H8/300
Programming M anual

Contents

SECHON L. CPU ...ttt e et e e e te e s e ense e nee e 1
1.1 General CPU ATCHITECIUIE.cc.eiuieieieie ettt 2
1.2 REGISIEIS ..ottt bbb £ b bRt h et e et e e e re e enes 5
1.3 INSEIUCLIONS.....c.eeiueeieeeeieste sttt ettt bbb b e bt b et e e et e b et e e e benaeens 8
SECtioN 2. INSETUCHION SEL ... 32
ADD (ADD bINary) (BYTE)ccueieeieeeeesiere s 37
ADD (ADD DINAry) (WOFQ)ccuoieeieeeieriesiesiesiesesiee ettt 38
ADDS (ADD With SIgN EXIENSION)cueeieiiiierienieeieeeeee et 39
ADDX (ADD With €XTENd CAITY) ...ceeieieiirieriesieeeeee et 40
AND (AND OQICA) ..etvinieieeiirieeeiesiesee ettt st s et seeneesesnns 41
ANDC (AND CONErol FEQISLEN)eeueeueeieiesiesie sttt 42
BAND (Bit AND) ...ecitiiieeierie ettt sttt e e b e e nenae e 43
Bcee (Branch condition@ally)coeeeeeeieieseseseeeeee e 44
BCLR (Bit CLEAR)......ciuiieiirieiieieie ettt sttt se e s sae e enesee e 47
BIAND (Bit INVET AND)....couiiieieieieieesesie ettt snesne e 49
BILD (Bit INVEIt LOBD)c.eoveeeieeieeieieestesie ettt sne e 50
BIOR (Bit INVET OR) ...ttt sne e 51
BIST (Bit INVEIT STOIE) ..ottt 52
BIXOR (Bit Invert @XcluSIVE OR)ccuoiiiiriiierieeieeeieie e 53
BLD (Bit LOBD) ..ueeueeieieieierieseeeeie st te et st se e sae st e s te e esesbeseeneesesseneenesseeen 54
BNOT (BIt NOT) .ttt sttt s e e e e enesne e 55
BOR (Bit INCIUSIVE OR)c.eiiiiiieieieeeiee et 57
BSET (Bit SET) ittt sttt b e s nne e 59
BSR (Branch to SUDROULINE)couiiiiiiieriesieseeeee e 61
BST (B STOME) ...ttt sb e bttt b b b sne s 62
BT ST (Bt TEST) ceieieieieeee ettt sttt s et st e e s e e e e eneneeean 63
BXOR (Bit @XCIUSIVE OR) ..ottt 65
CMP (COMPAE) (DY) ...ttt 67
CMP (COMPAE) (WOFM) ...ttt 68
DAA (DeCimal AQJUSE AQ).......oiiiieieieieriesiesie e 69
DAS (Decimal AdjUSE SUBLFACL)coviiiiierieeeeee e 71
DEC (DECIEIMENL) ...tttk sttt st b bt s et nne e sne s 73
DIVXU (DIVide exXtend asUNSIgNEd)ccooiririiriiieieiesiesie et 74

EEPMOV (MOVe datato EEPROM) ..o 76

INC (INCIFEIMENL) ..ottt b bt e e s b saenbeeneens 78

JMIP (JUMP) ..ttt sttt ettt b et e e b e 79
JSR (JUMP 10 SUDROULINE) ...t 80
LDC (L08D t0 CONLIOl FEJISIEN)ceueeueeieiesieriesie sttt 81
MOV (MOVE data) (DYLIE)evereeeeieeeieiesie ettt 82
MOV (MOVE data) (WOI)ccueeuieeeeeiesiesiesie sttt snesne s 83
MOV (MOVE data) (DYLIE)evereeeeieeeieiesie ettt 84
MOV (MOVE data) (WOI)ccueeuieeeeeiesiesiesie sttt snesne s 85
MOV (MOVE data) (DYLIE)evereeeeieeeieiesie ettt 86
MOV (MOVE data) (WOI)ccueeuieeeeeiesiesiesie sttt snesne s 87
MOV FPE (MOVe data From Peripheral with E ClOCK)ccoooviririiiieceeee 88
MOV TPE (MOVe data To Peripheral with E ClOCK).........cccooiviiiiiniiiccccceeee 89
MULXU (MULLtiply eXtend as UnSIgned)coceeeeieienenineseseseseeee e 90
NEG (NEGELE) ...ttt b et nn e nne e 91
NOP (NO OPEIBLION) ...ttt sttt sttt et e s e b snenbesne s e 92
NOT (NOT = logical COMPIEMENL)ceeiiriiriirierieeieeeee e 93
OR (INCIUSIVE OR TOQICEI) ...ttt 94
ORC (inclusive OR CONtrol r8QISIEN)ccueeeeeieieiesiesie st 95
POP (POP L)ceuveueeeeseestesieeieeie ettt ss e b s sesneseesne s e 96
PUSH (PUSH &)c.eeveriiiirieeiieie ettt 97
ROTL (ROTAIE LEFL) ...ttt 98
ROTR (ROTEE RIGNL) ..o 99
ROTXL (ROTate with eXtend Carry LEft)cocvrveiriiieerreeeeeeeee e 100
ROTXR (ROTate with eXtend carry RIight)..........cceoveieiireninererereeeeeese e 101
RTE (RETUIN from EXCEPLION)coieieieieriesie sttt 102
RTS (RETUrN from SUBIOULINE)coieiiiiieiereeeeee e 103
SHAL (SHift ArIthMELIC LEFL) ..o 104
SHAR (SHift Arithmetic RIgNt)oooiiiiiieeeee e 105
SHLL (SHift LOGICAl LEFL) ... 106
SHLR (SHift LOgiCal RIGNL)c.eiiiiiiiiciesieeieeeeee e 107
SLEEP (SLEEP) ...ttt sttt 108
STC (STore from CONntrol FEQISIEN).......ccerirerieieee e 109
SUB (SUBtract binary) (DY)coerereririirieieieesiese s 110
SUB (SUBtract binary) (WOrd).......cceeeeerimireeeeeeiesiesie s 112
SUBS (SUBtract with Sign eXtENSION).......cc.eeeeieieieriesesesese e 113
SUBX (SUBtract With @Xtend CaITY)cooerieiriereresesiesesie e 114

XOR (EXCIUSIVE OR TOGICEAI) ...cueeuieieiisiesie st 115

XORC (eXclusive OR CONtrol FEQISIEN)ccverererieieriesiesie st 116

Appendix A. Operation Code Map ..o, 117

Appendix B. INStruction SEE LISt ..o 118

Appendix C. Number of EXeCution SEaLesS...........ccoevieviricrieseseseeese e, 124

Preface

The H8/300 CPU forms the common core of all chipsin the H8/300 Series. Featuring a
Hitachi-original, high-speed, RISC-like architecture, it has eight 16-bit (or sixteen 8-bit)
general registers and a concise, optimized instruction set.

This manual gives detailed descriptions of the H8/300 instructions. The descriptions apply to
all chipsin the H8/300 Series. Assembly-language programmers should also read the separate
H8/300 Series Cross Assembler User's Manual.

For hardware details, refer to the hardware manual of the specific chip.

Section 1. CPU

This document is a reference manual for programming the H8/300, a high-speed central
processing unit with a Hitachi-original RISC-like architecture that is employed as a CPU core
in aseries of low-cost single-chip microcomputers intended for applications ranging from
smart cards to office and factory automation.

The H8/300 features a concise instruction set in which most frequently-used instructions are
two bytes long and execute in just two states (0.2us with a 10MHz system clock). Its general
registers can be accessed as 16-bit word registers or 8-bit byte registers. The instruction set
includes both 8-bit and 16-bit instructions.

Section 1 of this manual summarizes the CPU architecture and instruction set. Section 2 gives
detailed descriptions of the instructions. Appendices give an operation code map, a complete
list of the instruction set, and tables for calculating instruction execution time. Programmers
should also refer to the User's Manual of the chip being programmed for information on bus
cycles, interrupt service, 1/O ports, power-down modes, and on-chip facilities such as memory
and timers, and for a memory map.

1.1 General CPU Architecture
1.1.1 Features

Table 1-1 summarizes the CPU architecture. Figures 1-1 and 1-2 show how data are
stored in registers and memory.

Table 1-1. CPU Architecture

Item Description
Address space 64K bytes, H'0000 to H'FFFF
Data types Bit, 4-hit (packed BCD), byte, word (2 bytes)

General registers Sixteen 8-bit general registers (ROH, ROL, ..., R7H, R7L),
also accessible as eight 16-bit genera registers (RO to R7)

Control registers Program counter (PC)
Condition code register (CCR)

Addressing modes Rn Register direct
@Rn Register indirect
@(d:16, Rn) Register indirect with 16-bit displacement
@Rn+ Register indirect with post-increment
@-Rn Register indirect with pre-decrement
@aa8, @aa:16 Absolute address (8 or 16 hits)
#xX:8, #xx:16 Immediate (8-, or 16-bit data)
@(d:8, PC) PC-relative (8-bit displacement)
@@aa.8 Memory indirect

Instruction length 2 or 4 bytes

Notes:

1. Word data stored in memory must be stored at an even address.
2. Instructions must be stored at even addresses.

3. General register R7 is used as the stack pointer (SP).

1.1.2 Data Structure

The H8/300 CPU can process 1-bit data, 4-bit (packed BCD) data, 8-bit (byte) data, and 16-bit

(word) data.
* Bit manipulation instructions operate on 1-bit data specified asbitn (n=0, 1, 2, ..., 7) ina
byte operand.

* All operational instructions except ADDS and SUBS can operate on byte data.

» TheDAA and DAS instruction perform decimal arithmetic adjustments on byte datain
packed BCD form. Each 4-bit of the byte is treated as a decimal digit.

» TheMOV.W, ADD.W, SUB.W, CMPW, ADDS, SUBS, MULXU (8 bits x 8 hits), and
DIV XU (16 bits + 8 hits) instructions operate on word data.

Data Structurein General Registers. Data of all the sizes above can be stored in general
registers as shown in figure 1-1.

Data type Register No. Data format
7 0
1-Bit data RnH [7]6]5[4]3]2[1]o] Dont-care |
7 0
1-Bit data RnL | Don't-care |7|6|5|4|3|2|1|0|
7 0
Byte data RnH [., ..,] Dontcare |
7 0
Byte data RnL [Dontcare [i .., . i
15 0
Worddata- Rn |§: : : : - : T N T N | I;l
7 43 0
4-Bit BCD data RnH [upperdiat [Loweragi [Don't-care |
7 43 0
4-Bit BCD data RnL | Don't-care |Up:Per:di9i:1 | L}’Wéfdw

RnH: Upper 8 bits of General Register
RnL: Lower 8 bits of General Register
MSB: Most Significant Bit
LSB: Least Significant Bit

Figure 1-1. Register Data Structure

Memory Data Structure: Figure 1-2 indicates the data structure in memory.

Word data stored in memory must always begin at an even address. In word access the least
significant bit of the addressisregarded as“0.” If an odd address is specified, no address error
occurs but the access is performed at the preceding even address. This rule affects MOV.W
instructions and branching instructions, and implies that only even addresses should be stored
in the vector table.

Data type Address Data format
/‘_/
7 0

1-Bit data Address n 76|54 32[1]0

Byte data Address n : : : : : : :

Even address
Odd address

Word data

Even address
Odd address

o0zlonz
wor|onr

Byte data (CCR) on stack

| L
Even address Upper 8 bits

Odd address

@nr

Word data on stack Lower 8 bits
L 1 L 1

CCR: Condition code register.
Note: Word data must begin at an even address.
* Ignored when return.

Figure1-2. Memory Data Formats

The stack is always accessed aword at atime. When the CCR is pushed on the stack, two
identical copies of the CCR are pushed to make a complete word. When they are returned, the
lower byte isignored.

1.1.3 Address Space
The H8/300 CPU supports a 64K -byte address space. The memory map differs depending on

the particular chip in the H8/300 Series and its operating mode. See the Hardware Manual of
the chip for details.

1.2 Registers

Figure 1-3 shows the register structure of the H8/300 CPU. There are sixteen 8-hit general
registers (ROH, ROL, ..., R7H, R7L), which can also be accessed as eight 16-bit registers (RO
to R7). There are two control registers. the 16-bit program counter (PC) and the 8-bit
condition code register (CCR).

7 07 0
ROH ROL
R1H R1L
R2H R2L
R3H R3L
R4H RAL
RS5SH RS5L
R6H R6L
R7H (SP) R7L SP: Stack Pointer
15 0
PC | Program Counter

76543210
ccr [1u[H]UN]Z V]| Condition Code Register
L Carryflag
—— Overflow flag
Zero flag

Negative flag
Half-carry flag

Interrupt mask bit
User bit

Figure 1-3. CPU Registers

1.2.1 General Registers

All the general registers can be used as both data registers and address registers. When used as
address registers, the general registers are accessed as 16-bit registers (RO to R7). When used
as dataregisters, they can be accessed as 16-bit registers (RO to R7), or the high (ROH to R7H)
and low (ROL to R7L) bytes can be accessed separately as 8-bit registers. The register length
is determined by the instruction.

R7 also functions as the stack pointer, used implicitly by hardware in processing interrupts and
subroutine calls. In assembly language, the letters SP can be coded as a synonym for R7. As
indicated in figure 1-4, R7 (SP) points to the top of the stack.

T~ — A

Unused area

SP (R7) >

Stack area

Figure 1-4. Stack Pointer
1.2.2 Control Registers
The CPU has a 16-bit program counter (PC) and an 8-bit condition code register (CCR).

(1) Program Counter (PC): This 16-hit register indicates the address of the next instruction
the CPU will execute. Instructions are fetched by 16-bit (word) access, so the least significant
bit of the PC isignored (always regarded as 0).

(2) Condition Code Register (CCR): This 8-hit register indicates the internal status of the
CPU with an interrupt mask (1) bit and five flag bits. haf-carry (H), negative (N), zero (2),
overflow (V), and carry (C) flags. The two unused bits are available to the user. The bit
configuration of the condition code register is shown below.

Bit 7 6 5 4 3 2 1 0
I U H U N Z V C
Initial value 1 * * * * * * *

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
* Undetermined

Bit 7—Interrupt Mask Bit (I): Whenthisbitissetto"1," al interrupts except NMI are
masked. Thishitissetto"1" automatically by areset and at the start of interrupt handling.

Bits 6 and 4—User Bits(U): These bits can be written and read by software for its own
purposes.

Bit 5—Half-Carry (H): Thishit isused by add, subtract, and compare instructions to indicate
aborrow or carry out of bit 3 or bit 11. It isreferenced by the decimal adjust instructions.

Bit 3—Negative (N): Thisbit indicates the most significant bit (sign bit) of the result of an
instruction.

Bit 2—Zero (Z): Thisbitissetto"1" to indicate a zero result and cleared to "0" to indicate a
nonzero result.

Bit 1—Overflow (V): Thishitissetto"1" when an arithmetic overflow occurs, and cleared
to"0" at other times.

Bit 0—Carry (C): Thisbhitisused by:

* Add, subtract, and compare instructions, to indicate a carry or borrow at the most
significant bit

» Shift and rotate instructions, to store the value shifted out of the most or least significant
bit

e Bit manipulation instructions, as a bit accumulator

System control instructions can load and store the CCR, and perform logic operations to set,
clear, or toggle selected bits.

1.2.3 Initial Register Values
When the CPU is reset, the program counter (PC) is loaded from the vector table and the

interrupt mask bit (1) inthe CCRisset to “1.” The other CCR bits and the general registers are
not initialized.

In particular, the stack pointer (R7) isnot initialized. To prevent program crashes the stack
pointer should be initialized by software, by the first instruction executed after areset.

1.3 Instructions

Features:

* TheH8/300 has a concise set of 57 RISC-like instructions.

* Arithmetic and logic are performed as register-to-register operations, or with immediate
data.

* All instructions are 2 or 4 bytes long.

» Fast multiply/divide instructions; extensive bit manipulation instructions.

» Eight addressing modes.

1.3.1 Typesof Instructions

Table 1-2 classifies the H8/300 instructions by type. Tables 1-3 to 1-10 briefly describe their
functions. Section 2, Instruction Set, gives detailed descriptions.

Table 1-2. Instruction Classification

Function Instructions Types

Datatransfer MOV, MOVFPE, MOVTPE, POP*, PUSH* 3

Arithmetic operations ADD, SUB, ADDX, SUBX, |INC, DEC, ADDS, SUBS, 14
DAA, DAS, MULXU, D VXU, CW, NEG

Logic operations AND, OR XOR, NOT 4
Shift SHAL, SHAR, SHLL, SHLR ROTL, ROIR, ROTXL, 8
ROTXR
Bit manipulation BSET, BCLR, BNOT, BTST, BAND, Bl AND, BCR 14
BIOR, BXOR BIXOR BLD, BILD, BST, BIST
Branch Bcc**, JMP, BSR JSR, RTS 5
System control RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP 8
Block datatransfer EEPMOV 1
Total 57

* POP Rnisequivalent to MOV.W @SP+, Rn.
PUSH Rnisequivalent to MOV.W Rn, @-SP.
** Bcceisaconditional branch instruction in which cc represents a condition .

1.3.2 Instruction Functions

Tables 1-3 to 1-10 give brief descriptions of the instructionsin each functional group.
The following notation is used.

Notation

Rd General register (destination)
Rs General register (source)
Rn General register

(EAd) Destination operand
(EASs) Source operand

CCR Condition code register
N N (negative) bit of CCR
Z Z (zero) bit of CCR

V V (overflow) bit of CCR
C C (carry) bit of CCR

PC Program counter

SP Stack pointer (R7)

#lmm Immediate data

#xx:3 3-Bit immediate data
#xx:8 8-Bit immediate data
#xx:16 16-Bit immediate data
op Operation field

disp Displacement

+ Addition

- Subtraction

X Multiplication

+ Division

O AND logica

O OR logical

O Exclusive OR logical
- Move

- Not

:3, :8, :16 3-hit, 8-bit, or 16-bit length.

