —
92

NOT (NOT = logical complement) NOT
<Description>

This instruction replaces the contents of an 8-bit general register with its one's complement

(subtracts the register contents from H'FF).

<Instruction Formats>

<Operation>

¬ Rd → Rd

<Assembly-Language Format>

NOT Rd

<Examples>

NOT R4L

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" if the result is negative;

otherwise cleared to "0."

Z: Set to "1" if the result is zero; otherwise

cleared to "0."

V: Cleared to "0."

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ 0 —

Register direct NOT Rd 1 7 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
93

OR (inclusive OR logical) OR
<Description>

This instruction ORs the source operand with the contents of an 8-bit general register and

places the result in the general register .

The source operand can be an 8-bit register value or immediate byte data.

<Instruction Formats>

<Operation>

Rd ∨ (EAs) → Rd

<Assembly-Language Format>

OR <EAs>, Rd

<Examples>

OR R2H, R3H

OR #H'C0, R0H

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Cleared to "0."

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ 0 —

Immediate OR #xx:8, Rd C rd IMM 2

Register direct OR Rs, Rd 1 4 rs rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code No. of
states

2nd byte 3rd byte 4th byte
94

ORC (inclusive OR Control register) ORC
<Description>

This instruction ORs the condition code register (CCR) with immediate data and places the

result in the condition code register. Bits 6 and 4 are ORed as well as the flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts, including

the nonmaskable interrupt (NMI), are deferred until after the next instruction.

<Instruction Formats>

<Operation>

CCR ∨ #IMM → CCR

<Assembly-Language Format>

ORC #xx:8, CCR

<Examples>

ORC #H'80, CCR

<Operand Size>

Byte

<Condition Code>

I: ORed with bit 7 of the immediate data.

H: ORed with bit 5 of the immediate data.

N: ORed with bit 3 of the immediate data.

Z: ORed with bit 2 of the immediate data.

V: ORed with bit 1 of the immediate data.

C: ORed with bit 0 of the immediate data.

I H N Z V C

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

Immediate ORC #xx:8, CCR 0 4 IMM 2

Addressing
mode Mnem. Operands

1st byte

Instruction code No. of
states

2nd byte 3rd byte 4th byte
95

POP (POP data) POP

<Description>

This instruction pops data from the stack to a 16-bit general register and sets condition code

flags according to the data value.

POP.W Rn is identical in machine language to MOV.W @SP+, Rn.

<Instruction Formats>

<Operation>

@SP+ → Rn

<Assembly-Language Format>

POP Rn

<Examples>

POP R1

<Operand Size>

Word

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" if the data value is negative;

otherwise cleared to "0."

Z: Set to "1" if the data value is zero;

otherwise cleared to "0."

V: Cleared to "0."

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ 0 —

POP Rd 6 D 7 0 rn 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
96

PUSH (PUSH data) PUSH
<Description>

This instruction pushes data from a 16-bit general register onto the stack and sets condition

code flags according to the data value.

PUSH.W Rn is identical in machine language to MOV.W Rn, @–SP.

<Instruction Formats>

PUSH Rs 6 D F 0 rn 6

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

<Operation>

Rn → @–SP

<Assembly-Language Format>

PUSH Rn

<Examples>

PUSH R2

<Operand Size>

Word

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" if the data value is negative;

otherwise cleared to "0."

Z: Set to "1" if the data value is zero;

otherwise cleared to "0."

V: Cleared to "0."

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ 0 —
97

ROTL (ROTate Left) ROTL
<Description>

This instruction rotates an 8-bit general register one bit to the left. The most significant bit is

rotated to the least significant bit, and also copied to the carry flag.

The operation is shown schematically below.

<Instruction Formats>

<Operation>

Rd (rotated left) → Rd

<Assembly-Language Format>

ROTL Rd

<Examples>

ROTL R2L

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" if the result is negative;

otherwise cleared to "0."

Z: Set to "1" if the result is zero; otherwise

cleared to "0."

V: Cleared to "0."

C: Receives the previous value in bit 7.

I H N Z V C

— — — — ↕ ↕ 0 ↕

Register direct ROTL Rd 1 2 8 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

C Bit 7 Bit 0

∧ ∧
MSB LSB
98

ROTR (ROTate Right) ROTR
<Description>

This instruction rotates an 8-bit general register one bit to the right. The least significant bit is

rotated to the most significant bit, and also copied to the carry flag.

The operation is shown schematically below.

<Instruction Formats>

<Operation>

Rd (rotated right) → Rd

<Assembly-Language Format>

ROTR Rd

<Examples>

ROTR R5L

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" if the result is negative;

otherwise cleared to "0."

Z: Set to "1" if the result is zero; otherwise

cleared to "0."

V: Cleared to "0."

C: Receives the previous value in bit 0.

I H N Z V C

— — — — ↕ ↕ 0 ↕

∧

CBit 7 Bit 0

∧
MSB LSB

Register direct ROTR Rd 1 3 8 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
99

ROTXL (ROTate with eXtend carry Left) ROTXL
<Description>

This instruction rotates an 8-bit general register one bit to the left through the carry flag. The

carry flag is rotated into the least significant bit of the register. The most significant bit rotates

into the carry flag.

The operation is shown schematically below.

<Instruction Formats>

<Operation>

Rd (rotated with carry left) → Rd

<Assembly-Language Format>

ROTXL Rd

<Examples>

ROTXL R1H

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" if the result is negative;

otherwise cleared to "0."

Z: Set to "1" if the result is zero; otherwise

cleared to "0."

V: Cleared to "0."

C: Receives the previous value in bit 7.

I H N Z V C

— — — — ↕ ↕ 0 ↕

Register direct ROTXL Rd 1 2 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

C Bit 7 Bit 0

MSB LSB
100

ROTXR (ROTate with eXtend carry Right) ROTXR
<Description>

This instruction rotates an 8-bit general register one bit to the right through the carry flag. The

least significant bit is rotated into the carry flag. The carry flag rotates into the most

significant bit.

The operation is shown schematically below

<Instruction Formats>

<Operation>

Rd (rotated with carry right) → Rd

<Assembly-Language Format>

ROTXR Rd

<Examples>

ROTXR R5L

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" if the result is negative;

otherwise cleared to "0."

Z: Set to "1" if the result is zero; otherwise

cleared to "0."

V: Cleared to "0."

C: Receives the previous value in bit 0.

I H N Z V C

— — — — ↕ ↕ 0 ↕

∧

CBit 7 Bit 0

∧ ∧

MSB LSB

Register direct ROTXR Rd 1 3 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
101

RTE (ReTurn from Exception) RTE
<Description>

This instruction returns from an interrupt-handling routine. It pops the condition code register

(CCR) and program counter (PC) from the stack. Program execution continues from the

address restored to the program counter.

The CCR and PC contents at the time of execution of this instruction are lost.

The CCR is one byte in size, but it is popped from the stack as a word (in which the lower 8

bits are ignored).

This instruction therefore adds 4 to the value of the stack pointer (R7).

<Instruction Formats>

<Operation>

@SP+ → CCR

@SP+ → PC

<Assembly-Language Format>

RTE

<Examples>

RTE

<Operand Size>

—

<Condition Code>

I: Restored from stack.

H: Restored from stack.

N: Restored from stack.

Z: Restored from stack.

V: Restored from stack.

C: Restored from stack.

I H N Z V C

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

RTE 5 6 7 0 10

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
102

RTS (ReTurn from Subroutine) RTS
<Description>

This instruction returns from a subroutine. It pops the program counter (PC) from the stack.

Program execution continues from the address restored to the program counter.

The PC contents at the time of execution of this instruction are lost.

<Instruction Formats>

<Operation>

@SP+ → PC

<Assembly-Language Format>

RTS

<Examples>

RTS

<Operand Size>

—

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

RTS 5 4 7 0 8

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
103

SHAL (SHift Arithmetic Left) SHAL
<Description>

This instruction shifts an 8-bit general register one bit to the left. The most significant bit

shifts into the carry flag, and the least significant bit is cleared to "0."

The operation is shown schematically below.

The SHAL instruction is identical to the SHLL instruction except for its effect on the overflow

(V) flag.

<Instruction Formats>

<Operation>

Rd (shifted arithmetic left) → Rd

<Assembly-Language Format>

SHAL Rd

<Examples>

SHAL R5H

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" if the result is negative;

otherwise cleared to "0."

Z: Set to "1" if the result is zero; otherwise

cleared to "0."

V: Set to "1" if an overflow occurs;

otherwise cleared to "0."

C: Receives the previous value in bit 7.

I H N Z V C

— — — — ↕ ↕ ↕ ↕

C Bit 7 Bit 0

∧ ∧
0

∧
MSB LSB

Register direct SHAL Rd 1 0 8 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
104

SHAR (SHift Arithmetic Right) SHAR
<Description>

This instruction shifts an 8-bit general register one bit to the right. The most significant bit

remains unchanged. The sign of the result does not change. The least significant bit shifts into

the carry flag.

The operation is shown schematically below.

<Instruction Formats>

<Operation>

Rd (shifted arithmetic right) → Rd

<Assembly-Language Format>

SHAR Rd

<Examples>

SHAR R5H

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" if the result is negative;

otherwise cleared to "0."

Z: Set to "1" if the result is zero; otherwise

cleared to "0."

V: Cleared to "0."

C: Receives the previous value in bit 0.

I H N Z V C

— — — — ↕ ↕ 0 ↕

∧

CBit 7 Bit 0

∧

∧

MSB LSB

Register direct SHAR Rd 1 1 8 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
105

SHLL (SHift Logical Left) SHLL
<Description>

This instruction shifts an 8-bit general register one bit to the left. The least significant bit is

cleared to "0." The most significant bit shifts into the carry flag.

The operation is shown schematically below.

The SHLL instruction is identical to the SHAL instruction except for its effect on the overflow

(V) flag.

<Instruction Formats>

<Operation>

Rd (shifted logical left) → Rd

<Assembly-Language Format>

SHLL Rd

<Examples>

SHLL R2L

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" if the result is negative;

otherwise cleared to "0."

Z: Set to "1" if the result is zero; otherwise

cleared to "0."

V: Cleared to "0."

C: Receives the previous value in bit 0.

I H N Z V C

— — — — ↕ ↕ 0 ↕

C Bit 7 Bit 0

∧ ∧
0

∧
MSB LSB

Register direct SHLL Rd 1 0 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
106

SHLR (SHift Logical Right) SHLR
<Description>

This instruction shifts an 8-bit general register one bit to the right. The most significant bit is

cleared to 0. The least significant bit shifts into the carry flag.

The operation is shown schematically below.

<Instruction Formats>

<Operation>

Rd (shifted logical right) → Rd

<Assembly-Language Format>

SHLR Rd

<Examples>

SHLR R3L

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" if the result is negative;

otherwise cleared to "0."

Z: Set to "1" if the result is zero; otherwise

cleared to "0."

V: Cleared to "0."

C: Receives the previous value in bit 0.

I H N Z V C

— — — — ↕ ↕ 0 ↕

CBit 7 Bit 0

∧∧

∧

0

MSB LSB

Register direct SHLR Rd 1 1 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
107

SLEEP (SLEEP) SLEEP

<Description>

When the SLEEP instruction is executed, the CPU enters a power-down mode. Its internal

state remains unchanged, but the CPU stops executing instructions and waits for an exception-

handling request (interrupt or reset). When it receives an exception-handling request, the CPU

exits the power-down mode and begins the exception-handling sequence.

If the interrupt mask (I) bit is set to "1," the power-down mode can be released only by a

nonmaskable interrupt (NMI) or reset.

For information about the power-down modes, see the Hardware Manual for the particular

chip.

<Instruction Formats>

<Operation>

Program execution state → power-

down mode

<Assembly-Language Format>

SLEEP

<Examples>

SLEEP

<Operand Size>

—

<Condition Code

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

SLEEP 0 1 8 0 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
108

STC (STore from Control register) STC
<Description>

This instruction copies the condition code register (CCR) to a specified general register. Bits 6

and 4 are copied as well as the flag bits.