Table 1-3. Data Transfer Instructions

Instruction Size* Function

MOV B/W

(EAs) - Rd, Rs - (EAd)

Moves data between two general registers or between ageneral
register and memory, or moves immediate data to a general register.

The Rn, @Rn, @(d:16, Rn), @aa: 16, #xx:8 or #xx:16, @—Rn, and
@Rn+ addressing modes are available for byte or word data. The
@aa:8 addressing mode is available for byte data only.

The @-R7 and @R7+ modes require word operands. Do not
specify byte size for these two modes.

MOVFPE B

(EASs) —» Rd
Transfers data from memory to a genera register in
synchronization with the E clock.

MOVTPE B

Rs - (EAd)
Transfers data from a general register to memory in
synchronization with the E clock.

@SP+ - Rn
Pops a 16-bit general register from the stack.
Equivalent to MOV.W @SP+, Rn.

PUSH W

Rn - @-SP
Pushes a 16-bit general register onto the stack.
Equivalent to MOV.W Rn, @-SP.

*

Size: Operand size
B: Byte
W: Word

10

Table 1-4. Arithmetic I nstructions

Instruction Size*

Function

ADD B/W Rd £+Rs - Rd, Rd+#mm - Rd
SUB Performs addition or subtraction on datain two general registers,
or addition on immediate data and datain a general register.
Immediate data cannot be subtracted from datain a general register.
Word data can be added or subtracted only when both words arein
general registers.
ADDX B Rd+Rs+C - Rd, Rdx#mmzC - Rd
SUBX Performs addition or subtraction with carry or borrow on byte data
in two general registers, or addition or subtraction on immediate data
and data in a general register.
| NC B Rd+1 - Rd
DEC Increments or decrements a general register.
ADDS w Rd+1 - Rd,Rd+2 - Rd
SUBS Adds or subtracts immediate data to or from datain a general
register. Theimmediate datamust be 1 or 2.
DAA B Rd decimal adjust -~ Rd
DAS Decimal-adjusts (adjusts to packed BCD) an addition or
subtraction result in a general register by referring to the CCR.
MULXU B Rd xRs - Rd
Performs 8-bit x 8-bit unsigned multiplication on datain two
general registers, providing a 16-bit result.
Dl VXU B Rd+Rs - Rd
Performs 16-bit + 8-bit unsigned division on datain two general
registers, providing an 8-bit quotient and 8-bit remainder.
awP B/W Rd—Rs, Rd-#mm
Compares datain ageneral register with datain another genera
register or with immediate data. Word data can be compared only
between two general registers.
NEG B 0-Rd - Rd

Obtains the two’s complement (arithmetic complement) of datain
ageneral register.

* Size: Operand size
B: Byte
W: Word

11

Table 1-5. Logic Operation Instructions

Instruction Size*

Function

AND

B

Rd 0Rs - Rd, Rd O #mm - Rd
Performs alogical AND operation on a general register and
another general register or immediate data.

RdORs - Rd, Rd O#imm - Rd
Performs alogical OR operation on agenera register and another
general register or immediate data.

XCR

Rd 0 Rs-» Rd, RdIO#mm - Rd
Performs alogical exclusive OR operation on ageneral register
and another general register or immediate data.

Obtains the one’'s complement (logical complement) of general
register contents.

* Size: Operand size

B: Byte

Table 1-6. Shift Instructions

Instruction Size* Function

SHAL B Rd shift - Rd

SHAR Performs an arithmetic shift operation on general register contents.
SHLL B Rd shift — Rd

SHLR Performs alogical shift operation on general register contents.
ROTL B Rdrotate —» Rd

ROTR Rotates general register contents.

ROTXL B Rd rotate through carry — Rd

ROTXR Rotates general register contents through the C (carry) bit.

* Size: Operand size

B: Byte

12

Table 1-7. Bit-Manipulation Instructions

Instruction Size* Function

BSET B 1 - (<bit-No.> of <EAd>)
Sets a specified bit in agenera register or memory to “1.” The bit
Is specified by a bit number, given in 3-bit immediate data or the lower
three bits of a general register.

BCLR B 0 - (<hit-No.> of <EAd>)
Clears a specified bit in ageneral register or memory to “0.” The
bit is specified by a bit number, given in 3-bit immediate data or the
lower three bits of a general register.

BNOT B = (<bit-No.> of <EAd>) - (<bit-No.> of <EAd>)
Inverts a specified bit in ageneral register or memory. The bitis
specified by a bit number, given in 3-bit immediate data or the lower
three bits of a general register.

BTST B - (<bit-No.> of <EAd>) - Z
Tests a specified bit in ageneral register or memory and sets or
clearsthe Z flag accordingly. The bit is specified by a bit number,
given in 3-bit immediate data or the lower three bits of a general

register.
BAND B C O(<bit-No.> of <EAd>) - C
ANDs the C flag with a specified bit in a general register or
memory.
Bl AND B C O[~ (<bit-No.> of <EAd>)] - C

ANDs the C flag with the inverse of a specified bit in a general
register or memory.
The bit number is specified by 3-bit immediate data.

BOR B C U(<bit-No.> of <EAd>) - C
ORsthe C flag with a specified bit in a general register or memory.
Bl OR B C [~ (<bit-No.> of <EAd>)] - C

ORsthe C flag with the inverse of a specified bit in a general
register or memory.
The bit number is specified by 3-bit immediate data.

13

Table 1-7. Bit-Manipulation Instructions (Cont.)

Instruction Size*

Function

BXOR B C U (<hit-No.> of <EAd>) - C
Exclusive-ORs the C flag with a specified bit in a general register
or memory.
Bl XCR B C O [~ (<bit-No.> of <EAd>)] —» C
Exclusive-ORs the C flag with the inverse of a specified bitin a
general register or memory.
The bit number is specified by 3-bit immediate data.
BLD B (<bit-No.> of <EAd>) — C
Copies a specified bit in ageneral register or memory to the C flag.
Bl LD B - (<bit-No.> of <EAd>) — C
Copiesthe inverse of a specified bit in ageneral register or
memory to the C flag.
The bit number is specified by 3-bit immediate data.
BST B C - (<bit-No.> of <EAd>)
Copies the C flag to a specified bit in a general register or memory.
BI ST B = C - (<hit-No.> of <EAd>)

Copiesthe inverse of the C flag to a specified bit in a general
register or memory.
The bit number is specified by 3-bit immediate data.

*

Size: Operand size
B: Byte

14

Table 1-8. Branching Instructions

Instruction Size Function

Bcc — Branchesif condition ccistrue.

Mnemonic cc Field Description Condition
BRA (BT) 0000 Always (True) Always
BRN (BF) 0001 Never (False) Never

BHI 0010 High cuz=0
BLS 0011 Low or Same cChz=1
BCC (BHS) 0100 Carry Clear C=0
(High or Same)
BCS (BLO 0101 Carry Set (Low) C=1
BNE 0110 Not Equal Z=0
BEQ 0111 Equal Z=1
BVC 1000 Overflow Clear V =0
BVS 1001 Overflow Set V=1
BPL 1010 Plus N=0
BM 1011 Minus N=1
BCGE 1100 Greater or EQqual NOV =0
BLT 1101 Less Than NOV=1
BGT 1110 Greater Than ZOINDOV)=0
BLE 1111 LessorEqua zONOV)=1
JMWP — Branches unconditionally to a specified address.
BSR — Branches to a subroutine at a specified address.
JSR — Branches to a subroutine at a specified displacement from the current
address.
RTS — Returns from a subroutine.

15

Table 1-9. System Control I nstructions

Instruction Size*

Function

RTE —

Returns from an exception-handling routine.

SLEEP — Causes atransition to the power-down state.
LDC B Rs - CCR, #imm - CCR
Moves immediate data or general register contents to the condition
code register.
STC B CCR - Rd
Copies the condition code register to a specified general register.
ANDC B CCR O#iImm - CCR
Logicaly ANDs the condition code register with immediate data.
OrRC B CCR O#Imm - CCR
Logicaly ORs the condition code register with immediate data.
XCRC B CCR O #imm - CCR
Logicaly exclusive-ORs the condition code register with immediate
data.
NOP — PC+2 - PC

Only increments the program counter.

* Size: Operand size

B: Byte

Table 1-10. Block Data Transfer I nstruction

Instruction Size Function
EEPMOV — if R4L # 0 then
repeat @R5+ - @R6+
R4AL —1 - R4L
until R4L =0
else next;

Moves a data block according to parameters set in general registers
R4L, R5, and R6.

RA4L : size of block (bytes)

R5: starting source address

R6: starting destination address

Execution of the next instruction starts as soon as the block transfer is
completed.

16

Noteson Bit Manipulation Instructions: BSET, BCLR, BNOT, BST, and BIST are read-
modify-write instructions. They read a byte of data, modify one bit in the byte, then write the
byte back. Careisrequired when these instructions are applied to registers with write-only
bits and to the 1/0O port registers.

Sequence Operation

1 Read Read one data byte at the specified address

2 Modify Modify one bit in the data byte

3 Write Write the modified data byte back to the specified address

Example 1. BCLR isexecuted to clear bit O in the port 4 data direction register (PADDR)
under the following conditions.

P47 Input pin, Low, MOS pull-up transistor on

P4e: Input pin, High, MOS pull-up transistor off

P45 —P4o: Output pins, Low

The intended purpose of this BCLR instruction is to switch P4o from output to input.

Before Execution of BCLR Instruction
P47 P46 P4s P44 P43 P42 P41 P4o

I nput/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low Low
DDR 0 0 1 1 1 1 1 1
DR 1 0 0 0 0 0 0 0
Pull-up On Off Off Off Off Off Off Off

Execution of BCLR Instruction

BCLR #0 @4DDR ; Clear bit O in data direction register

After Execution of BCLR Instruction
P47 P4s P4s P44 P43 P4. P41 P4o

I nput/output Output Output Output Output Output Output Output Input

Pin state Low High Low Low Low Low Low High
DDR 1 1 1 1 1 1 1 0
DR 1 0 0 0 0 0 0 0
Pull-up Off Off Off Off Off Off Off Off

17

Explanation: To execute the BCLR instruction, the CPU begins by reading PADDR. Since
PADDR isawrite-only register, it is read as H'FF, even though itstrue valueis H'3F.

Next the CPU clears bit O of the read data, changing the value to H'FE.
Finally, the CPU writes this value (H'FE) back to PADDR to complete the BCLR instruction.

Asaresult, PAoDDR is cleared to "0," making P4o an input pin. In addition, P47DDR and
P46DDR are set to "1," making P47 and P46 output pins.

Example 2: BSET isexecuted to set bit O in the port 4 data register (P4ADR) under the
following conditions.

P47 Input pin, Low, MOS pull-up transistor on

P4e: Input pin, High, MOS pull-up transistor off

P4s —P4o: Output pins, Low

The intended purpose of thisBSET instruction is to switch the output level at P4o from Low to
High.

Before Execution of BSET Instruction

P47 Pds Pds Pl P43 P42 P& Pdo

I nput/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low Low
DDR 0 0 1 1 1 1 1 1
DR 1 0 0 0 0 0 0 0
Pull-up On Off Off Off Off Off Off Off

Execution of BSET Instruction

BSET #0 @PORT4 ; Set bit 0 in port-4 data register

18

After Execution of BSET Instruction

P47 P46 P4s P4 P43 Pk P4 Pdo

I nput/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low High
DDR 0 0 1 1 1 1 1 1
DR 0 1 0 0 0 0 0 1
Pull-up Off On Off Off Off Off Off Off

Explanation: To execute the BSET instruction, the CPU begins by reading port 4. Since P47
and P4s are input pins, the CPU reads the level of these pins directly, not the value in the data
register. It reads P47 asLow ("0") and P46 as High ("1").

Since P4s to P4o are output pins, for these pins the CPU reads the value in the data register
("0"). The CPU therefore reads the value of port 4 as H'40, although the actual value in PADR
isH'80.

Next the CPU sets bit O of the read datato "1," changing the value to H'41.

Finally, the CPU writes this value (H'41) back to PADR to complete the BSET instruction.

Asaresult, bit Pdoissetto"1," switching pin P4o to High output. In addition, bits P47 and
P4s are both modified, changing the on/off settings of the MOS pull-up transistors of pins P47
and P4e.

Programming Solution: The switching of the pull-ups for P47 and P46 in example 2 can be
avoided by storing the same data in both the port-4 data register and in awork areain RAM.
Bit manipulations are performed on the data in the work area, after which the result is moved
into the port-4 data register. I1n the following example RAMO isa symbol for the user-sel ected
address of the work area.

Before Execution of BSET Instruction
MOV. B #80 ROL ; write data (H'80) for data register

MOV.B ROL @RAMD ; write to DR work area (RAMO)
MOV.B ROL @ORT4 ;writetoDR

19

P47 P4de Pds Pds Pz Pl Pk Pho

I nput/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low Low
DDR 0 0 1 1 1 1 1 1
DR 1 0 0 0 0 0 0 0
Pull-up On Off Off Off Off Off Off Off
RAMO 1 0 0 0 0 0 0 0

Execution of BSET Instruction

BSET #0 @RAMD ; set bit 0in DR work area (RAMO)

After Execution of BSET Instruction

MOV.B @AM ROL ; get value in work area (RAMO)
MOV. B ROL @ORT4 ; writevaueto DR

P47 Pds P4s P44 Pas P42 Ph Pho

I nput/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low High
DDR 0 0 1 1 1 1 1 1
DR 1 0 0 0 0 0 0 1
Pull-up On Off Off Off Off Off Off Off
RAMO 1 0 0 0 0 0 0 1

20

1.3.3 Machine-Language Coding

15 8
| op | 'm | M
15 8
| op m | M
15 8
op 'm | n
disp.
15 8
| op m_ | M
15 8
| op | M | abs.
15 8
op | '
abs.
15 8
[op | M | IMM
15 8
op
IMM
15 8
op '
abs.
15 8
op !
Notation
op: Operation field
'm: 'n: Reqgister field
disp: Displacement
abs.: Absolute address
IMM: Immediate data

MOV
Rm - Rn

Rn - @Rm,or@Rm - Rn

@(d:16, Rm) - Rn, or
Rn - @(d:16, Rm)
@Rm+ - Rn,orRn - @-Rm

@aa:8 - Rn,orRn - @aa8

@aa:1l6 - Rn,or
Rn - @aa:16

#xx:8 - Rn

#xx:16 - Rn

MOVFPE, MOVTPE

POP, PUSH

Figure 1-5. Machine-Language Coding of Data Transfer Instructions

21

15 8 7 0

| op | rm | rn | ADD, SUB, CMP (Rm)
ADDX, SUBX (Rm)

15 8 7 0
| op | n | ADDS, SUBS, INC, DEC, DAA,
DAS, NEG, NOT
15 8 7 0
| op fm | rn | MULXU, DIVXU
15 8 7 0
[op [y | MM | ADD, ADDX, SUBX, CMP
(#xx:8)
15 8 7 0
| op ['m = | AND,OR,XOR (Rm)
15 8 7 0
| op [n | MM | AND, OR, XOR (#xx:8)
15 8 7 0
| op rn | SHAL, SHAR, SHLL, SHLR,
ROTL, ROTR, ROTXL, ROTXR
Notation
op: Operation field
'm: 'n: Register field
IMM: Immediate data

Figure 1-6. Machine-Language Coding of Arithmetic, Logic, and Shift Instruction Codes

22

15 8 0
op MM [y

15 8 0
op | 'm |

15 8 0
op | rn 0000
op IMM 00O00O0

15 8 0
op Mn 00O00O0
op 'm 00O00O0

15 8 0
op | abs.
op IMM 00O00O0

15 8 0
op abs.
op 'm 0000

15 8 0
op IMM M

15 8 0
op M 00O00O0
op IMM 00O00O0

15 8 0
op abs.
op IMM 00O00O0

Notation

op: Operation field

'm 'n: Register field

abs.: Absolute address

IMM: Immediate data

BSET, BCLR, BNOT, BTST
Operand: register direct (Rn)
Bit No.: immediate (#xx:3)

Operand: register direct (Rn)
Bit No.: register direct (Rm)

Operand: register indirect (@Rn)
Bit No.: immediate (#xx:3)

Operand: register indirect (@Rn)
Bit No.: register direct (Rm)

Operand: absolute (@aa:8)
Bit No.: immediate (#xx:3)

Operand: absolute (@aa:8)
Bit No.: register direct (Rm)

BAND, BOR, BXOR, BLD, BST
Operand: register direct (Rn)
Bit No.: immediate (#xx:3)

Operand: register indirect (@Rn)
Bit No.: immediate (#xx:3)

Operand: absolute (@aa:8)
Bit No.: immediate (#xx:3)

Figure 1-7. Machine-Language Coding of Bit Manipulation I nstructions

23

15 8 0
op IMM '

15 8 0
op n 0000
op Y 0000

15 8 0
op abs.
op [MM 0000

Notation

op: Operation field

'm: ' Register field

abs.: Absolute address

IMM: Immediate data

BIAND, BIOR, BIXOR, BILD, BIST
Operand: register direct (Rn)
Bit No.: immediate (#xx:3)

Operand: register indirect (@Rn)
Bit No.: immediate (#xx:3)

Operand: absolute (@aa:8)
Bit No.: immediate (#xx:3)

Figure 1-7. Machine-Language Coding of Bit Manipulation Instructions (Cont.)

24

15 8 7
op | cc | disp.

15 8 7

op m | 0000 |

15 8 7

op

abs.

15 8 7
op | abs.

15 8 7
op | disp.

15 8 7

op 'm | 000 0]

15 8 7

op

abs.