<Instruction Formats>

<Operation>

CCR → Rd

<Assembly-Language Format>

STC CCR, Rd

<Examples>

STC CCR, R6H

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

Register direct STC CCR, Rd 0 2 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
109

SUB (SUBtract binary) (byte) SUB

<Description>

This instruction subtracts an 8-bit source register from an 8-bit destination register and places

the result in the destination register.

Only register direct addressing is supported. To subtract immediate data it is necessary to use

the SUBX.B instruction, first setting the zero flag to "1" and clearing the carry flag to "0".

The following codings can also be used to subtract nonzero immediate data.

(1) ORC #H'05, CCR (2) ADD #(0 – Imm), Rd

SUBX #(Imm – 1), Rd XORC #H'01, CCR

<Operation>

Rd – Rs → Rd

<Assembly-Language Format>

SUB.B Rs, Rd

<Examples>

SUB.B R0L, R2L

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Set to "1" when there is a borrow from

bit 3; otherwise cleared to "0."

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Set to "1" if an overflow occurs;

otherwise cleared to "0."

C: Set to "1" if there is a borrow from bit 7;

otherwise cleared to "0."

I H N Z V C

— — ↕ — ↕ ↕ ↕ ↕

110

SUB (SUBtract binary) (byte) SUB

<Instruction Formats>

Register direct SUB.B Rs, Rd 1 8 rs rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
111

SUB (SUBtract binary) (word) SUB
<Description>

This instruction subtracts a 16-bit source register from a 16-bit destination register and places

the result in the destination register.

<Instruction Formats>

Register direct SUB.W Rs, Rd 1 9 0 rs 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte

<Operation>

Rd - Rs → Rd

<Assembly-Language Format>

SUB.W Rs, Rd

<Examples>

SUB.W R0, R1

<Operand Size>

Word

<Condition Code>

I: Previous value remains unchanged.

H: Set to "1" when there is a borrow from

bit 11; otherwise cleared to "0."

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Set to "1" if an overflow occurs;

otherwise cleared to "0."

C: Set to "1" if there is a borrow from bit

15; otherwise cleared to "0."

I H N Z V C

— — ↕ — ↕ ↕ ↕ ↕
112

SUBS (SUBtract with Sign extension) SUBS
<Description>

This instruction subtracts the immediate value 1 or 2 from word data in a general register.

Differing from the SUB instruction, it does not affect the condition code flags.

The SUBS instruction does not permit byte operands.

<Instruction Formats>

<Operation>

Rd – 1 → Rd

Rd – 2 → Rd

<Assembly-Language Format>

SUBS #1, Rd

SUBS #2, Rd

<Examples>

SUBS #1, R3

SUBS #2, R5

<Operand Size>

Word

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.

I H N Z V C

— — — — — — — —

Register direct SUBS #1, Rd 1 B 0 0 rd 2

Register direct SUBS #2, Rd 1 B 8 0 rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
113

SUBX (SUBtract with eXtend carry) SUBX
<Description>

This instruction subtracts the source operand and carry flag from the contents of an 8-bit

general register and places the result in the general register.

The source operand can be an 8-bit register value or immediate byte data.

<Instruction Formats>

<Operation>

Rd – (EAs) – C → Rd

<Assembly-Language Format>

SUBX <EAs>, Rd

<Examples>

SUBX R0L, R3L

SUBX #H'32, R5H

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Set to "1" if there is a borrow from bit 3;

otherwise cleared to "0."

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Previous value remains unchanged when

the result is zero; otherwise cleared to

"0."

V: Set to "1" if an overflow occurs;

otherwise cleared to "0."

C: Set to "1" if there is a borrow from bit 7;

otherwise cleared to "0."

I H N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Immediate SUBX #xx:8, Rd B rd IMM 2

Register direct SUBX Rs, Rd 1 E rs rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
114

XOR (eXclusive OR logical) XOR
<Description>

This instruction exclusive-ORs the source operand with the contents of an 8-bit general

register and places the result in the general register.

The source operand can be an 8-bit register value or immediate byte data.

<Instruction Formats>

<Operation>

Rd ⊕ (EAs) → Rd

<Assembly-Language Format>

XOR <EAs>, Rd

<Examples>

XOR R0H, R1H

XOR #H'F0, R2L

<Operand Size>

Byte

<Condition Code>

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to "1" when the result is negative;

otherwise cleared to "0."

Z: Set to "1" when the result is zero;

otherwise cleared to "0."

V: Cleared to "0."

C: Previous value remains unchanged.

I H N Z V C

— — — — ↕ ↕ 0 —

Immediate XOR #xx:8, Rd D rd IMM 2

Register direct XOR Rs, Rd 1 5 rs rd 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
115

XORC (eXclusive OR Control register) XORC
<Description>

This instruction exclusive-ORs the condition code register (CCR) with immediate data and

places the result in the condition code register. Bits 6 and 4 are exclusive-ORed as well as the

flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts, including

the nonmaskable interrupt (NMI), are deferred until after the next instruction.

<Instruction Formats>

<Operation>

CCR ⊕ #IMM → CCR

<Assembly-Language Format>

XORC #xx:8, CCR

<Examples>

XORC #H'50, CCR

<Operand Size>

Byte

<Condition Code>

I: Exclusive-ORed with bit 7 of the

immediate data.

H: Exclusive-ORed with bit 5 of the

immediate data.

N: Exclusive-ORed with bit 3 of the

immediate data.

Z: Exclusive-ORed with bit 2 of the

immediate data.

V: Exclusive-ORed with bit 1 of the

immediate data.

C: Exclusive-ORed with bit 0 of the

immediate data.

I H N Z V C

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

Immediate XORC #xx:8, CCR 0 5 IMM 2

Addressing
mode Mnem. Operands

1st byte

Instruction code
No. of
states

2nd byte 3rd byte 4th byte
116

*1 The MOVFPE and MOVTPE instructions are identical to MOV instructions in the first byte and first bit of the second byte (bits 15 to 7 of the instruction word). The PUSH and POP
instructions are identical in machine language to MOV instructions.

*2 The BT, BF, BHS, and BLO instructions are identical in machine language to BRA, BRN, BCC, and BCS, respectively.

HI
LO 0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

NOP SLEEP STC LDC ORC XORC ANDC LDC ADD INC ADDS MOV ADDX DAA

SHLL
SHAL

SHLR
SHAR

ROTXL
ROTL

ROTXR
ROTR

NOT
NEGOR XOR AND SUB DEC SUBS CMP SUBX DAS

MOV

BRA BRN BHI BLS BCC BCS BNE BEQ BVS BPL BMI BLT BGT BLE

MULXU DIVXU RTS BSR RTE JMP JSR

BVC BGE

BSET BNOT BCLR BTST MOV

MOV EEPMOV

ADD

ADDX

CMP

SUBX

OR

XOR

AND

MOV

BXOR
BIXOR

BAND
BIAND

BOR
BIOR

BLD
BILD

BST
BIST

Bit manipulation instruction

*1

*2 *2 *2 *2

117

Appendix A. Operation Code Map
This table is a map of the operation codes contained in the first byte of the instruction code (bits 15 to 8 of the first instruction word).
Some pairs of instructions have identical first bytes. These instructions are differentiated by the first bit of the second byte (bit 7 of the first
instruction word).

Instruction when first bit of byte 2 (bit 7 of first instruction word) is "0."
Instruction when first bit of byte 2 (bit 7 of first instruction word) is "1."

118

MOV.B #xx:8,Rd B #xx:8 → Rd8 2 – – ◊ ◊ 0 – 2

MOV.B Rs,Rd B Rs8 → Rd8 2 – – ◊ ◊ 0 – 2

MOV.B @Rs,Rd B @Rs16 → Rd8 2 – – ◊ ◊ 0 – 4

MOV.B @(d:16,Rs),Rd B @(d:16,Rs16)→ Rd8 4 – – ◊ ◊ 0 – 6

MOV.B @Rs+,Rd B @Rs16 → Rd8 2 – – ◊ ◊ 0 – 6

Rs16+1 → Rs16

MOV.B @aa:8,Rd B @aa:8 → Rd8 2 – – ◊ ◊ 0 – 4

MOV.B @aa:16,Rd B @aa:16 → Rd8 4 – – ◊ ◊ 0 – 6

MOV.B Rs,@Rd B Rs8 → @Rd16 2 – – ◊ ◊ 0 – 4

MOV.B Rs,@(d:16,Rd) B Rs8 → @(d:16,Rd16) 4 – – ◊ ◊ 0 – 6

MOV.B Rs,@–Rd B Rd16–1 → Rd16 2 – – ◊ ◊ 0 – 6

Rs8 → @Rd16

MOV.B Rs,@aa:8 B Rs8 → @aa:8 2 – – ◊ ◊ 0 – 4

MOV.B Rs,@aa:16 B Rs8 → @aa:16 4 – – ◊ ◊ 0 – 6

MOV.W #xx:16,Rd W #xx:16 → Rd 4 – – ◊ ◊ 0 – 4

MOV.W Rs,Rd W Rs16 → Rd16 2 – – ◊ ◊ 0 – 2

MOV.W @Rs,Rd W @Rs16 → Rd16 2 – – ◊ ◊ 0 – 4

MOV.W @(d:16,Rs),Rd W @(d:16,Rs16) → Rd16 4 – – ◊ ◊ 0 – 6

MOV.W @Rs+,Rd W @Rs16 → Rd16 2 – – ◊ ◊ 0 – 6

Rs16+2 → Rs16

MOV.W @aa:16,Rd W @aa:16 → Rd16 4 – – ◊ ◊ 0 – 6

MOV.W Rs,@Rd W Rs16 → @Rd16 2 – – ◊ ◊ 0 – 4

MOV.W Rs,@(d:16,Rd) W Rs16 → @(d:16,Rd16) 4 – – ◊ ◊ 0 – 6

MOV.W Rs,@–Rd W Rd16–2 → Rd16 2 – – ◊ ◊ 0 – 6

Rs16 → @Rd16

MOV.W Rs, @aa:16 W Rs16 → @aa:16 4 – – ◊ ◊ 0 – 6

POP Rd W @SP → Rd16 2 – – ◊ ◊ 0 – 6

SP+2 → SP

PUSH Rs W SP–2 → SP 2 – – ◊ ◊ 0 – 6

Rs16 → @SP

MOVFPE @aa:16,Rd B Not supported

MOVTPE Rs,@aa:16 B Not supported

EEPMOV – if R4L≠0 then 4 – – – – – – √

 Repeat @R5 → @R6
 R5+1 → R5
 R6+1 → R6
 R4L–1 → R4L

 Until R4L=0

else next

Appendix B. Instruction Set List

 I H N Z V C

Mnemonic Operation Condition code

Addressing mode/
instruction length

S
iz

e

#x
x:

8/
16

R
n

@
R

n
@

(d
:1

6,
 R

n)
@

-R
n

/@
R

n
+

@
aa

:8
/1

6

@
(d

:8
,

P
C

)

@
@

aa

Im
pl

ie
d

N
o.