15 8 7
op | abs.

15 8 7

op

Notation
op:

cc:

'm:

disp.:
abs.:

Operation field
Condition field
Register field
Displacement

Absolute address

Bcc

IJMP (@Rm)

JMP (@aa:16)

JMP (@ @aa:8)

BSR

JSR (@Rm)

JSR (@aa:16)

JSR (@@aa:8)

RTS

Figure 1-8. Machine-Language Coding of Branching I nstructions

25

15 8 7 0
I op

15 8 7 0
| op n

15 8 7 0
| op | IMM
Notation
op: Operation field
' Register field
IMM: Immediate data

RTE, SLEEP, NOP

LDC, STC (Rn)

ANDC, ORC, XORC, LDC
(#xx:8)

Figure 1-9. Machine-Language Coding of System Control I nstructions

15

op

op

EEPMOV

Figure 1-10. Machine-Language Coding of Block Data Transfer Instruction

26

1.3.4 Addressing Modes and Effective Address Calculation

Table 1-11 lists the eight addressing modes and their assembly-language notation. Each
instruction can use a specific subset of these addressing modes.

Table 1-11. Addressing Modes

No. Mode Notation
Q) Register direct Rn
2 Register indirect @Rn
3 Register indirect with 16-bit displacement @(d:16, Rn)
4) Register indirect with post-increment @Rn+
Register indirect with pre-decrement @-Rn
(5) Absolute address (8 or 16 hits) @aa:8, @aa:16
(6) Immediate (3-, 8-, or 16-bit data) #XX:3, #XX:8, #xX:16
@) PC-relative (8-bit displacement) @(d:8, PC)
(8) Memory indirect @@aa.8

(1) Register Direct—Rn: Theregister field of the instruction specifies an 8- or 16-bit
general register containing the operand. In most cases the general register is accessed as an 8-
bit register. Only the MOV.W, ADD.W, SUB.W, CMPW, ADDS, SUBS, MULXU (8 bitsx 8
bits), and DIV XU (16 bits + 8 hits) instructions have 16-bit operands.

(2) Register indirect—@Rn: The register field of the instruction specifies a 16-bit general
register containing the address of the operand.

(3) Register Indirect with Displacement—@(d:16, Rn): Thismode, whichisused only in
MOV instructions, is similar to register indirect but the instruction has a second word (bytes 3
and 4) which is added to the contents of the specified general register to obtain the operand
address. For the MOV.W instruction, the resulting address must be even.

(4) Register Indirect with Post-1ncrement or Pre-Decrement—@Rn+ or @-Rn:

* Register indirect with post-increment—@Rn+
The @Rn+ mode is used with MOV instructions that |oad register from memory.
Itissimilar to the register indirect mode, but the 16-bit general register specified in the
register field of the instruction isincremented after the operand is accessed. The size of
theincrement is 1 or 2 depending on the size of the operand: 1 for a byte operand; 2 for a

27

word operand. For aword operand, the original contents of the 16-bit general register
must be even.

* Register indirect with pre-decrement—@-Rn
The @—Rn mode is used with MOV instructions that store registers contents to memory.
It issimilar to the register indirect mode, but the 16-bit general register specified in the
register field of the instruction is decremented before the operand is accessed. The size of
the decrement is 1 or 2 depending on the size of the operand: 1 for abyte operand; 2 for a
word operand. For aword operand, the original contents of the 16-bit general register
must be even.

(5) Absolute Address—@aa:8 or @aa:16: The instruction specifies the absol ute address of
the operand in memory. The @aa:8 mode uses an 8-bit absolute address of the form H’ FFxx.
The upper 8 bits are assumed to be 1, so the possible address range is H' FF0O0 to H' FFFF
(65280 to 65535). The MOV.B, MOV.W, IMP, and JSR instructions can use 16-bit absolute
addresses.

(6) Immediate—#xx:8 or #xx:16: The instruction contains an 8-bit operand in its second
byte, or a16-bit operand in itsthird and fourth bytes. Only MOV.W instructions can contain
16-bit immediate values.

The ADDS and SUBS instructions implicitly contain the value 1 or 2 as immediate data.
Some bit manipulation instructions contain 3-bit immediate data (#xx:3) in the second or
fourth byte of the instruction, specifying a bit number.

(7) PC-Rélative—@(d:8, PC): Thismodeis used to generate branch addresses in the Bcc
and BSR instructions. An 8-hit value in byte 2 of the instruction code is added as a sign-
extended value to the program counter contents. The result must be an even number. The
possible branching range is—126 to +128 bytes (—63 to +64 words) from the current address.

(8) Memory Indirect—@@aa:8: This mode can be used by the IMP and JSR instructions.
The second byte of the instruction code specifies an 8-bit absolute address from H’ 0000 to
H’ OOFF (0 to 255). Note that the initial part of the areafrom H'0000 to H'0O0FF contains the
exception vector table. See the hardware manual of the specific chip for details. The word
located at this address contains the branch address.

If an odd address is specified as a branch destination or as the operand address of a MOV.W
instruction, the least significant bit isregarded as “0,” causing word access to be performed at
the address preceding the specified address. See the memory data structure description in
section 1.1.2, Data Structure.

28

Calculation of Effective Address: Table 1-12 shows how the H8/300 cal cul ates effective
addresses in each addressing mode.

Arithmetic, logic, and shift instructions use register direct addressing (1). The ADD.B,
ADDX, SUBX, CMPB, AND, OR, and XOR instructions can also use immediate addressing

(6).

The MOV instruction uses all the addressing modes except program-counter relative (7) and
memory indirect (8).

Bit manipulation instructions use register direct (1), register indirect (2), or absolute (5)
addressing to identify a byte operand and 3-bit immediate addressing to identify a bit within
the byte. The BSET, BCLR, BNOT, and BTST instructions can aso use register direct
addressing (1) to identify the bit.

Effective Address Calculation
Table 1-12 explains how the effective addressis calculated in each addressing mode.
Table 1-12, Effective Address Calculation (1)

Addressing mode, Effective address Effective
No. instruction format calculation address
1 Register direct Rn. None
3 0 3 0
15 87 43 0 | regml | regnl
oP | regml regni A

Operand arecontainedin
registersmandn

2 Register indirect @Rn

15 0

16-bit register contents
15 76 |43 0 g 15 0

oP reg |

Y

Operandisat address
indicated by register

29

Table 1-12, Effective Address Calculation (2)

Addressing mode, Effective address Effective
No. instruction format calculation address
3 Register indirect with displacement
@(d:16, Rn)
15 0
16-bit register contents 15
+)—>

15 76 43 0 —

op reg 16-bit displacement Opera_nd addressissum

- A of register contents and
disp displacement

4 Register indirect with pre-decrement

@-Rn
15 0
~ | . .
>| 16-bit register contents
15 76| 43 o | i |_¢ 15
OoP reg
Register isdecremented
beforeoperand access
Register indirect with post-increment
@Rn+
15 0 15
;H 16-bit register contents |—>
15 76| 43 0 X y ——
op | reg | | j Register isincremented
after operand access
* 1 for abyte operand,
2 for aword operand
5 Immediate #xx:8. None
15 87 0
Operand is 1-byte
IMM
oP immediatedata
Immediate #xx:16 None
15 0
oP Operandis 2-byte
IMM immediatedata

30

Table 1-12, Effective Address Calculation (3)

Addressing mode, Effective address Effective
No. instruction format calculation address
6 Absolute address None
@aa:8
15 87
15 87 0 HFF | ¢
| oP abs I

Operand addressisinrange
from H'FFO0 to H'FFFF
Absolute address

@aa:16
15 0 15
OP
abs ¢
Arbitrary address
7 PC-relative @(d:8, PC)
15 0
PC contents 15
H—>
15 87 0 Sign extension diS; Destination address
OP | disp H
8 Memory indirect @@aa:8
15 87 0
OoP | abs i
15 87 y 0
H'00 |
15 0 15 0

16-bit memory contents |—>

Destination address

reg, regm, regn: General register

op: Operation field
disp: Displacement
abs: Absolute address
IMM: Immediate data

31

Section 2. Instruction Set

Section 2 gives full descriptions of all the H8/300 instructions, presenting them in alphabetic
order. Each instruction is explained in atable like the following:

ADD (ADD binary) (byte) ADD

<Operation> <Condition Code>

Rd + (EAs) - Rd I H N Z V C

— |t | —]T T ||

<Assembly-L anguage For mat>

ADD. B <FAs> Rd I: Previous value remains unchanged.

H: Setto"1" when thereisacarry from bit
3; otherwise cleared to "0."

N: Setto"1" when the result is negative;
otherwise cleared to "0."

Z. Setto"1" whentheresult is zero;
otherwise cleared to "0."

Byte V: Setto"1" if an overflow occurs,
otherwise cleared to "0."

C: Setto"1"if thereisacarry from bit 7;
otherwise cleared to "0."

<Examples>
ADD. B ROH, R1H
ADD. B #H 64, R2L

<Operand Size>

<Description>

This instruction adds the source operand to the contents of an 8-bit general register and places
the result in the 8-bit general register .

The source operand can be an 8-bit register value or immediate byte data.

: Instruction code
Addressin
mode 9 Mnem. Operands sl:ltg:[gsf
1stbyte | 2nd byte | 3rd byte | 4th byte
Immediate ADD.B | #xx:8,Rd |8 rd IMM 2
Register direct | ADD.B Rs, Rd 0 '8 rs | rd 2

32

<|nstruction Formats>

Name: The full and mnemonic names of the instruction are given at the top of the page.

Operation: Describesthe instruction in symbolic notation. The following symbols are used.

Symbol M eaning

(EAS) Source operand

(EAd) Destination operand

Rs, Rd, Rn 8-hit or 16-bit general register (s—source; d—destination)

#XX:3, #xx:8, #xx:16 3-bit, 8-bit, or 16-bit immediate data

d:8, d:16 8-hit or 16-bit displacement

PC Program counter

SP Stack pointer

CCR Condition code register

4 Zero flag in CCR

C Carry flag in CCR

- The result of the operation on the left is assigned to the operand on the

right (For compare instructions, the resulting condition codeis
assigned.)

+ Addition

— Subtraction

X Multiplication

+ Division

O AND logica

O OR logicd

[Exclusive OR logical

- Exchange

- Not

Assembly-L anguage
Format: The assembly- ADD. B <EAs>, Rd

language coding of the Mnemonic Size Source Destination
instruction. An exampleis:

33

The operand sizeisindicated by the letter B (byte) or W (word). The sizeisindicated
explicitly in this manual, but for instructions that permit only one size, the size designation can
be omitted in source-program coding.

The abbreviation EAs or EAd (effective address of source or destination) is used for operands
that permit more than one addressing mode.

Examples: Examples of the assembly-language coding of the instruction are given.

Operand size: Word or byte. Byte sizeisindicated for bit-manipulation instructions because
these instructions access afull byte in order to read or write one bit.

Condition code: The effect of instruction execution on the flag bits in the CCR is indicated.
The following notation is used:

Symbol Meaning
t Theflag isaltered according to the result of the instruction.
0 Theflagisclearedto"0."
— Theflagis not changed.
* Undetermined; the flag is|eft in an unpredictable state.

Description: A detailed explanation is given of the action of the instruction.
Instruction Formats: Each possible format of the instruction is shown explicitly, indicating
the addressing mode, the object code, and the number of states required for execution when the

instruction and its operands are located in on-chip memory. The following symbols are used:

Symbol Meaning

Imm. Immediate data (3, 8, or 16 bits)
abs. An absolute address (8 bits or 16 bits)
disp. Displacement (8 bits or 16 bits)

rs, rd, rn General register number (3 bitsor 4 bits) The s, d, and n correspond to the letters
in the operand notation

34

16-bit general registers are indicated by a 3-bit rs, rd, or rn value. 8-bit registers are indicated
by a4-bit rs, rd, or rn value. Address registers used in the @Rn, @(disp:16, Rn), @Rn+, and
@-Rn addressing modes are always 16-bit registers. Dataregisters are 8-bit or 16-bit registers
depending on the size of the operand. For 8-bit registers, the lower three bits of rs, rd, or rn
give theregister number. The most significant bitis"1" if the lower byte of the register is
used, or "0" if the upper byteisused. Registers are thusindicated as follows:

16-Bit register 8-Bit registers
I's,I'd, Or I'n I's, I'd, OF I'n Register
Register 0000 ROH
000 RO 0001 R1H
001 R1 : :
; : 0111 R7H
111 R7 1000 ROL
1001 R1L
1111 R7L

Bit Data Access. Bit data are accessed as the n-th bit of a byte operand in ageneral register or
memory. The bit number is given by 3-bit immediate data, or by avaluein agenera register.
When a bit number is specified in ageneral register, only the lower three bits of the register are
significant. Two examples are shown below.

BSET R1L, R2H

R1L | don't care ‘071 1|

—— Bitnumber =3

RRH |01 10010 1]

Bit3issetto"1"

35

BLD #5, @4 FF02:8

/Eiit No.5
H'FF02 10100110
/_\/

Loaded to C (carry) >|C
flagin CCR

The addressing mode and operand size apply to the register or memory byte containing the bit.

Number of States Required for Execution: The number of statesindicated is the number
required when the instruction and any memory operands are located in on-chip ROM or RAM.
If the instruction or an operand is located in external memory or the on-chip register field,
additional states are required for each access. See Appendix C.

36

ADD (ADD binary) (byte) ADD
<Operation> <Condition Code>

<Assembly-L anguage For mat>
ADD. B <EAs>, Rd

<Examples>
ADD. B ROH, R1H
ADD. B #H 64, R2L

<Operand Size>
Byte

— |— [t | —T] T |

Previous value remains unchanged.

. Setto"1" when thereisacarry from bit

3; otherwise cleared to "0."

. Setto "1" when the result is negative;

otherwise cleared to "0."

Set to "1" when the result is zero;
otherwise cleared to "0."

Set to "1" if an overflow occurs,
otherwise cleared to "0."

Set to "1" if thereisacarry from bit 7;
otherwise cleared to "0."

<Description>

This instruction adds the source operand to the contents of an 8-bit general register and places

the result in the 8-bit general register .

The source operand can be an 8-bit register value or immediate byte data.

<Instruction Formats>

; Instruction code
Addressin
mode g Mnem. Operands ls\ltgigg
1stbyte | 2nd byte | 3rd byte | 4th byte
Immediate ADDB | #xx:8,Rd |8 | rd IMM 2
Register direct | ADD.B Rs, Rd 0 '8 rs | rd 2
L |

37

ADD (ADD binary) (word)

ADD

<Operation>
Rd+Rs - Rd

<Condition Code>

<Assembly-L anguage For mat>
ADD. W Rs, Rd

<Examples>
ADD. WRO, R1

<Operand Size>
Word

I H N Z V C

— =t | —]T T T]

Previous value remains unchanged.

Set to "1" when there isa carry from bit
11; otherwise cleared to "0."

Set to "1" when the result is negative;
otherwise cleared to "0."

Set to "1" when the result is zero;
otherwise cleared to "0."

Set to "1" if an overflow occurs;
otherwise cleared to "0."

Set to "1" if thereisacarry from bit 15;
otherwise cleared to "0."

<Description>

This instruction adds word datain two general registers and places the result in the second

general register.

<|nstruction Formats>

; Instruction code
Addressin
mode g Mnem. Operands ’s\ltgigsf
1stbyte | 2nd byte | 3rd byte | 4th byte
Register direct | ADD.W | Rs, Rd 0 19 Oi rsioi rd 2

38

ADDS (ADD with Sign extension)

ADDS

<Operation>
Rd+1 - Rd
Rd+2 - Rd

<Assembly-L anguage For mat>

ADDS #1, Rd
ADDS #2, Rd
<Examples>

ADDS #1, R4
ADDS #2, R5

<Operand Size>

Word

<Condition Code>

I H N Z V C

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

O<SNZI-=

<Description>

This instruction adds the immediate value 1 or 2 to word datain ageneral register. Differing
from the ADD instruction, it does not affect the condition code flags.

<|nstruction Formats>

; Instruction code
Addressin
mode g Mnem. Operands [s\ltgig;
1stbyte | 2nd byte | 3rd byte | 4th byte
Register direct | ADDS #1, Rd 0 i B| 0 0rd 2
Register direct | ADDS #2, Rd 0! B 8 303 rd 2

Note: Thisinstruction cannot access byte size data.

39

ADDX (ADD with eXtend carry) ADDX
<Operation> <Condition Code>

<Assembly-L anguage For mat>
ADDX <EAs>, Rd

<Examples>
ADDX ROL, R1L
ADDX #H O0A, R2H

<Operand Size>
Byte

— |— ¢ | —T] |T |

I: Previous value remains unchanged.

H: Setto"1" if thereisacarry from bit 3;
otherwise cleared to "0."

N: Setto"1" when the result is negative;
otherwise cleared to "0."

Z. Setto"1" when theresult is zero;
otherwise cleared to "0."

V: Setto"1" if an overflow occurs;
otherwise cleared to "0."

C: Setto"1" if thereisacarry from bit 7;
otherwise cleared to "0."

<Description>

This instruction adds the source operand and carry flag to the contents of an 8-bit general
register and places the result in the 8-bit general register.
The source operand can be an 8-hit register value or immediate byte data.

<lnstruction Formats>

Addressin Instruction code
mode g Mnem. Operands ls\ltgigg
1stbyte | 2nd byte | 3rd byte | 4th byte
Immediate ADDX #xx:8, Rd d IMM 2
Register direct | ADDX Rs, Rd E rs | rd 2

AND (AND logical)

AND

<Operation>
Rd O(EASs) - Rd

<Condition Code>

<Assembly-L anguage For mat>

AND <EAs>, Rd

I:
<Examples> H:
AND R6H, R6L N:
AND #H FD, ROH

Z:
<Operand Size>
Byte V:

C:

H

N

Z

Previous value remains unchanged.