 o
f

S
ta

te
s*

119

ADD.B #xx:8,Rd B Rd8+#xx:8 → Rd8 2 – ◊ ◊ ◊ ◊ ◊ 2

ADD.B Rs,Rd B Rd8+Rs8 → Rd8 2 – ◊ ◊ ◊ ◊ ◊ 2

ADD.W Rs,Rd W Rd16+Rs16 → Rd16 2 – ➀ ◊ ◊ ◊ ◊ 2

ADDX.B #xx:8,Rd B Rd8+#xx:8 +C → Rd8 2 – ◊ ◊ ➁ ◊ ◊ 2

ADDX.B Rs,Rd B Rd8+Rs8 +C → Rd8 2 – ◊ ◊ ➁ ◊ ◊ 2

ADDS.W #1,Rd W Rd16+1 → Rd16 2 – – – – – – 2

ADDS.W #2,Rd W Rd16+2 → Rd16 2 – – – – – – 2

INC.B Rd B Rd8+1 → Rd8 2 – – ◊ ◊ ◊ – 2

DAA.B Rd B Rd8 decimal adjust → Rd8 2 – * ◊ ◊ * ➂ 2

SUB.B Rs,Rd B Rd8–Rs8 → Rd8 2 – ◊ ◊ ◊ ◊ ◊ 2

SUB.W Rs,Rd W Rd16–Rs16 → Rd16 2 – ➀ ◊ ◊ ◊ ◊ 2

SUBX.B #xx:8,Rd B Rd8–#xx:8 –C → Rd8 2 – ◊ ◊ ➁ ◊ ◊ 2

SUBX.B Rs,Rd B Rd8–Rs8 –C → Rd8 2 – ◊ ◊ ➁ ◊ ◊ 2

SUBS.W #1,Rd W Rd16–1 → Rd16 2 – – – – – – 2

SUBS.W #2,Rd W Rd16–2 → Rd16 2 – – – – – – 2

DEC.B Rd B Rd8–1 → Rd8 2 – – ◊ ◊ ◊ – 2

DAS.B Rd B Rd8 decimal adjust → Rd8 2 – * ◊ ◊ * – 2

NEG.B Rd B 0–Rd → Rd 2 – ◊ ◊ ◊ ◊ ◊ 2

CMP.B #xx:8,Rd B Rd8–#xx:8 2 – ◊ ◊ ◊ ◊ ◊ 2

CMP.B Rs,Rd B Rd8–Rs8 2 –◊ ◊ ◊ ◊ ◊ 2

CMP.W Rs,Rd W Rd16–Rs16 2 –➀ ◊ ◊ ◊ ◊ 2

MULXU.B Rs,Rd B Rd8×Rs8 → Rd16 2 – – – – – – 14

DIVXU.B Rs,Rd B Rd16÷Rs8 → Rd16 2 – – ≈ ∆ – – 14

(RdH:remainder, RdL:quotient)

AND.B #xx:8,Rd B Rd8∧#xx:8 → Rd8 2 – – ◊ ◊ 0 – 2

AND.B Rs,Rd B Rd8∧Rs8 → Rd8 2 – – ◊ ◊ 0 – 2

OR.B #xx:8,Rd B Rd8∨#xx:8 → Rd8 2 – – ◊ ◊ 0 – 2

OR.B Rs,Rd B Rd8∨Rs8 → Rd8 2 – – ◊ ◊ 0 – 2

XOR.B #xx:8,Rd B Rd8⊕#xx:8 → Rd8 2 – – ◊ ◊ 0 – 2

XOR.B Rs,Rd B Rd8⊕Rs8 → Rd8 2 – – ◊ ◊ 0 – 2

NOT.B Rd B Rd → Rd 2 – – ◊ ◊ 0 – 2

 I H N Z V C

Addressing mode/
instruction length

Appendix B. Instruction Set List (cont.)

Mnemonic Operation Condition code

S
iz

e

N
o.

 o
f

S
ta

te
s*

#x
x:

8/
16

R
n

@
R

n

@
(d

:1
6,

 R
n)

@
-R

n
/@

R
n

+

@
aa

:8
/1

6
@

(d
:8

,
P

C
)

@
@

aa

120

C

SHAL.B Rd B 2 – – ◊ ◊ ◊ ◊ 2

SHAR.B Rd B 2 – – ◊ ◊ 0 ◊ 2

SHLL.B Rd B 2 – – ◊ ◊ 0 ◊ 2

SHLR.B Rd B 2 – – 0 ◊ 0 ◊ 2

ROTXL.B Rd B 2 – – ◊ ◊ 0 ◊ 2

ROTXR.B Rd B 2 – – ◊ ◊ 0 ◊ 2

ROTL.B Rd B 2 – – ◊ ◊ 0 ◊ 2

ROTR.B Rd B 2 – – ◊ ◊ 0 ◊ 2

BSET #xx:3,Rd B (#xx:3 of Rd8) ← 1 2 – – – – – – 2

BSET #xx:3,@Rd B (#xx:3 of @Rd16) ← 1 4 – – – – – – 8

BSET #xx:3,@aa:8 B (#xx:3 of @aa:8) ← 1 4 – – – – – – 8

BSET Rn,Rd B (Rn8 of Rd8) ← 1 2 – – – – – – 2

BSET Rn,@Rd B (Rn8 of @Rd16) ← 1 4 – – – – – – 8

BSET Rn,@aa:8 B (Rn8 of @aa:8) ← 1 4 – – – – – – 8

BCLR #xx:3,Rd B (#xx:3 of Rd8) ← 0 2 – – – – – – 2

BCLR #xx:3,@Rd B (#xx:3 of @Rd16) ← 0 4 – – – – – – 8

BCLR #xx:3,@aa:8 B (#xx:3 of @aa:8) ← 0 4 – – – – – – 8

BCLR Rn,Rd B (Rn8 of Rd8) ← 0 2 – – – – – – 2

BCLR Rn,@Rd B (Rn8 of @Rd16) ← 0 4 – – – – – – 8

BCLR Rn,@aa:8 B (Rn8 of @aa:8) ← 0 4 – – – – – – 8

BNOT #xx:3,Rd B (#xx:3 of Rd8) ← (#xx:3 of Rd8) 2 – – – – – – 2

BNOT #xx:3,@Rd B (#xx:3 of @Rd16) ← (#xx:3 of @Rd16) 4 – – – – – – 8

BNOT #xx:3,@aa:8 B (#xx:3 of @aa:8) ← (#xx:3 of @aa:8) 4 – – – – – – 8

C0

 I H N Z V C

0C

0C

C

0C

C

b0b7

b0b7

b0b7

b0b7

b0b7

b0b7

b0b7

b0b7

Addressing mode/
instruction length

Mnemonic Operation Condition code

Appendix B. Instruction Set List (cont.)