Previous value remains unchanged.

Set to "1" when the result is negative;
otherwise cleared to "0."
Set to "1" when the result is zero;
otherwise cleared to "0."

Cleared to

n O_"

Previous value remains unchanged.

<Description>

Thisinstruction ANDSs the source operand with the contents of an 8-bit general register and
places the result in the 8-bit general register.

The source operand can be an 8-bit register value or immediate byte data.

<|nstruction Formats>

; Instruction code
Addressin
mode g Mnem. Operands [s\ltgi:sf
1stbyte | 2nd byte | 3rd byte | 4th byte
Immediate AND #xx:8,Rd | E I rd IMM 2
Register direct | AND Rs, Rd 1 16 rs | rd 2

41

ANDC (AND Control register) ANDC
<Operation> <Condition Code>
CCR O#IMM - CCR | H N Z V C

<Assembly-L anguage For mat>
ANDC #xx:8, CCR

<Examples>
ANDC #H 7F, CCR

<Operand Size>
Byte

! ! ! o I ! !

O<SNZI-=

ANDed with bit 7 of the immediate data.
ANDed with bit 5 of the immediate data.
ANDed with bit 3 of the immediate data.
ANDed with bit 2 of the immediate data.
ANDed with bit 1 of the immediate data.
ANDed with bit 0 of the immediate data.

<Description>

Thisinstruction ANDSs the condition code register (CCR) with immediate data and places the
result in the condition code register. Bits6 and 4 are ANDed as well as the flag bits.

No interrupt requests are accepted immediately after thisinstruction. All interrupts, including
the nonmaskable interrupt (NMI), are deferred until after the next instruction.

<|nstruction Formats>

; Instruction code
Addressin
mode g Mnem. Operands [s\ltgi:sf
1stbyte | 2nd byte | 3rd byte | 4th byte
Immediate ANDC #xx:8,CCR| 0 16 IMM 2

42

BAND (Bit AND) BAND
<Operation> <Condition Code>
C O(<Bit No.> of <EAd>) - C | H N Z V C

<Assembly-L anguage For mat>
BAND #xx:3, <EAd>

<Examples>
BAND #0, RI1L
BAND #4, @3

BAND #7, @4 FFEO: 8

— | —[———[—[—]

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

OSSNz~

ANDed with the specified bit.

<Operand Size>
Byte

<Description>

Thisinstruction ANDs a specified bit with the carry flag and places the result in the carry flag.
The specified bit can be located in ageneral register or memory. The bit number is specified
by 3-bit immediate data. The operation is shown schematically below.

BitNo. 7 P37 0
1 1 1

<EAd>* - Bytedatain register or memory D L
Q][

The value of the specified bit is not changed.

<lnstruction Formats>

ﬁ;%%fssmg Mnem. | Operands Instruction code Sl?{[g'tg
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BAND |#xx:3, Rd 7 i 6 OiIMI\/:I rd 2
Register indirect | BAND |#xx:3,@Rd | 7 i C Oi rd i 0 7 i 6 Oi IMI\):l 0 6
Absolute address| BAND |#xx:3,@aa:8 | 7 i E abs 7 % 6 0% IMI\/:I 0 6

* Register direct, register indirect, or absolute addressing.

43

Bcc (Branch conditionally) Bcc

<Operation> <Condition Code>

If cc then | Y N 7 V C
PC+d8 - PC

else next;

<Assembly-L anguage For mat>

Bcc d:8
‘L_5condition codefield

(For mnemonics, see the table on the
next page.)

<Examples>
BH H 42
BEQ H -7E

<Operand Size>

O<SNZI-=

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

Bcc (Branch conditionally)

Bcc

<Description>

If the specified condition is false, this instruction does nothing; the next instruction is

executed. If the specified condition istrue, a signed displacement is added to the address of
the next instruction and execution branches to the resulting address.
The displacement is a signed 8-bit value which must be even. The branch destination address
can be located in the range —126 to +128 bytes from the address of the Bcc instruction.
The available conditions and their mnemonics are given below.

Mnemonic cc Field Description Condition Meaning

BRA (BT) 0000 Always (True) Alwaystrue

BRN (BF) 0001 Never (False) Never

BH 0010 High COz=0 X >Y (Unsigned)

BLS 0011 Low or Same cz=1 X <Y (Unsigned)

BCC (BHS) | 0100 Carry Clear C=0 X 2Y (Unsigned)

(High or Same)

BCS (BLO 0101 Carry Set (LOw) =1 X <Y (Unsigned)

BNE 0110 Not Equal Z=0 X#£Y (Signedor
unsigned)

BEQ 0111 EQual Z=1 X =Y (Signedor
unsigned)

BVC 1000 oVerflow Clear V=0

BVS 1001 oVerflow Set V=1

BPL 1010 PLus N=0

BM 1011 MInus N=1

BCGE 1100 GreaterorEqual | NOV =0 X=Y (Signed)

BLT 1101 Less Than NOV=1 X <Y (Signed)

BGT 1110 Greater Than ZONNOV)=0 | X>Y (Signed)

BLE 1111 Lessor Equal ZONDOV)=1 | X<Y (Signed)

BT, BF, BHS, and BLO are synonyms for BRA, BRN, BCC, and BCS, respectively.

45

Bcc (Branch conditionally) Bcc

<Instruction Formats>
Adressing Instruction code No . of
mode Mnem. | Operands 1st byte 2nd byte 3rd byte 4th byte | states
PC relative BRA (BT) d:8 4 0 disp. 4
PC relative BRN (BF) d:8 4 1 disp. 4
PC relative BHI d:8 4 2 disp. 4
PC relative BLS d:8 4 3 disp. 4
PC relative BCC (BHS) d:8 4 4 disp. 4
PC relative BCS (BLO) d:8 4 5 disp. 4
PC relative BNE d:8 4 6 disp. 4
PC relative BEQ d:8 4 7 disp. 4
PC relative BVC d:8 4 8 disp. 4
PC relative BVS d:8 4 9 disp. 4
PC relative BPL d:8 4 A disp. 4
PC relative BMI d:8 4 B disp. 4
PC relative BGE d:8 4 C disp. 4
PC relative BLT d:8 4 D disp. 4
PC relative BGT d:8 4 E disp. 4
PC relative BLE d:8 4 E disp. 4

* The branch address must be even.

46

BCLR (Bit CLeaR) BCLR

<Operation> <Condition Code>

0 - (<Bit No.> of <EAd>) | H N Z V C

<Assembly-L anguage For mat>

BCLR #xx:3, <EAd> Previous value remains unchanged.

I
BCLR Rn, <EAd> H: Previous value remains unchanged.
N: Previous value remains unchanged.
<Examples> Z: Previous value remains unchanged.
BCLR #0, ROL V: Previous value remains unchanged.
BCLR #1, @R5 C: Previous value remains unchanged.

BCLR R6L, @4 FFCO 8

<Operand Size>
Byte

<Description>

Thisinstruction clears a specified bit in the destination operand to "0." The bit number can be
specified by 3-bit immediate data, or by the lower three bits of an 8-bit general register. The
destination operand can be located in a general register or memory.

The specified bit is not tested before being cleared. The condition code flags are not altered.

#xx:3 or Rn—
Bit No. 7 i

<EAd>* - Bytedatain register or memory Coro Al

|
0

*Register direct, register indirect, or absolute addressing.

a7

BCLR (Bit CLeaR) BCLR
<Instruction Formats>
Addressing Instruction code No. of
mode Mnem. | Operands states
1st byte 2nd byte | 3rd byte 4th byte
Register direct BCLR |#xx:3, Rd 7 i 2 Oi IMI\%I rd 2
Register indirect | BCLR |#xx:3,@Rd | 7 | D o d 0 | 7 2 0 MM 0 8
Absolute address| BCLR |[#xx:3,@aa:8 | 7 i F abs 7 i 2 O% IMIV:I 0 8
Register direct BCLR |Rn, Rd 6 i 2 m i rd 2
Register indirect | BCLR |Rn, @Rd 7 i D Oi rdi 0 6 i 2 n i 0 8
Absolute address| BCLR |Rn, @aa:8 7 i F abs 6 i 2 m i 0 8

48

BIAND (Bit Invert AND) BIAND
<Operation> <Condition Code>
C - (<BitNo.> of <EAd>)] - C | H N Z V C

<Assembly-L anguage For mat>
Bl AND #xx:3, <EAd>

<Examples>
Bl AND #0, R1H
Bl AND #2, @5

il Bl Bl el el el I

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

O Nz I~

Bl AND #4, @ FFDE: 8 ANDed with the inverse of the specified

bit.

<Operand Size>
Byte

<Description>

Thisinstruction ANDs the inverse of a specified bit with the carry flag and places the result in
the carry flag. The specified bit can be located in a general register or memory. The bit
number is specified by 3-bit immediate data. The operation is shown schematically below.

BitNo. 7 %37 0
I I I v I I
<EAd>* - Bytedatain register or memory S v 2
Invert

(00

The value of the specified bit is not changed.

<|nstruction Formats>

Q%%reessmg Mnem. | Operands Instruction code Sth;[eosf
1stbyte | 2nd byte 3rd byte | 4th byte
Register direct BIAND |#xx:3, Rd 7 i 6 1% IMNTII rd 2
Register indirect | BIAND |#xx:3,@Rd | 7 i C Oi rdi 0 7 % 6 1% IMl\i/I 0 6
Absolute address| BIAND |#xx:3,@aa:8 | 7 i E abs 7 i 6 1% IMI\E/I 0 6

*Register direct, register indirect, or absolute addressing.

49

BILD (Bit Invert LoaD) BILD

<Operation> <Condition Code>
- (<Bit No.> of <EAd>) - C | H N Z V C

— | == —=|=|=]—]:

<Assembly-L anguage For mat>

Bl LD #xx:3, <EAd>
Previous value remains unchanged.

<Examples> Prev, ous value remq ns unchanged.
BI LD #3, R4L Prev, ous value rema! ns unchanged.
BI LD #5, @5 Previous value remains unchanged.

Previous value remains unchanged.
L oaded with the inverse of the specified

Bl LD #7, @H FFA2:8

OSSNz I~

<Operand Size> it

Byte

<Description>

Thisinstruction loads the inverse of a specified bit into the carry flag. The specified bit can be
located in ageneral register or memory. The bit number is specified by 3-bit immediate data
The operation is shown schematically below.

BitNo. 7 "33 0
<EAd>* - Bytedatain register or memory

The value of the specified bit is not changed.

<lnstruction Formats>

Instruction code

Addressin
mode g Mnem. | Operands ’s\ltgi(ac)s]c
1st byte | 2nd byte 3rd byte | 4th byte
1 I T
Register direct BILD |#xx:3, Rd 13 IMM rd 2

13|MM| 0 6

7 i 7
Register indirect | BILD |#xx:3,@Rd |7 1 C 0 [d! 0
7 i E

7 7
| |
Absolute address| BILD |#xx:3,@aa:8 abs 7 7 |1IMM O 6

*Register direct, register indirect, or absolute addressing.

50

BIOR (Bit Invert OR) BIOR

<Operation> <Condition Code>
CUO[~ (<BitNo.> of <EAd>)] - C | H N Z V C

— | —[———[—[—]

<Assembly-L anguage For mat>

Bl OR #xx:3, <EAd> _ .
Previous value remains unchanged.

Previous value remains unchanged.
<Examples> ! _
Bl OR #6, R1H Prev? ous value rema! ns unchanged.
BICOR #3, @R Previous value remains unchanged.

Previous value remains unchanged.
ORed with the inverse of the specified

O<SNZI=

Bl CR #0, @H FFFO: 8

<Operand Size> bit

Byte

<Description>

Thisinstruction ORs the inverse of a specified bit with the carry flag and places the result in
the carry flag. The specified bit can be located in a general register or memory. The bit
number is specified by 3-bit immediate data. The operation is shown schematically below.

BitNo. 773 0
I I I I I
<EAd>* - Bytedatain register or memory

The value of the specified bit is not changed.

<Instruction Formats>

Instruction code

Addressin
mode g Mnem. | Operands ,s\ltg:[:sf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BIOR |#xx:3, Rd 13 IMM rd 2

13 IMM 0 6

Absolute address| BIOR |#xx:3,@aa:8 abs

7 4
Register indirect | BIOR |#xx3,@Rd |7 | C [0rd| 0 |7 | 4
7 | E 7 0 4[1IMM 0 6

*Register direct, register indirect, or absolute addressing.

51

BIST (Bit Invert STore) BIST
<Operation> <Condition Code>
- C- (<B|t No.> of <EAd>) I H N Z V C

<Assembly-L anguage For mat>
Bl ST #xx:3, <EAd>

<Examples>
Bl ST #0, ROL
Bl ST #6, @R3

BI ST #7, @1 FFBB: 8

<Operand Size>
Byte

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

O<SNzZzI -~

<Description>

Thisinstruction stores the inverse of the carry flag to a specified bit location in a general
register or memory. The bit number is specified by 3-bit immediate data. The operation is

shown schematically below.

<EAd>* - Bytedatain register or memory

Bit No.

7 #xx:3—¢ 0
1 1 1

N

-

The values of the unspecified bits are not changed.

<|nstruction Formats>

ﬁ;%c(jjrgssmg mnem. | Operands Instruction code ’S\‘tg;[é’sf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BIST |#xx:3,Rd 6 i 7 1% IMM:1 rd 2
Register indirect | BIST |#xx:3,@Rd 7 i D Oi rdi 0 6 % 7 1% IMl\i/I 0 8
Absolute address | BIST |#xx:3,@aa:8 | 7 i F abs 6 i 7 1% IMI\E/I 0 8

* Register direct, register indirect, or absolute addressing.

52

BIXOR (Bit Invert eXclusive OR) BIXOR

<Operation> <Condition Code>
C O [~ (<Bit No.> of <EAd>)] - C | H N Z V C

— | == ===]—=]

<Assembly-L anguage For mat>

Bl XOR #xx:3, <EAd> Previous val ue remains unchanged.

Previous value remains unchanged.

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Exclusive-ORed with the inverse of the
specified bit.

<Examples>

Bl XOR #1, R4L

Bl XOR #2, @5

Bl XOR #3, @ FF60: 8

O Nz I~

<Operand Size>
Byte

<Description>

Thisinstruction exclusive-ORs the inverse of a specified bitwith the carry flag and places the
result in the carry flag. The specified bit can be located in a general register or memory. The
bit number is specified by 3-bit immediate data. The operation is shown schematically below.

BitNo. 7 X3 0
1 1 1

<EAd>* - Bytedatain register or memory

¥
nvert

T

The value of the specified bit is not changed.

<|nstruction Formats>

Instruction code

Addressing No. of
mode Mnem. | Operands states
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BIXOR |#xx:3, Rd 13 IMM rd 2

13 ||\/|M1 0 6

7 i 5
Register indirect | BIXOR |#xx:3,@Rd |7 1 C |0 d! 0
7 i E

7
Absolute address| BIXOR | #xx:3,@aa:8 abs 7 13 IMM 0 6

* Register direct, register indirect, or absolute addressing.

53

BLD (Bit L oaD) BLD
<Operation> <Condition Code>
(<Bit No.> of <EAd>) - C | H N Z V

<Assembly-L anguage For mat>
BLD #xx:3, <EAd>

Previous value remains unchanged.

I

H: Previous value remains unchanged.
<Examples> N: Previous value remains unchanged.
BLD #1, R3H Z: Previous value remains unchanged.
BLD #2, @R2 V: Previous value remains unchanged.
BLD #4, @1 FF90:8 C: Loaded with the specified hit.

<Operand Size>
Byte

<Description>
Thisinstruction loads a specified bit into the carry flag. The specified bit can be located in a
general register or memory. The bit number is specified by 3-bit immediate data. The

operation is shown schematically below.
BitNo. 7373 0
I I I

<EAd>* - Bytedatain register or memory L1 |

_>|:C

The value of the specified bit is not changed.

<lnstruction Formats>

ﬁ;%%fssmg Mnem. | Operands Instruction code Sl?{[g'tg
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BLD #xx:3, Rd 7 i 7 0% IM i rd 2
Register indirect | BLD | #x:3,@Rd | 7 | C o i 0 |7 70 IMM:1 0| 6
Absolute address| BLD #xx:3,@aa:8 | 7 i E abs 7 i 7 0% IMI\/;I 0 6

* Register direct, register indirect, or absolute addressing.

BNOT (Bit NOT) BNOT

<Operation> <Condition Code>
- (<Bit No.> of <EAd>) | H N Z V C
- (<Bit No.> of <EAd>)

<Assembly-L anguage For mat>

Previous value remains unchanged.
BNOT #xx:3, <EAd>

I

H: Previous value remains unchanged.
BNOT' Rn, <EAg> N: Previous value remains unchanged.

Z: Previous value remains unchanged.
<Examples> V: Previous value remains unchanged.
BNOT #7, R1H C:

Previous value remains unchanged.
BNOT R1L, @R6

BNOT #3, @H FFB4:8

<Operand Size>
Byte

<Description>

Thisinstruction inverts a specified bit in a general register or memory location. The bit
number is specified by 3-bit immediate data, or by the lower three-bits of a general register.
The operation is shown schematically below.

#xx:3 or Rn
Bit No. / —,L 0

<EAd>* - Bytedatain register or memory \ : |

N ZInver\tl

The bit is not tested before being inverted. The condition code flags are not altered.

*Register direct, register indirect, or absolute addressing.