#x
x:

8/
16

S
iz

e

R
n

@
R

n

@
(d

:1
6,

 R
n)

@
-R

n
/@

R
n

+

@
aa

:8
/1

6
@

(d
:8

,
P

C
)

@
@

aa

N
o.

 o
f

S
ta

te
s*

121

BNOT Rn,Rd B (Rn8 of Rd8) ← (Rn8 of Rd8) 2 – – – – – – 2

BNOT Rn,@Rd B (Rn8 of @Rd16) ← (Rn8 of @Rd16) 4 – – – – – – 8

BNOT Rn,@aa:8 B (Rn8 of @aa:8) ← (Rn8 of @aa:8) 4 – – – – – – 8

BTST #xx:3,Rd B (#xx:3 of Rd8) → Z 2 – – – ◊ – – 2

BTST #xx:3,@Rd B (#xx:3 of @Rd16) → Z 4 – – – ◊ – – 6

BTST #xx:3,@aa:8 B (#xx:3 of @aa:8) → Z 4 – – – ◊ – – 6

BTST Rn,Rd B (Rn8 of Rd8) → Z 2 – – – ◊ – – 2

BTST Rn,@Rd B (Rn8 of @Rd16) → Z 4 – – – ◊ – – 6

BTST Rn,@aa:8 B (Rn8 of @aa:8) → Z 4 – – – ◊ – – 6

BLD #xx:3,Rd B (#xx:3 of Rd8) → C 2 – – – – – ◊ 2

BLD #xx:3,@Rd B (#xx:3 of @Rd16) → C 4 – – – – – ◊ 6

BLD #xx:3,@aa:8 B (#xx:3 of @aa:8) → C 4 – – – – – ◊ 6

BILD #xx:3,Rd B (#xx:3 of Rd8) → C 2 – – – – – ◊ 2

BILD #xx:3,@Rd B (#xx:3 of @Rd16) → C 4 – – – – – ◊ 6

BILD #xx:3,@aa:8 B (#xx:3 of @aa:8) → C 4 – – – – – ◊ 6

BST #xx:3,Rd B C → (#xx:3 of Rd8) 2 – – – – – – 2

BST #xx:3,@Rd B C → (#xx:3 of @Rd16) 4 – – – – – – 8

BST #xx:3,@aa:8 B C → (#xx:3 of @aa:8) 4 – – – – – – 8

BIST #xx:3,Rd B C → (#xx:3 of Rd8) 2 – – – – – – 2

BIST #xx:3,@Rd B C → (#xx:3 of @Rd16) 4 – – – – – – 8

BIST #xx:3,@aa:8 B C → (#xx:3 of @aa:8) 4 – – – – – – 8

BAND #xx:3,Rd B C∧(#xx:3 of Rd8) → C 2 – – – – – ◊ 2

BAND #xx:3,@Rd B C∧(#xx:3 of @Rd16) → C 4 – – – – – ◊ 6

BAND #xx:3,@aa:8 B C∧(#xx:3 of @aa:8) → C 4 – – – – – ◊ 6

BIAND #xx:3,Rd B C∧(#xx:3 of Rd8) → C 2 – – – – – ◊ 2

BIAND #xx:3,@Rd B C∧(#xx:3 of @Rd16) → C 4 – – – – – ◊ 6

BIAND #xx:3, @aa:8 B C∧(#xx:3 of @aa:8) → C 4 – – – – – ◊ 6

BOR #xx:3,Rd B C∨(#xx:3 of Rd8) → C 2 – – – – – ◊ 2

BOR #xx:3,@Rd B C∨(#xx:3 of @Rd16) → C 4 – – – – – ◊ 6

BOR #xx:3, @aa:8 B C∨(#xx:3 of @aa:8) → C 4 – – – – – ◊ 6

BIOR #xx:3, Rd B C∨(#xx:3 of Rd8) → C 2 – – – – – ◊ 2

Addressing mode/
instruction length

Mnemonic Operation Condition code

 I H N Z V C

Appendix B. Instruction Set List (cont.)

S
iz

e

#x
x:

8/
16

R
n

@
R

n

@
(d

:1
6,

 R
n)

@
-R

n
/@

R
n

+
@

aa
:8

/1
6

@
(d

:8
,

P
C

)

@
@

aa

N
o.

 o
f

S
ta

te
s*

122

BIOR #xx:3,@Rd B C∨(#xx:3 of @Rd16) → C 4 – – – – – ◊ 6

BIOR #xx:3, @aa:8 B C∨(#xx:3 of @aa:8) → C 4 – – – – – ◊ 6

BXOR #xx:3,Rd B C⊕(#xx:3 of Rd8) → C 2 – – – – – ◊ 2

BXOR #xx:3,@Rd B C⊕(#xx:3 of @Rd16) → C 4 – – – – – ◊ 6

BXOR #xx:3, @aa:8 B C⊕(#xx:3 of @aa:8) → C 4 – – – – – ◊ 6

BIXOR #xx:3,Rd B C⊕(#xx:3 of Rd8) → C 2 – – – – – ◊ 2

BIXOR #xx:3,@Rd B C⊕(#xx:3 of @Rd16) → C 4 – – – – – ◊ 6

BIXOR #xx:3, @aa:8 B C⊕(#xx:3 of @aa:8) → C 4 – – – – – ◊ 6

BRA d:8 (BT d:8) – PC ← PC+d:8 2 – – – – – – 4

BRN d:8 (BF d:8) – PC ← PC+2 2 – – – – – – 4

BHI d:8 – if condition C ∨ Z = 0 2 – – – – – – 4

BLS d:8 – is true then C ∨ Z = 1 2 – – – – – – 4

BCC d:8 (BHS d:8) – PC ← PC+d:8 C = 0 2 – – – – – – 4

BCS d:8 (BLO d:8) – else next; C = 1 2 – – – – – – 4

BNE d:8 – Z = 0 2 – – – – – – 4

BEQ d:8 – Z = 1 2 – – – – – – 4

BVC d:8 – V = 0 2 – – – – – – 4

BVS d:8 – V = 1 2 – – – – – – 4

BPL d:8 – N = 0 2 – – – – – – 4

BMI d:8 – N = 1 2 – – – – – – 4

BGE d:8 – N⊕V = 0 2 – – – – – – 4

BLT d:8 – N⊕V = 1 2 – – – – – – 4

BGT d:8 – Z ∨ (N⊕V) = 0 2 – – – – – – 4

BLE d:8 – Z ∨ (N⊕V) = 1 2 – – – – – – 4

JMP @Rn – PC ← Rn16 2 – – – – – – 4

JMP @aa:16 – PC ← aa:16 4 – – – – – – 6

JMP @@aa:8 – PC ← @aa:8 2 – – – – – – 8

BSR d:8 – SP–2 → SP 2 – – – – – – 6

PC → @SP

PC ← PC+d:8

 I H N Z V C

Addressing mode/
instruction length

Mnemonic Operation Condition code

Branching
condition

Appendix B. Instruction Set List (cont.)