55

BNOT (Bit NOT) BNOT
<Instruction For mats>
Addressing Instruction code No. of
mode Mnem. | Operands states
1st byte 2nd byte | 3rd byte 4th byte
Register direct BNOT |#xx:3, Rd 7 i 1 Oi IMlvjl rd 2
Register indirect | BNOT |#xx:3,@Rd 7 % D Oi rdi 0 7 % 1 O% IMI\/EI 0 8
Absolute address| BNOT |#xx:3,@aa:8 | 7 i F abs 7 i 1 Oi IMN:'I 0 8
Register direct BNOT |Rn, Rd 6 i 1 m i rd 2
Register indirect | BNOT |Rn, @Rd 7 % D Oi rdi 0 6 % 1 rm i 0 8
Absolute address| BNOT |Rn, @aa:8 7 i F abs 6 i 1 m % 0 8

56

BOR (Bit inclusive OR) BOR

<Operation> <Condition Code>

C O(<Bit No.> of <EAd>) -~ C | H N Z V C

— | == —=|—=|=]—]:

<Assembly-L anguage For mat>

BOR #xx:3, <EAd>
Previous value remains unchanged.

<Examples> Previous value remains unchanged.
BOR #5, R2H Previous value remains unchanged.
BOR #4, @Rl Previous value remains unchanged.

Previous value remains unchanged.
ORed with the specified bit.

BOR #5, @H FFB6:8

OSSNz I~

<Operand Size>
Byte

<Description>

Thisinstruction ORs a specified bit with the carry flag and places the result in the carry flag.
The specified bit can be located in a general register or memory. The bit number is specified
by 3-bit immediate data. The operation is shown schematically below.

7 #xx:3—¢

g0

Bit No.
<EAd>* - Bytedatain register or memory

The value of the specified bit is not changed.

*Register direct, register indirect, or absolute addressing.

57

BOR (Bit inclusive OR) BOR
<Instruction For mats>
; Instruction code
Addressin
mode g Mnem. | Operands ggigg
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BOR |#xx:3,Rd 7 4 |0IMM rd 2
Register indirect | BOR |#x:3,@Rd |7 | C Oi rd i 0 7 14 0 IMM 0 6
Absolute address| BOR | #xx:3,@aa8 | 7 | E abs 7 0 4]01IMM 0 6

58

BSET (Bit SET) BSET

<Operation> <Condition Code>

<Assembly-L anguage For mat>
BSET #xx:3,<EAd>

Previ remains unch .
BSET Rn,<EAd> evious value remains unchanged

Previous value remains unchanged.
Previous value remains unchanged.
<Examples> Previ A _ hanaed
r ns unchanged.
BSET #3. RoL evious value remainsu g

Previous value remains unchanged.

BSET R2H, @R6 _ :
Previous value remains unchanged.

BSET #7, @1 FFE4:8

O<SNZI~

<Operand Size>
Byte

<Description>

Thisinstruction sets a specified bit in the destination operand to "1." The bit number can be
specified by 3-bit immediate data, or by the lower three-bits of an 8-bit general register. The
destination operand can be located in a general register or memory.

The specified bit is not tested before being cleared. The condition code flags are not altered.

#xx:3 or Rn —
Bit No. 7 0

<EAd>* - Bytedatain register or memory

(I N

59

BSET (Bit SET) BSET
<Instruction Formats>
Addressing Instruction code No. of
mode Mnem. | Operands states
1st byte 2nd byte | 3rd byte 4th byte
Register direct BSET |#xx:3, Rd 7 i 0 Oi IMI\/jI rd 2
Register indirect | BSET |#xx:3,@Rd 7 % D 0% rdi 0 7 % 0 Oi IMM:1 0 8
Absolute address| BSET |#xx:3,@aa:8 | 7 i F abs 7 i 0 O% IMIV:(I 0 8
Register direct BSET |Rn,Rd 6 i 0 n i rd 2
Register indirect | BSET |Rn, @Rd | 7 D 0 d 0 | 6 0 | m 0 8
Absolute address| BSET |Rn, @aa:8 7 i F abs 6 i 0 m % 0 8

60

BSR (Branch to SubRoutine)

<Operation>
PC - @-SP
PC+d8 - PC

<Condition Code>

<Assembly-L anguage For mat>
BSR d:8

<Examples>
BSR H 76

<Operand Size>

I H N Z V C

O<sSNZI~

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

<Description>

This instruction pushes the program counter (PC) value onto the stack, then adds a specified
displacement to the program counter value and branches to the resulting address. The program

counter value used is the address of the instruction following the BSR instruction.

The displacement is a signed 8-bit value which must be even. The possible branching rangeis

—126 to +128 bytes from the address of the BSR instruction.

<|nstruction Formats>

; Instruction code
Addressin
mode g Mnem. Operands ’s\ltgigsf
1stbyte | 2nd byte | 3rd byte | 4th byte
PC-relative BSR d:8 5 |5 disp 6

61

BST (Bit STore) BST
<Operation> <Condition Code>
C - (<Bit No.> of <EAd>) | H N Z V C

<Assembly-L anguage For mat>

BST #xx:3, <EAd>

<Examples>
BST #7, R4L
BST #2, @R3

BST #6, @1 FFDL1:8

O<SNZI~

<Operand Size>
Byte

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

<Description>

This instruction stores the carry flag to a specified flag location in a general register or
memory. The bit number is specified by 3-bit immediate data. The operation is shown

schematically below.

<EAd>* - Bytedatain register or memory

Bit No. 7

#xx:3—¢ 0

L1 1AL 11

c[|—

<|nstruction Formats>

Instruction code

gi?jréassmg Mnem. | Operands sthié);
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BST #xx:3, Rd 6 i 7 Oi IMI\/T| rd
Register indirect | BST #xx:3,@Rd | 7 i D Oi rd i 0 6 i 7 Oi IMM 0
Absolute address| BST #xx:3,@aa8 | 7 i F abs 6 % 7 0% IMM 0

* Register direct, register indirect, or absolute addressing.

62

BTST (Bit TeST) BTST

<Operation> <Condition Code>
- (<Bit No.> of <EAd>) - Z I H N Z V C

_] — | — _] — ? _] —

<Assembly-L anguage For mat>
BTST #xx:3, <EAd>

BTST Rn, <EAd> Previous value remains unchanged.

I

H: Previous value remains unchanged.
<Examples> N: Previous value remains unchanged.
BTST #4, R6L Z. Seeto"1" if the specified bit is zero;

BTST R1IH, @®5 otherwise cleared to "0".
BTST #7, @H FF6C. 8 Previous value remains unchanged.
C: Previous value remains unchanged.

<

<Operand Size>
Byte

<Description>

Thisinstruction tests a specified bit in a general register or memory location and sets or clears
the Zero flag accordingly. The bit number can be specified by 3-bit immediate data, or by the
lower three bits of an 8-bit general register. The operation is shown schematically below.

#xx:3 or Rn
Bit No. 7 W 0

<EAd>* - Bytedatain register or memory

The value of the specified bit is not altered.

*Register direct, register indirect, or absolute addressing.

63

BTST (Bit TeST) BTST
<Instruction Formats>
Addressing Instruction code No. of
mode Mnem. | Operands states
1st byte 2nd byte | 3rd byte 4th byte
Register direct BTST |#xx:3,Rd 7 i 3 0% IMM% rd 2
Register indirect | BTST | #xx:3,@Rd 7 % C i rd i 0 7 % 3 0% IMM: 0 6
Absolute address| BTST |#xx:3,@aa:8 | 7 i E abs 7 i 3 O% IMM 0 6
Register direct BTST |Rn,Rd 6 i 3 rn i rd 2
Register indirect | BTST |Rn, @Rd 7 i C 0% rd i 0 6 i 3 m % 0 6
Absolute address| BTST | Rn, @aa:8 7 i E abs 6 % 3 m i 0 6

64

BXOR (Bit eXclusive OR) BXOR
<Operation> <Condition Code>
ca (<B|t No.> of <EAd>) - C I H N 7Z V C

<Assembly-L anguage For mat>
BXOR #xx:3, <EAd>

<Examples>
BXOR #4, R6H
BXOR #2, @0

BXCR #1, @4 FFAO: 8

— | —[——|———]

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

O<SNZI=

Exclusive-ORed with the specified bit.

<Operand Size>
Byte

<Description>

Thisinstruction exclusive-ORs a specified bit with the carry flag and places the result in the
carry flag. The specified bit can be located in a general register or memory. The bit number is
specified by 3-bit immediate data. The operation is shown schematically below.

BitNo. 7 X377 0

<EAd>* - Bytedatain register or memory

The value of the specified bit is not changed.

*Register direct, register indirect, or absolute addressing.

65

BXOR (Bit eXclusive OR) BXOR

<|nstruction Formats>

- Instruction code
Addressin
mode g Mnem. | Operands [s\ltgi:;
1st byte | 2nd byte 3rd byte | 4th byte
Register direct | BXOR | #xx:3, Rd 0 IMM rd 2

0 IMM 0 6

7 i 5
Register indirect | BXOR | #xx:3,@Rd | 7 i cC o 0
7 E

7 5
Absolute address | BXOR | #xx:3,@aa:8 abs 7 510 IMM 0 6

66

CMP (CoMPare) (byte) CMP

<Operation> <Condition Code>

Rd — (EAs); set condition code
I H N Z V C

— |—[? | =] T]|

<Assembly-L anguage For mat>

QWP. B <EAs>, Rd I: Previous value remains unchanged.

H: Setto"1" when thereis aborrow from

<Examples>
CwW. B #H E5, R1H
CWP. B R3L, R4L

bit 3; otherwise cleared to "0."
N: Setto"1" when the result is negative;
otherwise cleared to "0."

Z. Setto"1" whentheresult is zero;
otherwise cleared to "0."

Byte V: Setto"1" if an overflow occurs;
otherwise cleared to "0."

C:. Setto"1"if thereisaborrow from bit 7;
otherwise cleared to "0."

<Operand Size>

<Description>

This instruction subtracts an 8-bit source register or immediate data from an 8-bit destination
register and sets the condition code flags according to the result. The destination register is not
altered.

<lnstruction Formats>

; Instruction code
Addressin
mode g Mnem. Operands gltg'tg
1stbyte | 2nd byte | 3rd byte | 4th byte
Immediate CMPB | #xx8Rd |A |rd | IMM 2
Register direct | CMP.B Rs, Rd ' C |rs | rd 2
| |

67

CMP (CoMPare) (word) CMP
<Operation> <Condition Code>
Rd —Rs,; set condition code | 4 N 7 V C

<Assembly-L anguage For mat>
CWP. W Rs, Rd

<Examples>
CW. WR5, R6

<Operand Size>
Word

I —]1 T ¢ !

Previous value remains unchanged.

: Setto"1" when there is aborrow from

bit 11; otherwise cleared to "0."

. Set to "1" when the result is negative;

otherwise cleared to "0."

: Setto"1" when theresult is zero;

otherwise cleared to "0."
Setto"1" if an overflow occurs;
otherwise cleared to "0."

: Setto"1" if thereis aborrow from bit

15; otherwise cleared to "0."

<Description>

Thisinstruction subtracts a source register from a destination register and sets the condition
code flags according to the result. The destination register is not altered.

<|nstruction For mats>

- Instruction code
Addressin
mode 9 Mnem. Operands Sth.thf
1stbyte | 2nd byte | 3rd byte | 4th byte
Register direct | CMPW | Rs, Rd 1 ID |0irs0ird 2

68

DAA (Decimal Adjust Add) DAA

<Operation> <Condition Code>
Rd (decimal adjust) - Rd | H N Z V C

—|—[* | =]t [|*]

<Assembly-L anguage For mat>

DAA Rd

I: Previous vaue remains unchanged.
<Examples> H: Unpredictable.
DAA R5L N: Setto"1" if the adjusted result is

negative; otherwise cleared to "0."

<Operand Size> Z: Setto"1" if the adjusted result is zero;
Byte otherwise cleared to "0."

V: Unpredictable.

C: Setto"1"if thereisacarry from bit 7;
otherwise left unchanged.

<Description>

Given that the result of an addition operation performed by the ADD.B or ADDX instruction
on 4-bit BCD datais contained in an 8-bit general register and the carry and half-carry flags,
the DAA instruction adjusts the result by adding H'00, H'06, H'60, or H'66 to the general
register according to the table below.

Valid results are not assured if thisinstruction is executed under conditions other than those
stated above.

Status before adjustment Value Resulting
Cflag | Uppernibble | Hflag | Lowernibble | added | Cflag
0 0—9 0 0-9 H'00 0
: 0_8 0 A-F H'06 0
0 0-9 1 0-3 H'06 0
: A—_F 0 0-9 H'60 1
0 O—F 0 A-F H'66 1
0 A—F 1 0-3 H'66 1
1 0-2 0 0-9 H'60 1
1 0—2 0 A-F H'66 1
1 0-3 1 0-3 H'66 1

69

DAA (Decimal Adjust Add) DAA
<Instruction Formats>
Addressing Instruction code No. of
mode Mnem. | Operands states
1st byte | 2nd byte 3rd byte | 4th byte
Register direct DAA Rd 0 i rd 2

0 | F

70

DAS (Decimal Adjust Subtract) DAS

<Operation> <Condition Code>
Rd (decimal adjust) - Rd | H N Z V C

*

<Assembly-L anguage For mat>

DAS Rd I: Previous value remains unchanged.

H: Unpredictable.

<Examples> N: Setto"1" if the adjusted result is
DAS ROH negative; otherwise cleared to "0."

Z: Setto"1"if the adjusted result is zero;
otherwise cleared to "0."
Unpredictable.

Previous value remains unchanged.

<Operand Size>
Byte

0 <

<Description>

Given that the result of a subtraction operation performed by the SUB.B, SUBX, or NEG
instruction on 4-bit BCD datais contained in an 8-bit general register and the carry and half-
carry flags, the DAA instruction adjusts the result by adding H'00, H'FA, H'AO, or H'9A to the
general register according to the table below.

Valid results are not assured if thisinstruction is executed under conditions other than those
stated above.

Status before adjustment Value Resulting

Cflag | Uppernibble | Hflag | Lower nibble | added | Cfleg

0 0-9 0 0-9 H'00 0
0 0-8 1 6-F H'FA 0
1 7-F 0 0-9 H'AO 1
1 6-F 1 6-F H'9A 1

71

DAS (Decimal Adjust Subtract) DAS
<Instruction Formats>
; Instruction code
Addressin
mode 9 Mnem. | Operands sth't:slj
1stbyte | 2nd byte | 3rd byte | 4th byte
Register direct DAS Rd 1 i F 2

0 | rd

72

DEC (DECrement)

<Operation>
Rd-1 - Rd

<Assembly-L anguage For mat>
DEC Rd

<Examples>
DEC R2L

<Operand Size>
Byte

<Condition Code>

I H N Z V C

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Setto"1" if theresult is negative;
otherwise cleared to "0."

Z: Setto"1" if theresult is zero; otherwise

cleared to "0."

V: Setto"1" if an overflow occurs (the
previous value in Rd was H'80);
otherwise cleared to "0."

C: Previous value remains unchanged.

<Description>

This instruction decrements an 8-bit general register and places the result in the 8-bit general

register.

<|nstruction Formats>

; Instruction code
Addressin
mode g Mnem. | Operands ,s\ltgieosf
1st byte 2nd byte | 3rd byte | 4th byte
Register direct DEC Rd 1 i A 0 | rd

73

DIV XU (DIVide eXtend as Unsigned) DIVXU

<Operation> <Condition Code>

Rd+Rs - Rd | H N Zz V C

<Assembly-L anguage For mat>

D VXU Rs, Rd

I: Previous value remains unchanged.
<Examples> H: Previous value remains unchanged.
D VXU ROL, R1 N: Setto"1" if thedivisor is negative;

otherwise cleared to "0."

<Operand Size> Z: Setto"1"if thedivisor is zero;
Byte otherwise cleared to "0."

V: Previous value remains unchanged.

C: Previous vaue remains unchanged.

<Description>

Thisinstruction divides a 16-hit general register by an 8-bit general register and places the
result in the 16-bit general register. The quotient is placed in the lower byte. The remainder is
placed in the upper byte. The operation is shown schematically below.

Rd
f_H
Rd Rs (RdH) (RdL)
Dividend + Divisor - Remainder | Quotient
16 8 8 8

Valid results are not assured if division by zero is attempted or an overflow occurs. Division
by zero isindicated in the Zero flag. Overflow can be avoided by the coding shown on the
next page.

<lnstruction Formats>

; Instruction code
Addressin
mode g Mnem. | Operands ls\ltgigsf
1st byte | 2nd byte 3rd byte | 4th byte
| T [l
Register direct DIVXU | Rs, Rd 5 11 rs 303 rd 14

74

DIV XU (DIVide eXtend as Unsigned) DIVXU

<Note: DIVXU Overflow>

Since the DIV XU instruction performs 16-bit + 8-bit — 8-bit division, an overflow will occur
if the divisor byte is equal to or less than the upper byte of the dividend. For example, H'FFFF
+ H'01 - H'FFFF causes an overflow. (The quotient has more than 8 bits.)

Overflows can be avoided by using a subprogram like the following. A work register is
required.

To perform
Dl VXU ROL, R1: ROL Divisor
MOV. B #H 00, R2H R1 Dividend
C\VP. B ROL, R1H ¢
BCC L1 R1| Remainder Quotient (*1)
DI VXU ROL, R1 (*1) v
MOV. B R1L, R2L R1 Dividend
BRA L2 R2 H'00 D vi dend (H¢ (*2)
L1 MOV.B RIH, ReL (*2) |
DI VXU ROL, R2 R1 | Partial remai| D vidend (LoV
MOV. B R2H, RIH (*3)
DI VXU ROL, Rl R2 | Partial remai| Quotient(H g (*3)
MOV. B R2L, R2H >
MOV. B R1L, R2L - -
R1 Remai nder | Quotient (Lo
L2 RTS (*4)
R2 Quotient (*4)

75

EEPMOV (MOVedatato EEPROM) EEPM OV

<Operation> <Condition Code>
if R4L # 0 then | H N Z V C
repeat @R5+ - @R6+ I
RAL —1 - R4L
until R4L =0
else next; Previous value remains unchanged.

I

H: Previous value remains unchanged.
<Assembly-L anguage For mat> N: Previous value remains unchanged.
EEPMOV Z:. Previous value remains unchanged.

V: Previous value remains unchanged.
<Examples> C: Previous vaue remains unchanged.

MOV. B #H 20, R4L
MOV. W #H FEQO, RS
MOV. W #H 6000, R6
EEPMOV

<Operand Size>

<Description>

This instruction moves a block of data from the memory location specified in general register
R5 to the memory location specified in general register R6. General register R4L givesthe
byte length of the block.

Data are transferred a byte at atime. After each byte transfer, R5 and R6 are incremented and
RAL isdecremented. When R4L reaches 0, the transfer ends and the next instruction is
executed. No interrupt requests are accepted during the data transfer.

At the end of thisinstruction, R4L contains H'00. R5 and R6 contain the last transfer address
+1.

Chipsin the H8/300 Series having large on-chip EEPROM memories use thisinstruction to
write datain the EEPROM. For details, see the hardware manual for the particular chip.

The memory locations specified by general registers R5 and R6 are read before the block
transfer is performed.

76

EEPMOV (MOV datato EEPROM) EEPM OV

<|nstruction Formats>

Addressing Instruction code No. of
mode Mnem. Operands states
1st byte | 2nd byte 3rd byte 4th byte
| | T [l
EEPMOV 7 i B 5 | C 5 i 9 8 | F | 8+4n*
| L

* nistheinitial valuein R4L (0 < n< 255). Although n bytes of data are transferred, memory
is accessed 2(n+1) times, requiring 4(n+1) states.

Noteson EEPMOV Instruction
1. The EEPMOQV instruction isablock datatransfer instruction. It moves the number of bytes
specified by R4L from the address specified by R5 to the address specified by R6.

R5 -

-~ R6
R5 + R4L -

—~ R6 + R4L

2. When setting R4L and R6, make sure that the final destination address (R6 + R4L) does not
exceed H'FFFF. The value in R6 must not change from H'FFFF to H'0000 during execution
of the instruction.

R5 + R4L -

- R6

H'FFFF

~ R6 + R4L

Not allowed

77

INC (INCrement)

INC

<Oper ation>
Rd+1 - Rd

<Condition Code>

<Assembly-L anguage For mat>
| NC Rd

<Examples>
I NC R3L

<Operand Size>
Byte

H

N

Z V

Previous value remains unchanged.

otherwise cleared to "0."
Set to "1" if the result is zero; otherwise
cleared to "0."
Set to "1" if an overflow occurs (the

previous value in Rd was H'7F);

otherwise cleared to "0."
Previous value remains unchanged.

. Previous value remains unchanged.
: Setto"1" if theresult is negative;

<Description>

This instruction increments an 8-bit general register and places the result in the 8-bit general

register.

<lnstruction Formats>

Addressing Instruction code No. of

mode Mnem. Operands states
1st byte 2nd byte | 3rd byte 4th byte

Register direct | INC Rd 0 i Al 0 | rd 2

78

IJMP (JuMP)

JMP

<Oper ation>
(EAd) - PC

<Condition Code>

<Assembly-L anguage For mat>

JWP <EA>

<Examples>
JVMP @R6
JVMP @1 2000
JMP @@ 9A

<Operand Size>

| H N Z V C

OsSNZI~

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

<Description>

This instruction branches unconditionally to a specified destination address.
The destination address must be even.

<lnstruction Formats>

gi?jrsssmg e Operands Instruction code s{gigg
1st byte | 2nd byte | 3rd byte | 4th byte
Register indirect | JMP @Rn 5 i 9 0‘ m i 0 4
Absolute address| IMP @aa:l16 5 % A 0 i 0 abs. 6
Memory indirect | IMP @@aa:8 5 i B ab‘s. 8

79

JSR (Jump to SubRoutine) JSR
<Operation> <Condition Code>

PC -~ @SP | H N Z VvV C
(EAd) - PC

<Assembly-L anguage For mat>
JSR <EA>

<Examples>
JSR @3
JSR @+ 1D26
JSR @oH FO

<Operand Size>

O<SNzZzI -~

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

<Description>

This instruction pushes the program counter onto the stack, then branches to a specified
destination address. The program counter value pushed on the stack is the address of the
instruction following the JSR instruction. The destination address must be even.

<|nstruction Formats>

ﬁqocl;zljreessmg Mnem. | Operands Instruction code gltg;[é)sf
1stbyte | 2nd byte | 3rd byte | 4th byte
Register indirect | JSR @Rn 5 i D Oi m i 0 6
Absolute address | JSR @aa:16 5 i E| O i 0 abs. 8
Memory indirect | JSR @@aa:8 5 i F ab‘s. 8

80

LDC (LoaD to Control register) LDC
<Operation> <Condition Code>
(EAs) - CCR | H N Z V C

<Assembly-L anguage For mat>
LDC <EAs>, CCR

<Examples>
LDC #H 80, CCR
LDC R4H, CCR

<Operand Size>
Byte

O<SNZI=

! ! ! T 1t ! !

L oaded from the source operand.
L oaded from the source operand.
L oaded from the source operand.
L oaded from the source operand.
L oaded from the source operand.
L oaded from the source operand.

<Description>

This instruction loads the source operand contents into the condition code register (CCR). The

source operand can be an 8-bit general register or 8-bit immediate data. Bits4 and 6 are

loaded as well asthe flag bits.

No interrupt requests are accepted immediately after thisinstruction. All interrupts, including
the nonmaskable interrupt (NMI), are deferred until after the next instruction.

<lnstruction Formats>

Addressing Instruction code No. of
mode Mnem. Operands states
1stbyte | 2nd byte 3rd byte 4th byte
Immediate LDC #xx:8, CCR| 0 3 7 IMM 2
Register direct LDC Rs, CCR 0! 3 0 i rs 2

81

MOV (MOVedata) (byte) MOV

<Operation> <Condition Code>
Rs - Rd | H N Z V C
— ===t |t |O0]—
<Assembly-L anguage For mat>
MOV. B Rs, Rd I Previous value remains unchanged.
H: Previous value remains unchanged.
<Examples> N: Setto"1" if the datavalueis negative,
MOV. B RIL, R2H otherwise cleared to "0."
Z: Setto"l1"if the datavalueis zero;
<Operand Size> otherwise cleared to "0."
Byte V: Clearedto"0."
C: Previous value remains unchanged.

<Description>
This instruction moves one byte of data from a source register to a destination register and sets
condition code flags according to the data value.

<Instruction Formats>

; Instruction code
Addressin
mode g Mnem. | Operands Sth'tg
1st byte | 2nd byte 3rd byte | 4th byte
Register direct MOV.B | Rs, Rd 0. C |rs i rd 2

82

MOV (MOVedata) (word)

<Operation>
Rs - Rd

<Condition Code>

<Assembly-L anguage For mat>
MOV. W Rs, Rd

<Examples>
MOV. WR3, R4

<Operand Size>
Word

0 <

H

N

Z V

!

t |0

Previous value remains unchanged.
: Previous value remains unchanged.
: Setto"1" if the datavalue is negative;
otherwise cleared to "0."
: Setto"1" if the datavalueis zero;
otherwise cleared to "0."
Cleared to "0."
Previous value remains unchanged.

<Description>

This instruction moves one word of data from a source register to a destination register and

sets condition code flags according to the data value.

<|nstruction Formats>

. Instruction code
Addressin
mode g Mnem. | Operands [c\l,tgigs]c
1st byte | 2nd byte 3rd byte | 4th byte
| |
Register direct | MOV.W Rs, Rd 0 i D Oirs 2

83

MOV (MOVedata) (byte) MOV

<Operation> <Condition Code>
(EAs) - Rd | H N Zz V C
—|—[—=[—=]t]t]|O|]—
<Assembly-L anguage For mat>
MOV. B <EAs>, Rd I: Previous value remains unchanged.
H: Previous value remains unchanged.
<Examples> N: Setto"1" if the datavalue is negative;
MOVv.B @1, ReH otherwise cleared to "0."
MV. B @5+, ROL Z: Setto"1"if the datavalueis zero;
MOv. B @f FFF1, R1H otherwise cleared to "0."
MOV. B #H A5, R3L V: Clearedto"0."
C: Previous value remains unchanged.

<Operand Size>
Byte

<Description>

This instruction moves one byte of data from a source operand to a destination register and
sets condition code flags according to the data value. The source operand can be memory
contents or immediate data.

The MOV.B @R7+, Rd instruction should never be used, because it leaves an odd value in the
stack pointer. Thismay result in loss of data, since the stack is always accessed aword at a
time at an even address.

<|nstruction Formats>

; Instruction code
Addressin
mode g Mnem. Operands sltltg't:sf
1stbyte | 2nd byte | 3rd byte | 4th byte
Immediate MOV.B |#xx:8, Rd F i IMM 2
Register indirect |MOV.B | @RS, Rd 6 |8 Oirsi rd 4
Register indirect i Do
with displacement |MOV.B |@(d:16,Rs),Rd| 6 ' E Oirsi rd disp. 6
Register indirect i Do
with post-increment| MOV.B | @Rs+, Rd 6 | C Oirsi rd 6
Absolute address | MOV.B | @aa:8, Rd 2 i rd abs 4
! \
Absolute address | MOV.B | @aa:16, Rd 6 'A |0 abs. 6

84

MOV (MOVedata) (word) MOV

<Oper ation> <Condition Code>

(EAs) -~ Rd | H N Z V C
—|—[—[—=]t]t |O|—

<Assembly-L anguage For mat>

MOV. W <EAs>, Rd

<Examples>
MOV. W @3, R4

MOV. W @ H 0004, R5)

MOV. W @7+, RO

MOV. W #H BOOA,

R1

R6

<Operand Size>
Word

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Setto"1" if the datavalueis negative,
otherwise cleared to "0."

Z. Setto"1"if thedatavaueis zero;

otherwise cleared to "0."

Cleared to "0."

C: Previous value remains unchanged.

<

<Description>

This instruction moves one word of data from a source operand to a destination register and
sets condition code flags according to the data value.

If the source operand isin memory, it must be located at an even address,

MOV.W @R7+, Rd isidentical in machine language to POP.W Rd.

<|nstruction Formats>

: Instruction code
Addressin
mode g Mnem. Operands sth;ceosE
I1stbyte | 2nd byte | 3rd byte | 4th byte

Immediate MOV.W | #xx:16, Rd 7 19,0 0 IMM 4
Register indirect | MOV.W | @RS, Rd 6 | 9 Oirs 0ird 4
Register indirect | N
with displacement |MOV.W | @(d:16,Rs),Rd | 6 | F Oirs 0'rd disp. 6
Register indirect i | i i
with post-increment| MOV.W | @Rs+, Rd 6 | D Oirs} ird 6
Absolute address |MOV.W |@aa:16,Rd | 6 | B | 0 10!rd abs. 6

85

MOV (MOVedata) (byte) MOV

<Operation> <Condition Code>
Rs - (EAd) | H N Z V C
— | —=]—=]—=]t |t [O0]—
<Assembly-L anguage For mat>
MOV. B Rs, <EAd> I: Previous value remains unchanged.
H: Previous value remains unchanged.
<Examples> N: Setto"1" if the datavalueis negative,
MOV. B RIL, @R0O otherwise cleared to "0."
MOV. B R3H, @H 8001, RO) Z: Setto"1"if thedatavalueis zero;
MOV. B RBH, @R4 otherwise cleared to "0."
MOV. B R6L, @H FE77 V: Clearedto"0."
C: Previous value remains unchanged.

<Operand Size>
Byte

<Description>

This instruction moves one byte of data from a source register to memory and sets condition
code flags according to the data value.

The MOV.B Rs, @-R7 instruction should never be used, because it leaves an odd value in the
stack pointer. This may result in loss of data, since the stack is always accessed aword at a
time at an even address.

The instruction MOV.B RnH, @—Rn or MOV.B RnL, @-Rn decrements register Rn, then
moves the upper or lower byte of the decremented result to memory.

<|nstruction Formats>

; Instruction code
Addressin
mode g Mnem. Operands ggi:g
1stbyte | 2nd byte | 3rd byte | 4th byte

Register indirect MOV.B |Rs, @Rd 6 i 8 1irdi rs 4
Register indirect Rs, | o
with displacement |MOV.B | @(d:16,Rd) 6 ' E 1ird} rs disp. 6
Register indirect | o
with pre-decrement | MOV.B |Rs, @-Rd 6 ' C 1irs} rs 6
Absolute address | MOV.B |Rs,@aa:8 3 i rs abs 4
Absolute address | MOV.B |Rs,@aa:16 6 i A | 8 |rs abs. 6

86

MOV (MOVedata) (word) MOV

<Operation> <Condition Code>

Rs - (EAd) | H N Z V C

—|—|—=[—]t]t]O0]—

<Assembly-L anguage For mat>
MOV. W Rs, <EAd>
I: Previous value remains unchanged.

<Examples> H: Previous value remains unchanged.
MOV. WR3, @4 N: Setto"1" if the datavalueis negative;
MOV. WR2, @H, 0030, R5) otherwise cleared to "0."
MOV. WR1, @R7 Z: Setto"1"if thedatavalueis zero;
MOV. WRO, @H FED6 otherwise cleared to "0."

V: Clearedto"0."

@)

<Operand Size>
Word

Previous value remains unchanged.

<Description>

This instruction moves one word of datafrom a general register to memory and sets condition
code flags according to the data value.

The destination address in memory must be even.

MOV.W Rs, @-R7 isidentical in machine language to PUSH.W Rs.

The instruction MOV.W Rn, @-Rn decrements register Rn by 2, then moves the decremented
result to memory.

<|nstruction Formats>

. Instruction code
Addressin
mode g Mnem. Operands gltg'tg
1stbyte | 2nd byte | 3rd byte 4th byte

Register indirect |MOV.W | Rs, @Rd 6 ' 9 [1rdi0irs 4
Register indirect Rs, | R
with displacement |MOV.W | @(d:16, Rd) 6 | F 1 rdi0:rs disp. 6
Register indirect i l i |
with pre-decrement | MOV.W | Rs, @-Rd 6 ' D 13 rd'0!rs 6
Absolute address | MOV.W | Rs, @aa:16 6 i B |8 303 rs abs. 6

87

MOVFPE (M OVedata From Peripheral with E clock) MOVFPE

<Operation> <Condition Code>
synchronization with the E clock | H N Z V C
(EASs) - Rd ==l lol=
<Assembly-L anguage For mat>
MOVFPE @aa:16, Rd I: Previous value remains unchanged.
H: Previous value remains unchanged.
<Examples> N: Setto"1" if the data value is negative;
MOVFPE @H FF81, ROH otherwise cleared to "0."
Z: Setto"1"if the datavalueis zero;
<Operand Size> otherwise cleared to "0."
Byte V: Clearedto"0."
C: Previous value remains unchanged

<Description>

This instruction moves one byte of data from an absolute address location to a destination
register, and sets the condition code flags according to the datavalue. Thetransfer is
performed in synchronization with the E (enable) clock used by peripheral devices. The
transfer requires 9 to 16 states, so the execution timeis variable. For further information on
basic timing, See the each Hardware Manuals .

This instruction should not be used with chips not having an E clock output pin or in single-
chip mode.

When the source operand is located in on-chip memory or the on-chip register field, the
MOV FPE instruction isidentical in operation to MOV.B @aa: 16, Rd.

Note that only 16-bit absolute addressing can be used, and word data cannot be transferred.

<|nstruction Formats>

; Instruction code
Addressing No. of
mode Mnem. | Operands states
1st byte 2nd byte | 3rd byte | 4th byte
Absolute address | MOVFPE (@aa:16, Rd | 6 i A 4 ‘ rd abs. 13-20

88

MOVTPE (MOVedata To Peripheral with E clock) MOVTPE

<Operation> <Condition Code>
synchronization with the E clock I H N Z V C
Rs - (EAd) =TT T:T:Tol=
<Assembly-L anguage For mat>
MOVTPE Rs, @aa:16 I: Previous value remains unchanged.
H: Previous value remains unchanged.
<Examples> N: Setto"1" if the datavalueis negative;
MOVTPE R2L, @+ FF8D otherwise cleared to "0."
Z: Setto"1"if the datavalueis zero;
<Operand Size> otherwise cleared to "0."
Byte V: Clearedto "0."
C: Previous value remains unchanged.

<Description>

This instruction moves one byte of data from a source register to an absolute address location,
and sets the condition code flags according to the data value. The transfer is performed in
synchronization with the E (enable) clock used by peripheral devices. Thetransfer requires 9
to 16 states, so the execution timeisvariable. For further information on basic timing, seethe
each Hardware Manuals .

This instruction should not be used with chips not having an E clock output pin or in single-
chip mode.

When the destination operand is located in on-chip memory or the on-chip register field, the
MOV TPE instruction isidentical in operation to MOV.B Rs, @aa: 16.

Note that only 16-bit absolute addressing can be used, and word data cannot be transferred.

<lnstruction Formats>

Addressing Instruction code No. of
mode Mnem. | Operands S

1st byte 2nd byte | 3rd byte | 4th byte

Absolute address | MOVTPE |Rs, @aa:16 | 6 i A C ‘ rs abs. 13-20

89

MUL XU (MULtiply eXtend as Unsigned) MUL XU

<Oper ation> <Condition Code>
RdxRs - Rd | H N Z V C

<Assembly-L anguage For mat>

MJULXU Rs, Rd Previous value remains unchanged.
Previous value remains unchanged.
<Examples> Previous value remains unchanged.

MULXU ROH, R3 Previous value remains unchanged.
Previous value remains unchanged.

Previous value remains unchanged.