S
iz

e

#x
x:

8/
16

R
n

@
R

n

@
(d

:1
6,

 R
n)

@
-R

n
/@

R
n

+

@
aa

:8
/1

6

@
(d

:8
,

P
C

)

@
@

aa

N
o.

 o
f

S
ta

te
s*

123

JSR @Rn – SP–2 → SP 2 – – – – – – 6

PC → @SP

PC ← Rn16

JSR @aa:16 – SP–2 → SP 4 – – – – – – 8

PC → @SP

PC ← aa:16

JSR @@aa:8 SP–2 → SP 2 – – – – – – 8

PC → @SP

PC ← @aa:8

RTS – PC ← @SP 2 – – – – – – 8

SP+2 → SP

RTE – CCR ← @SP 2 ◊ ◊ ◊ ◊ ◊ ◊ 10

SP+2 → SP

PC ← @SP

SP+2 → SP

SLEEP – Transit to sleep mode. 2 – – – – – – 2

LDC #xx:8,CCR B #xx:8 → CCR 2 ◊ ◊ ◊ ◊ ◊ ◊ 2

LDC Rs,CCR B Rs8 → CCR 2 ◊ ◊ ◊ ◊ ◊ ◊ 2

STC CCR,Rd B CCR → Rd8 2 – – – – – – 2

ANDC #xx:8,CCR B CCR∧#xx:8 → CCR 2 ◊ ◊ ◊ ◊ ◊ ◊ 2

ORC #xx:8,CCR B CCR∨#xx:8 → CCR 2 ◊ ◊ ◊ ◊ ◊ ◊ 2

XORC #xx:8,CCR B CCR⊕#xx:8 → CCR 2 ◊ ◊ ◊ ◊ ◊ ◊ 2

NOP – PC ← PC+2 2 – – – – – – 2

Notes: The number of states is the number of states required for execution when the instruction and its

operands are located in on-chip memory.

① Set to “1” when there is a carry or borrow from bit 11; otherwise cleared to “0.”

≠ If the result is zero, the previous value of the flag is retained; otherwise the flag is cleared to “0.”

③ Set to “1” if decimal adjustment produces a carry; otherwise cleared to “0.”

④ The number of states required for execution is 4n+8 (n = value of R4L)

∞ These instructions are not supported by the H8/338 Series.

± Set to “1” if the divisor is negative; otherwise cleared to “0.”

≤ Cleared to “0” if the divisor is not zero; undetermined when the divisor is zero.

 I H N Z V C

Addressing mode/
instruction length

Mnemonic Operation Condition code

Appendix B. Instruction Set List (cont.)

S
iz

e

@
-R

n
/@

R
n

+

@
aa

:8
/1

6

#x
x:

8/
16

R
n

@
R

n
@

(d
:1

6,
 R

n)

@
(d

:8
,

P
C

)

@
@

aa
Im

pl
ie

d

N
o.

 o
f

S
ta

te
s*

Appendix C. Number of Execution States

The tables in this appendix can be used to calculate the number of states required for

instruction execution. Table C-1 indicates the number of states required for each cycle

(instruction fetch, branch address read, stack operation, byte data access, word data access,

internal operation). Table C-2 indicates the number of cycles of each type occurring in each

instruction. The total number of states required for execution of an instruction can be

calculated from these two tables as follows:

Execution states = I

× SI + J × SJ + K × SK + L × SL + M × SM + N × SN

Examples: Mode 1 (on-chip ROM disabled), stack located in external memory, 1 wait state

inserted in external memory access.

1. BSET #0, @'FFC7

From table C-2:

I = L = 2, J = K = M = N= 0

From table C-1:

SI = 8, SL = 3

Number of states required for execution = 2 × 8 + 2 × 3 =22

2. JSR @@ 30

From table C-2:

I = 2, J = K = 1, L = M = N = 0

From table C-1:

SI = SJ = SK = 8

Number of states required for execution = 2 × 8 + 1 × 8 + 1 × 8 = 32

124

Table C-1. Number of States Taken by Each Cycle in Instruction Execution

Notes: 1. m: Number of wait states inserted in access to external device.

2. The byte data access cycle to an external device by the MOVFPE and MOVTPE

instructions requires 9 to 16 states since it is synchronized with the E clock. See

the

Hardware Manual for timing details.

Execution Status Access Location
(instruction cycle) On-Chip Memory On-Chip Reg. Field External Memory

Instruction fetch SI

Branch address read SJ 6 6 + 2m

Stack operation SK 2

Byte data access SL 3 3 + m

Word data access SM 6 6 + 2m

Internal operation SN 2

125

Table C-2. Number of Cycles in Each Instruction

ADD ADD.B #xx:8, Rd 1

ADD.B Rs, Rd 1

ADD.W Rs, Rd 1

ADDS ADDS.W #1/2, Rd 1

ADDX ADDX.B #xx:8, Rd 1

ADDX.B Rs, Rd 1

AND AND.B #xx:8, Rd 1

AND.B Rs, Rd 1

ANDC ANDC #xx:8, CCR 1

BAND BAND #xx:3, Rd 1

BAND #xx:3, @Rd 2 1

BAND #xx:3, @aa:8 2 1

Bcc BRA d:8 (BT d:8) 2

BRN d:8 (BF d:8) 2

BHI d:8 2

BLS d:8 2

BCC d:8 (BHS d:8) 2

BCS d:8 (BLO d:8) 2

BNE d:8 2

BEQ d:8 2

BVC d:8 2

BVS d:8 2

BPL d:8 2

BMI d:8 2

BGE d:8 2

BLT d:8 2

BGT d:8 2

BLE d:8 2

BCLR BCLR #xx:3, Rd 1

BCLR #xx:3, @Rd 2 2

BCLR #xx:3, @aa:8 2 2

BCLR Rn, Rd 1

Instruction Branch Stack Byte Data Word Data Internal
Instruction Mnemonic Fetch Addr. Read Operation Access Access Operation