OSSNz I~

<Operand Size>
Byte

<Description>

Thisinstruction performs 8-bit x 8-bit - 16-bit multiplication. It multiplies a destination
register by a source register and places the result in the destination register. The source
register is an 8-bit register. The destination register is a 16-bit register containing the data to
be multiplied in the lower byte. (The upper byteisignored). Theresult is placed in both bytes
of the destination register. The operation is shown schematically below.

Rd Rs Rd
| Don't-care | Multiplicandl X | Multiplier | - | Product
8 8 16

The multiplier can occupy either the upper or lower byte of the source register.

<lnstruction Formats>

Addressing Instruction code No. of

mode Mnem. Operands states
1st byte | 2nd byte 3rd byte 4th byte

Register direct | MULXU | Rs, Rd 5 10 |rs [0rd 14

90

NEG (NEGate) NEG

<Oper ation> <Condition Code>

0-Rd - Rd | H N Z V C
—|—]t |—=[s [t]t]2

<Assembly-L anguage For mat>
NEG Rd

<Examples>
NEG ROL

<Operand Size>
Byte

Previous value remains unchanged.

1 Setto"1" when thereis aborrow from

bit 3; otherwise cleared to "0."

. Setto "1" when the result is negative;

otherwise cleared to "0."

Set to "1" when the result is zero;
otherwise cleared to "0."

Set to "1" if an overflow occurs (the
previous contents of the destination
register was H'80); otherwise cleared to
"

Set to "1" if thereisaborrow from bit 7
(the previous contents of the destination
register was not H'00); otherwise
cleared to "0."

<Description>

This instruction replaces the contents of an 8-bit general register with its two's complement.
(subtracts the register contents from H'00).
If the original contents of the destination register was H'80, the register value remains H'80

and the overflow flag is set.

<|nstruction Formats>

Addressing Instruction code No. of

mode Mnem. Operands states
1st byte | 2nd byte 3rd byte 4th byte

Register direct NEG Rd 1 i 7 18 1 2

91

NOP (No OPeration) NOP
<Operation> <Condition Code>
PC+2 - FC | H N Z V C

<Assembly-L anguage For mat>
NOP

<Examples>
NOP

<Operand Size>

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

OsSNZzZIT ™

<Description>

This instruction only increments the program counter, causing the next instruction to be
executed. Theinternal state of the CPU does not change.
The NOP instruction can be used to fill in gapsin programs, or for software synchronization.

<|nstruction Formats>

Addressing Instruction code No. of
mode Mnem. Operands states
1stbyte | 2nd byte 3rd byte 4th byte
— NOP 0. 0 0, 0 2

92

NOT (NOT = logical complement) NOT

<Operation> <Condition Code>

- Rd - Rd | H N 72 V C
—|—]—=[—=]t |t |O0]—

<Assembly-L anguage For mat>
NOT Rd

<Examples>
NOT R4L

<Operand Size>
Byte

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Setto"1" if theresult is negative;
otherwise cleared to "0."

Z: Setto"1"if theresult is zero; otherwise
cleared to "0."

V: Clearedto"0."

C: Previous value remains unchanged.

<Description>

This instruction replaces the contents of an 8-bit general register with its one's complement
(subtracts the register contents from H'FF).

<|nstruction Formats>

Addressing Instruction code No. of

mode Mnem. Operands states
1st byte 2nd byte | 3rd byte 4th byte

Register direct NOT Rd 1 17 0 ' rd 2

93

OR (inclusive OR logical) OR

<Operation> <Condition Code>

Rd O (EAs) — Rd | H N 7 V C
—|—|—[—=]t]t |]O[]—

<Assembly-L anguage For mat>
OR <EAs>, Rd

<Examples>
OR R2H, R3H
OR #H 0, ROH

<Operand Size>
Byte

I: Previous vaue remains unchanged.

H: Previous value remains unchanged.

N: Setto"1" when the result is negative;
otherwise cleared to "0."

Z: Setto"1" whentheresult is zero;

otherwise cleared to "0."

0 <

Cleared to "0."
Previous value remains unchanged.

<Description>

This instruction ORs the source operand with the contents of an 8-bit general register and

places the result in the general register .
The source operand can be an 8-bit register value or immediate byte data.

<|nstruction Formats>

Addressing Instruction code No. of
mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte
[
Immediate OR #xx:8,Rd | C i rd IMM 2
| |
Register direct | OR Rs, Rd 1 14 rs | rd 2
!]

94

ORC (inclusive OR Control register) ORC
<Oper ation> <Condition Code>
CCRU#IMM - CCR | H N Z V C

<Assembly-L anguage For mat>
CRC #xx:8, CCR

<Examples>
ORC #H 80, CCR

<Operand Size>
Byte

O<SNzZzI -~

! ! ! 1]t ! ! !

ORed with bit 7 of the immediate data.
ORed with bit 5 of the immediate data.
ORed with bit 3 of the immediate data.
ORed with bit 2 of the immediate data.
ORed with bit 1 of the immediate data.
ORed with bit O of the immediate data.

<Description>

This instruction ORs the condition code register (CCR) with immediate data and places the
result in the condition code register. Bits 6 and 4 are ORed as well as the flag bits.

No interrupt requests are accepted immediately after thisinstruction. All interrupts, including
the nonmaskable interrupt (NMI), are deferred until after the next instruction.

<|nstruction Formats>

Addressing Instruction code No. of

mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte

Immediate ORC #xx:8,CCR| 0 | 4 IMM 2

95

POP (POP data) POP

<Operation> <Condition Code>
@SP+ ~ Rn | H N Z V C
—|—]—[—]t |t |O0]—
<Assembly-L anguage For mat>
PCOP Rn
I: Previous vaue remains unchanged.
<Examples> H: Previous value remains unchanged.
POP R1 N: Setto"1" if the datavalueis negative,
otherwise cleared to "0."
<Operand Size> Z: Setto"1"if thedatavalueis zero;
Word otherwise cleared to "0."
V: Clearedto"0."

C: Previous value remains unchanged.

<Description>

This instruction pops data from the stack to a 16-bit general register and sets condition code
flags according to the data value.

POPW Rnisidentical in machine language to MOV.W @SP+, Rn.

<|nstruction For mats>

; Instruction code
Addressin
mode g Mnem. | Operands sthigs]c
1st byte | 2nd byte 3rd byte | 4th byte
— POP Rd 6 D | 7 0m 6

96

PUSH (PUSH data)

<Operation>
Rn - @-SP

<Condition Code>

<Assembly-L anguage For mat>
PUSH Rn

<Examples>
PUSH R2

<Operand Size>
Word

<

H

N

Z V

Previous value remains unchanged.

Previous value remains unchanged.

Set to "1" if the data value is negative;
otherwise cleared to "0."
Setto "1" if the datavalueis zero;
otherwise cleared to "0."
Cleared to "0."
Previous value remains unchanged.

<Description>

This instruction pushes data from a 16-hit general register onto the stack and sets condition

code flags according to the data value.

PUSH.W Rnisidentical in machine language to MOV.W Rn, @-SP.

<lnstruction Formats>

: Instruction code
Addressin
mode g Mnem. | Operands 'S\Itgl[é)sf
1st byte | 2nd byte 3rd byte | 4th byte
— PUSH Rs 6 | D| F 0/m 6

97

ROTL (ROTate L €eft)

<Operation>
Rd (rotated left)

- Rd

<Condition Code>

<Assembly-L anguage For mat>

ROTL Rd

I
<Examples> H:
ROTL ReL N
<Operand Size> Z:
Byte

V:

C:

H

N

Z V

Previous value remains unchanged.

otherwise cleared to "0."
Set to "1" if the result is zero; otherwise
cleared to "0."
Cleared to "0."
Receives the previous valuein bit 7.

. Previous value remains unchanged.
: Setto"1" if theresult is negative;

<Description>

Thisinstruction rotates an 8-bit general register one bit to the left. The most significant bit is
rotated to the least significant bit, and also copied to the carry flag.
The operation is shown schematically below.

MSB LSB
I:IEI-— F—
C Bit 7 Bit 0
<Instruction Formats>
; Instruction code
Addressin
mode g Mnem. | Operands ls\ltgigsf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct | ROTL Rd 11 2] 8 ! 2

98

ROTR (ROTate Right) ROTR

<Operation> <Condition Code>
Rd (rotated right) - Rd

I H N Z V C
— ===t [t]O0]¢
<Assembly-L anguage For mat>
ROTR Rd
I: Previous value remains unchanged.
<Examples> H: Previous value remains unchanged.
ROTR R5L N: Setto"1" if the result is negative;
otherwise cleared to "0."
<Operand Size> Z: Setto"1"if theresult is zero; otherwise
Byte cleared to "0."
V: Clearedto"0."

C: Receivesthe previous vauein bit 0.

<Description>

Thisinstruction rotates an 8-bit general register one bit to theright. The least significant bit is
rotated to the most significant bit, and also copied to the carry flag.

The operation is shown schematically below.

MSB LSB
L |

Bit 7 Bit0 C

<|nstruction For mats>

; Instruction code
Addressin
mode g Mnem. | Operands 's\l'[gi:s]c
1st byte 2nd byte | 3rd byte | 4th byte
] T
Register direct | ROTR Rd 1 i 3|8 2

99

ROTXL (ROTatewith eXtend carry L eft) ROTXL

<Operation> <Condition Code>
Rd (rotated with carry left) - Rd | H N Z V C
—|—[—=]—=]t |t [O]1

<Assembly-L anguage For mat>
ROTXL Rd

I: Previous value remains unchanged.
<Examples> H: Previous value remains unchanged.
ROTXL R1H N: Setto"1" if theresult is negative;

otherwise cleared to "0."
Z: Setto"1"if theresult is zero; otherwise
cleared to "0."
Cleared to "0."
C: Receivesthe previousvauein bit 7.

<Operand Size>
Byte

<

<Description>

Thisinstruction rotates an 8-bit general register one bit to the left through the carry flag. The
carry flag isrotated into the least significant bit of the register. The most significant bit rotates
into the carry flag.

The operation is shown schematically below.

MSB LSB

]| -

C Bit 7 Bit 0

<|nstruction Formats>

Addressing Instruction code No. of

mode Mnem. | Operands states

1st byte 2nd byte | 3rd byte | 4th byte

Register direct | ROTXL Rd 1120 ! rd 2

100

ROTXR (ROTate with eXtend carry Right) ROTXR

<Operation> <Condition Code>
Rd (rotated with carry right) - Rd

I H N Z VvV C
— ===t [t]O0]¢
<Assembly-L anguage For mat>
ROTXR Rd
I: Previous value remains unchanged.
<Examples> H: Previous value remains unchanged.
ROTXR R5L N: Setto"1" if the result is negative;
otherwise cleared to "0."
<Operand Size> Z: Setto"1"if theresult is zero; otherwise
Byte cleared to "0."
V: Clearedto"0."

C: Receivesthe previousvauein bit 0.

<Description>

This instruction rotates an 8-bit general register one bit to the right through the carry flag. The
least significant bit is rotated into the carry flag. The carry flag rotates into the most
significant bit.

The operation is shown schematically below

MSB LSB
B -
C

Bit 7 Bit 0

<|nstruction Formats>

; Instruction code
Addressin
mode g Mnem. | Operands ,s\ltg'teosf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct | ROTXR Rd 1130 ' rd 2

101

RTE (ReTurn from Exception) RTE

<Operation> <Condition Code>
@SP+ - CCR | H N Z V C
@SP+ - PC

o e A A

<Assembly-L anguage For mat>

RTE I: Restored from stack.
H: Restored from stack.
<Examples> N: Restored from stack.
RTE Z: Restored from stack.
V: Restored from stack.
C: Restored from stack.

<Operand Size>

<Description>

This instruction returns from an interrupt-handling routine. It pops the condition code register
(CCR) and program counter (PC) from the stack. Program execution continues from the
address restored to the program counter.

The CCR and PC contents at the time of execution of thisinstruction are |ost.

The CCRisonebytein size, but it is popped from the stack as aword (in which the lower 8
bits are ignored).

Thisinstruction therefore adds 4 to the value of the stack pointer (R7).

<|nstruction Formats>

Addressing Instruction code No. of

mode Mnem. | Operands states

1st byte | 2nd byte 3rd byte | 4th byte

— RTE 516 7 |0 10

102

RTS (ReTurn from Subroutine) RTS

<Operation> <Condition Code>
@SP+ - PC | H N Z V C

<Assembly-L anguage For mat>

RTS

Previous value remains unchanged.
<Examples> Previous val ue remains unchanged.
RTS Previous value remains unchanged.

Previous value remains unchanged.

<Operand Size> Previous val ue remains unchanged.

OSSNz~

Previous value remains unchanged.

<Description>

Thisinstruction returns from a subroutine. It pops the program counter (PC) from the stack.
Program execution continues from the address restored to the program counter.

The PC contents at the time of execution of thisinstruction are |ost.

<|nstruction Formats>

: Instruction code
Addressin
mode g Mnem. | Operands ls\ltgigsf
1st byte | 2nd byte 3rd byte | 4th byte
— RTS 5 4|7 0 8

103

SHAL (SHift Arithmetic L eft) SHAL

<Operation> <Condition Code>
Rd (shifted arithmetic left) — Rd | H N 7 V C
— (== —=ft]t |t]
<Assembly-L anguage For mat>
SHAL Rd
I: Previous value remains unchanged.
<Examples> H: Previous value remains unchanged.
SHAL R5H N: Setto"1" if the result is negative,
otherwise cleared to "0."
<Operand Size> Z: Setto"1"if theresult is zero; otherwise
Byte cleared to "0."

V: Setto"1"if an overflow occurs;
otherwise cleared to "0."
C: Receivesthe previousvauein bit 7.

<Description>

This instruction shifts an 8-bit general register one bit to the left. The most significant bit
shiftsinto the carry flag, and the least significant bit is cleared to "0."

The operation is shown schematically below.

=

MSB LSB
[J— -
C Bit 7 Bit 0

The SHAL instruction isidentical to the SHLL instruction except for its effect on the overflow
(V) flag.

<|nstruction Formats>

; Instruction code
Addressin
mode g Mnem. | Operands Sth;[gsf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct | SHAL Rd 1108 | 2

104

SHAR (SHift Arithmetic Right) SHAR

<Operation> <Condition Code>
Rd (shifted arithmetic right) - Rd

I H N Z V C
— | —]—=[—=]t]t]O]
<Assembly-L anguage For mat>
SHAR Rd
I: Previous value remains unchanged.
<Examples> H: Previous value remains unchanged.

SHAR RSH N: Setto"1" if theresult is negative;
otherwise cleared to "0."

Z. Setto"1"if theresult is zero; otherwise

cleared to "0."

Cleared to "0."

Receives the previous valuein bit 0.

<Operand Size>
Byte

0 <

<Description>

Thisinstruction shifts an 8-bit general register one bit to the right. The most significant bit
remains unchanged. The sign of the result does not change. The least significant bit shiftsinto
the carry flag.

The operation is shown schematically below.

MSB LSB
LTI
_EI:I
Bit 7 Bit0 C

<|nstruction Formats>

Addressing Instruction code No. of

mode Mnem. | Operands states

1st byte | 2nd byte 3rd byte | 4th byte

Register direct | SHAR Rd 1 i 18 ' 2

105

SHLL (SHift Logical Left) SHLL

<Operation> <Condition Code>
Rd (shifted logical left) - Rd I H N Z V C
—|—[—=]—=]t]t |O]:
<Assembly-L anguage For mat>
SHLL Rd
I: Previous value remains unchanged.
<Examples> H: Previous value remains unchanged.

SHLL R2L N: Setto"1"if theresult is negative;
otherwise cleared to "0."

Z: Setto"1"if theresult is zero; otherwise

cleared to "0."

Cleared to "0."

Receives the previous valuein bit O.

<Operand Size>
Byte

0 <

<Description>

Thisinstruction shifts an 8-bit general register one bit to the left. The least significant bit is
cleared to "0." The most significant bit shiftsinto the carry flag.

The operation is shown schematically below.

=

MSB LSB
I:IEI— =—0
C Bit7 Bit 0

The SHLL instruction isidentical to the SHAL instruction except for its effect on the overflow
(V) flag.

<lnstruction Formats>

Addressing Instruction code No. of

mode Mnem. | Operands states

1st byte 2nd byte | 3rd byte | 4th byte

Register direct | SHLL Rd 1 i 0|0 | 2

106

SHLR (SHift Logical Right)

<Operation>

Rd (shifted logical right) — Rd

<Assembly-L anguage For mat>

SHLR Rd

<Examples>
SHLR R3L

<Operand Size>
Byte

<Condition Code>

| H

I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Setto"1" if theresult is negative;
otherwise cleared to "0."
Z: Setto"1"if theresult is zero; otherwise

cleared to "0."
V: Clearedto"0."

C: Receivesthe previousvauein bit 0.

<Description>

This instruction shifts an 8-bit general register one bit to the right. The most significant bit is
cleared to 0. Theleast significant bit shiftsinto the carry flag.
The operation is shown schematically below.

£l
MSB LSB
00— —EII:I
Bit 7 Bit0 C
<Instruction Formats>
: Instruction code
Addressin
mode g Mnem. | Operands [c\l,tgigs]c
1st byte | 2nd byte 3rd byte | 4th byte
] T
Register direct | SHLR Rd 1 i 1] 0 ! rd 2

107

SLEEP (SLEEP) SLEEP

<Operation> <Condition Code
Program execution state — power- | H N Z V C
down mode

<Assembly-L anguage For mat>

Previous value remains unchanged.
Previous value remains unchanged.

SLEEP I: Previous value remains unchanged.
H: Previous value remains unchanged.
<Examples> N: Previous value remains unchanged.
SLEEP Z: Previous value remains unchanged.
V:
C:

<Operand Size>

<Description>

When the SLEEP instruction is executed, the CPU enters a power-down mode. Itsinternal
state remains unchanged, but the CPU stops executing instructions and waits for an exception-
handling request (interrupt or reset). When it receives an exception-handling request, the CPU
exits the power-down mode and begins the exception-handling sequence.