I J K L M N

126

BCLR BCLR Rn, @Rd 2 2

BCLR Rn, @aa:8 2 2

BIAND BIAND #xx:3, Rd 1

BIAND #xx:3, @Rd 2 1

BIAND #xx:3, @aa:8 2 1

BILD BILD #xx:3, Rd 1

BILD #xx:3, @Rd 2 1

BILD #xx:3, @aa:8 2 1

BIOR BIOR #xx:3, Rd 1

BIOR #xx:3, @Rd 2 1

BIOR #xx:3, @aa:8 2 1

BIST BIST #xx:3, Rd 1

BIST #xx:3, @Rd 2 2

BIST #xx:3, @aa:8 2 2

BIXOR BIXOR #xx:3, Rd 1

BIXOR #xx:3, @Rd 2 1

BIXOR #xx:3, @aa:8 2 1

BLD BLD #xx:3, Rd 1

BLD #xx:3, @Rd 2 1

BLD #xx:3, @aa:8 2 1

BNOT BNOT #xx:3, Rd 1

BNOT #xx:3, @Rd 2 2

BNOT #xx:3, @aa:8 2 2

BNOT Rn, Rd 1

BNOT Rn, @Rd 2 2

BNOT Rn, @aa:8 2 2

BOR BOR #xx:3, Rd 1

BOR #xx:3, @Rd 2 1

BOR #xx:3, @aa:8 2 1

BSET BSET #xx:3, Rd 1

BSET #xx:3, @Rd 2 2

BSET #xx:3, @aa:8 2 2

BSET Rn, Rd 1

BSET Rn, @Rd 2 2

Instruction Branch Stack Byte Data Word Data Internal
Instruction Mnemonic Fetch Addr. Read Operation Access Access Operation

I J K L M N

127

BSET BSET Rn, @aa:8 2 2

BSR BSR d:8 2 1

BST BST #xx:3, Rd 1

BST #xx:3, @Rd 2 2

BST #xx:3, @aa:8 2 2

BTST BTST #xx:3, Rd 1

BTST #xx:3, @Rd 2 1

BTST #xx:3, @aa:8 2 1

BTST Rn, Rd 1

BTST Rn, @Rd 2 1

BTST Rn, @aa:8 2 1

BXOR BXOR #xx:3, Rd 1

BXOR #xx:3, @Rd 2 1

BXOR #xx:3, @aa:8 2 1

CMP CMP. B #xx:8, Rd 1

CMP. B Rs, Rd 1

CMP.W Rs, Rd 1

DAA DAA.B Rd 1

DAS DAS.B Rd 1

DEC DEC.B Rd 1

DIVXU DIVXU.B Rs, Rd 1 6

EEPMOV EEPMOV 2 2n+2*1

INC INC.B Rd 1

JMP JMP @Rn 2

JMP @aa:16 2 1

JMP @@aa:8 2 1 1

JSR JSR @Rn 2 1

JSR @aa:16 2 1 1

JSR @@aa:8 2 1 1

LDC LDC #xx:8, CCR 1

LDC Rs, CCR 1

MOV MOV.B #xx:8, Rd 1

MOV.B Rs, Rd 1

MOV.B @Rs, Rd 1 1

Instruction Branch Stack Byte Data Word Data Internal
Instruction Mnemonic Fetch Addr. Read Operation Access Access Operation

I J K L M N

128

MOV MOV.B @(d:16, Rs), Rd 2 1

MOV.B @Rs+, Rd 1 1 1

MOV.B @aa:8, Rd 1 1

MOV.B @aa:16, Rd 2 1

MOV.B Rs, @Rd 1 1

MOV.B Rs, @(d:16, Rd) 2 1

MOV.B Rs, @–Rd 1 1 1

MOV.B Rs, @aa:8 1 1

MOV.B Rs, @aa:16 2 1

MOV.W #xx:16, Rd 2

MOV.W Rs, Rd 1

MOV.W @Rs, Rd 1 1

MOV.W @(d:16, Rs), Rd 2 1

MOV.W @Rs+, Rd 1 1 1

MOV.W @aa:16, Rd 2 1

MOV.W Rs, @Rd 1 1

MOV.W Rs, @(d:16, Rd) 2 1

MOV.W Rs, @-Rd 1 1 1

MOV.W Rs, @aa:16 2 1

MOVFPE MOVFPE @aa:16, Rd 2 1*2

MOVTPE MOVTPE Rs, @aa:16 2 1*2

MULXU MULXU.B Rs, Rd 1 6

NEG NEG.B Rd 1

NOP NOP 1

NOT NOT.B Rd 1

OR OR.B #xx:8, Rd 1

OR.B Rs, Rd 1

ORC ORC #xx:8, CCR 1

ROTL ROTL.B Rd 1

ROTR ROTR.B Rd 1

ROTXL ROTXL.B Rd 1

ROTXR ROTXR.B Rd 1

RTE RTE 2 2 1

RTS RTS 2 1 1

Instruction Branch Stack Byte Data Word Data Internal
Instruction Mnemonic Fetch Addr. Read Operation Access Access Operation

I J K L M N

129

SHAL SHAL.B Rd 1

SHAR SHAR.B Rd 1

SHLL SHLL.B Rd 1

SHLR SHLR.B Rd 1

SLEEP SLEEP 1

STC STC CCR, Rd 1

SUB SUB.B Rs, Rd 1

SUB.W Rs, Rd 1

SUBS SUBS.W #1/2, Rd 1

SUBX SUBX.B #xx:8, Rd 1

SUBX.B Rs, Rd 1

XOR XOR.B #xx:8, Rd 1

XOR.B Rs, Rd 1

XORC XORC #xx:8, CCR 1

Notes:

*1 n: Initial value in R4L. The source and destination operands are accessed n + 1 times

each.

*2 Data access requires 9 to 16 states.

Instruction Branch Stack Byte Data Word Data Internal
Instruction Mnemonic Fetch Addr. Read Operation Access Access Operation

I J K L M N

130

	Contents H8/300 Programming Manual
	Section 1. CPU
	Section 2. Instruction Set
	Appendix A. Operation Code Map
	Appendix B. Instruction Set List
	Appendix C. Number of Execution States