If the interrupt mask (1) bitisset to "1," the power-down mode can be released only by a
nonmaskabl e interrupt (NMI) or reset.

For information about the power-down modes, see the Hardware Manual for the particular
chip.

<|nstruction Formats>

; Instruction code
Addressin
mode g Mnem. | Operands sth:[eosf
1st byte | 2nd byte 3rd byte | 4th byte
— SLEEP 0 1/8 0 2

108

STC (STorefrom Control register) STC
<Operation> <Condition Code>

CCR - Rd | H N Z V C

<Assembly-L anguage For mat>

STC CCR, Rd

Previous value remains unchanged.
<Examples> Previous value remains unchanged.
STC CCR R6H Previous val ue remains unchanged.

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

<Operand Size>
Byte

OsSNZI=

<Description>
This instruction copies the condition code register (CCR) to a specified general register. Bits6
and 4 are copied as well asthe flag bits.

<|nstruction Formats>

Addressing Instruction code No. of

mode Mnem. | Operands states

1st byte | 2nd byte 3rd byte | 4th byte

Register direct STC CCR, Rd 01 2|0 - rd 2

109

SUB (SUBtract binary) (byte) SUB

<Operation> <Condition Code>

Rd—-Rs - Rd | H N 7 V C

— |—] ¢t | —]T [T]

<Assembly-L anguage For mat>

SUB. B Rs, Rd

I: Previous vaue remains unchanged.
<Examples> H: Setto"1" when thereis aborrow from
SUB. B ROL, R2L bit 3; otherwise cleared to "0."

N: Setto"1" when the result is negative;
<Operand Size> otherwise cleared to "0."
Byte Z: Setto"1" whentheresult is zero;

otherwise cleared to "0."

V: Setto"1" if an overflow occurs;
otherwise cleared to "0."

C: Setto"1"if thereisaborrow from bit 7;
otherwise cleared to "0."

<Description>

This instruction subtracts an 8-bit source register from an 8-bit destination register and places
the result in the destination register.

Only register direct addressing is supported. To subtract immediate data it is necessary to use
the SUBX.B instruction, first setting the zero flag to "1" and clearing the carry flag to "0".

The following codings can aso be used to subtract nonzero immediate data.

() ORC #H 05, CCR (2) ADD #0—Imm), Rd
~ SUBX #(Imm—1), Rd XORC #H 01, CCR

110

SUB (SUBtract binary) (byte) SUB
<Instruction For mats>
; Instruction code
Addressin
mode g Mnem. | Operands ,s\ltg'teosf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct | SUB.B Rs, Rd 1 i 8 rs | rd 2

111

SUB (SUBtract binary) (word) SUB

<Operation> <Condition Code>
Rd - Rs - Rd ! H N Z V C
<Assembly-L anguage For mat> — == e
SUB. WRs, Rd

I: Previous value remains unchanged.
<Examples> H: Setto "1" when thereis aborrow from
SUB. WRO, R1 bit 11; otherwise cleared to "0."

N: Setto"1" when the result is negative;
<Operand Size> otherwise cleared to "0."
Word Z. Setto"1" whentheresult is zero;

otherwise cleared to "0."

V: Setto"1" if an overflow occurs;
otherwise cleared to "0."

C. Setto"1"if thereisaborrow from bit
15; otherwise cleared to "0."

<Description>
This instruction subtracts a 16-bit source register from a 16-bit destination register and places
the result in the destination register.

<|nstruction Formats>

Addressing Instruction code No. of

mode Mnem. | Operands states

1st byte | 2nd byte 3rd byte | 4th byte

7 T
Register direct | SUBW | Rs, Rd 1 19 |0rs 0rd 2

112

SUBS (SUBtract with Sign extension) SUBS

<Operation> <Condition Code>
Rd—1 - Rd | H N Z V C
Rd-2 - Rd

<Assembly-L anguage For mat>
Previous value remains unchanged.

SUBS #1, Rd I:
SUBS #2, Rd H: Previous value remains unchanged.

N: Previous value remains unchanged.
<Examples> Z: Previous value remains unchanged.
SUBS #1, R3 V: Previous value remains unchanged.
SUBS #2, R5 C: Previous value remains unchanged.

<Operand Size>
Word

<Description>

This instruction subtracts the immediate value 1 or 2 from word datain a general register.
Differing from the SUB instruction, it does not affect the condition code flags.

The SUBS instruction does not permit byte operands.

<|nstruction Formats>

: Instruction code
Addressin
mode g Mnem. | Operands sth;[eosf
1st byte | 2nd byte 3rd byte | 4th byte
] T T
Register direct SUBS #1, Rd 1 i B 0 '0rd 2
w 3R
Register direct SUBS #2, Rd 1 | B 8 0/rd 2

113

SUBX (SUBtract with eXtend carry)

SUBX

<Operation>
Rd-(EAs)-C - Rd

<Condition Code>

<Assembly-L anguage For mat>
SUBX <EAs>, Rd

<Examples>
SUBX ROL, R3L
SUBX #H 32, R5H

<Operand Size>
Byte

| H N Z V C
el O R

— | ¢

Previous value remains unchanged.

: Setto"1" if thereis aborrow from bit 3;

otherwise cleared to "0."

. Setto "1" when the result is negative;

otherwise cleared to "0."

Previous value remains unchanged when
the result is zero; otherwise cleared to
.

Set to "1" if an overflow occurs;
otherwise cleared to "0."

Setto "1" if thereis aborrow from bit 7;
otherwise cleared to "0."

<Description>

Thisinstruction subtracts the source operand and carry flag from the contents of an 8-bit
general register and places the result in the general register.
The source operand can be an 8-bit register value or immediate byte data.

<Instruction For mats>

: Instruction code
Addressin
mode g Mnem. | Operands ,s\ltgié)sf
1st byte | 2nd byte 3rd byte | 4th byte
Immediate SUBX #xx:8,Rd | B i rd IMM 2
| I
Register direct SUBX Rs, Rd 1 E|rs o 2
| |

114

XOR (eXclusive OR logical)

<Operation>
Rd O (EAs) - Rd

<Assembly-L anguage For mat>
XOR <EAs>, Rd

<Examples>
XOR ROH, R1H
XOR #H FO, R2L

<Operand Size>
Byte

<Condition Code>

I H N Z V C
— ===l]t]0O|—

I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Setto"1" when the result is negative;
otherwise cleared to "0."

Z: Setto"1" when theresult is zero;

otherwise cleared to "0."

Cleared to "0."

C: Previous vaue remains unchanged.

<

<Description>

This instruction exclusive-ORs the source operand with the contents of an 8-bit general
register and places the result in the general register.
The source operand can be an 8-hit register value or immediate byte data.

<|nstruction Formats>

; Instruction code
Addressin
mode g Mnem. | Operands ,s\ltg'teosf
2nd byte 3rd byte | 4th byte
Immediate XOR #xx:8, Rd rd IMM 2
Register direct XOR Rs, Rd 5| rs rd 2

XORC (eXclusive OR Control register) XORC
<Operation> <Condition Code>
CCRO#MM - CCR I H N Z V C

<Assembly-L anguage For mat>
XORC #xx:8, CCR

<Examples>
XORC #H 50, CCR

<Operand Size>
Byte

! ! ! T 1t ! ! !

I: Exclusive-ORed with bit 7 of the
immediate data.

H: Exclusive-ORed with bit 5 of the
immediate data.

N: Exclusive-ORed with bit 3 of the
immediate data.

Z:. Exclusive-ORed with bit 2 of the
immediate data.

V: Exclusive-ORed with bit 1 of the
immediate data.

C: Exclusive-ORed with bit O of the
immediate data.

<Description>

This instruction exclusive-ORs the condition code register (CCR) with immediate data and
places the result in the condition code register. Bits 6 and 4 are exclusive-ORed as well asthe

flag bits.

No interrupt requests are accepted immediately after thisinstruction. All interrupts, including
the nonmaskable interrupt (NMI), are deferred until after the next instruction.

<lnstruction Formats>

; Instruction code
Addressin
mode g Mnem. | Operands Sth;[gsf
1st byte | 2nd byte 3rd byte | 4th byte
Immediate XORC | #xx:8,CCR| O i 5 IMM 2

116

Appendix A. Operation Code Map

Thistable isamap of the operation codes contained in the first byte of the instruction code (bits 15 to 8 of the first instruction word).

Some pairs of instructions have identical first bytes. These instructions are differentiated by the first bit of the second byte (bit 7 of the first
instruction word).

v

Instruction when first bit of byte 2 (bit 7 of first instruction word) is"0."
Instruction when first bit of byte 2 (bit 7 of first instruction word) is"1."

,_
(@)

o) 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 NOP | SLEEP | STC LDC ORC | XORC | ANDC | LDC ADD INC | ADDS MOV ADDX | DAA
1 SHI_LSHAL SHLRSHAF ROTXROTL ROTXROTR OR XOR AND NT NEG SuB DEC SUBS CMP SUBX DAS
2

MOV
3
4| BRA*2 | BRN*Z| BHI BLS | Bcc*z | BCs'z | BNE BEQ = BVC BVS ‘ BPL ‘ BMI | BGE | BLT ‘ BGT ‘ BLE
5 | MULXU| DIVXU RTS | BSR RTE IMP JSR
6 ot MOV *1
BSET | BNOT | BCLR| BTST BIST
7 BOR BIOR BXOBIXOF BANDBIAND BLD BILD MOV EEPMOV Bit manipulation instruction
8 ADD
9 ADDX
A CMP
B SUBX
C OR
D XOR
E AND
F MOV

*1 The MOVFPE and MOV TPE instructions are identical to MOV instructions in the first byte and first bit of the second byte (bits 15 to 7 of the instruction word). The PUSH and POP
instructions are identical in machine language to MOV instructions.

*2 The BT, BF, BHS, and BLO instructions are identical in machine language to BRA, BRN, BCC, and BCS, respectively.

Appendix B. Instruction Set List

Addressing mode/
instruction length

Mnemonic Operation =t — Condition code E
rlel|lo|©O 8
= HEEIEAE 2
S |l sl 2| R =2 o
8 [|z|S|%| 22|92 S
) #|z|Q|0|9|®|8®|E[! |[H|N|Z |V 2
MOV.B #xx:8,Rd B| #xx:8- Rd8 2 -1 -190]90]0 2
MOV.B Rs,Rd B| Rs8- Rd8 2 - =1 ¢[¢]0 2
MOV.B @Rs,Rd B| @Rsl16. Rd8 2 -1 =900 4
MOV.B @(d:16,Rs),Rd| B @(d:16,Rs16)Rd8 4 -1 =100 6
MOV.B @Rs+,Rd B| @Rs16. Rd8 2 -1 =1¢|¢|O 6
Rs16+1- Rs16
MOV.B @aa:8,Rd B|] @aa:8 Rd8 -1 -190]90]0 4
MOV.B @aa:16,Rd B] @aa:16 Rd8 - =19¢|¢|0 6
MOV.B Rs,@Rd Bl Rs8 @Rd16 2 - - ¢]19¢]0 4
MOV.B Rs,@(d:16,Rd)| Bl Rs8 @(d:16,Rd16) 4 4 H49¢1¢]0 6
MOV.B Rs,@-Rd B| Rd16-1. Rd16 2 -1 -] ¢]¢]0 6
Rs8 -~ @Rd16
MOV.B Rs,@aa:8 Bl Rs8 @aa:8 - - 0| 0|0 4
MOV.B Rs,@aa:16 B Rs8 @aa:16 4 4 - ¢]1¢0]0 6
MOV.W #xx:16,Rd W #xx:16- Rd 4 - -1¢]¢]0 4
MOV.W Rs,Rd W Rsl16- Rd16 2 - —-1901¢|0 2
MOV.W @Rs,Rd W @Rsl6, Rd16 2 -1 -] ¢]¢]0 4
MOV.W @(d:16,Rs),Rq W | @(d:16,Rs16)» Rd16 4 -1 -] ¢|¢]0 6
MOV.W @Rs+,Rd W @Rsl16, Rd16 2 -1 -] ¢]¢]0 6
Rs16+2- Rs16
MOV.W @aa:16,Rd W @aa:16 Rd16 4 -1 -] ¢]¢]0 6
MOV.W Rs,@Rd W Rsl6. @Rd16 2 - -] ©]1¢|0 4
MOV.W Rs,@(d:16,Rd] W | Rs16- @(d:16,Rd16) 4 4 H4901¢]0 6
MOV.W Rs,@-Rd W Rd16-2. Rd16 2 - -1901¢|0 6
Rs16- @Rd16
MOV.W Rs, @aa:16 W Rsl6e @aa:l6 4 4 - ¢]1¢0]0 6
POP Rd W @SR, Rd16 2 - -
SP+2- SP
PUSH Rs W SP-2. SP 2 -1 -] ¢]¢]0 6
Rs1l6- @SP
MOVFPE @aa:16,Rd B Not supported
MOVTPE Rs,@aa:16 B Not supported
EEPMOV — | if R41£0 then a4 — -] 4+ + v
Repeat @R5- @R6
R5+1- R5
R6+1- R6
R4L-1- R4L
Until R4L=0
else next

118

Appendix B. Instruction Set List (cont.)

Addressing mode/

instruction length

Mnemonic Operation =| £ . Condition code E

© 1Sl g

s SIEIGIEE 5

8 AR EEEE S

N #|X|9|IQ|IB®QI0|Q HINIZIVIC]Z

ADD.B #xx:8,Rd B | Rd8+#xx:8- Rd8 2 O 1010 |O] 0] 2
ADD.B Rs,Rd B| Rd8+Rs8. Rd8 2 O 1010 |O] 0] 2
ADD.W Rs,Rd W| Rd16+Rsl16. Rd16 2 glo ooy o] 2
ADDX.B #xx:8,Rd B | Rd8+#xx:8 +C» Rd8 2 oo |gfof o] 2
ADDX.B Rs,Rd B | Rd8+Rs8 +C, Rd8 2 oo |gfof o] 2
ADDS.W #1,Rd W| Rd16+1. Rd16 2 - - - 1 2
ADDS.W #2,Rd W| Rd16+2. Rd16 2 - - - 1 2
INC.B Rd B | Rd8+1- Rd8 2 -0 |00 | 2
DAA.B Rd B | Rd8 decimal adjust Rd8 2 1o 1o x| O 2
SUB.B Rs,Rd Bl Rd8-Rs8 Rd8 2 O 1010 |O] 0] 2
SUB.W Rs,Rd W Rd16-Rs16 Rd16 2 glo ooy o] 2
SUBX.B #xx:8,Rd B| Rd8—#xx:8-C. Rd8 2 oo |gfof o] 2
SUBX.B Rs,Rd B| Rd8-Rs8 -C Rd8 2 oo |gfof o] 2
SUBS.W #1,Rd W Rd16-1 Rd16 2 = - - A Y
SUBS.W #2,Rd W Rd16-2 Rd16 2 = - - A Y
DEC.B Rd B| Rd8-1- Rd8 2 -0 100 | 2
DAS.B Rd B | Rd8 decimal adjust Rd8 2 10O | * | —| 2
NEG.B Rd B| 0O-Rd- Rd 2 O 10100 0] 2
CMP.B #xx:8,Rd B| Rd8—#xx:8 p +O [0 |00 O 2
CMP.B Rs,Rd Bl Rd8-Rs8 P O 1O [0 O] Of 2
CMP.W Rs,Rd W Rd16-Rs16 2 1O [0 O] ¢f 2
MULXU.B Rs,Rd B | RA&Rs8 - Rd16 2 = - - A 1
DIVXU.B Rs,Rd B | Rd16Rs8 - Rd16 2 —(=1A]|-| -| 14

(RdH:remainder, RdL:quotient)

AND.B #xx:8,Rd B | Rd8#xx:8 -~ Rd8 2 -0 1010 -] 2
AND.B Rs,Rd B| Rd8Rs8- Rd8 2 -0 1010 -] 2
OR.B #xx:8,Rd B| RdB#xx:8 - Rd8 2 -0 1010 -] 2
OR.B Rs,Rd B| RdBRs8- Rd8 2 -0 1010 -] 2
XOR.B #xx:8,Rd B| Rd8#xx:8 - Rd8 2 -0 1010 -] 2
XOR.B Rs,Rd B| RdBRs8- Rd8 2 -0 1010 -] 2
NOT.B Rd B| Rd- Rd 2 —lofofo] | 2

119

Appendix B.

Instruction Set List (cont.)

Addressing mode/
instruction length

Mnemonic Operation ~| + Condition code %
c| c —~ Q
rle|lol|© S
g sl @2 n
@ SR EELE: S
2 MR EEIEES -
— X | < L o
%) #|(®|8®®|0(0® HIN| z[v]|c]| =z
C 0
SHAL.B Rd B <|||||||I<_ 2 O[O0 |0|0]2
b7 bo
SHAR.B Rd B I_,_|'||||||| 2 dolofofo]2
>
bo
SHLL.B Rd B ||||||||<_0 2 —H 0101002
———
b7 bo
SHLR.B Rd Bl o[[[TTTTThk] 2 4 Qo |oof2
e .
b7 bo
ROTXL.B Rd B 2 - 0[O0 |0|0]2
ROTXR.B Rd B I_,|||||||||_)._1 2 40101002
ROTL.B Rd B.<||||||||||<-| 2 - 010|002
ROTR.B Rd B I_,|||||||||,>. 2 40l0]0]¢0]f2
b7 bo
BSET #xx:3,Rd Bl (#xx:3 of Rd8) 1 2 -1 q4-1 44 4 2
BSET #xx:3,@Rd Bl (#xx:3 of @Rd16)- 1 4 - -4 4 8
BSET #xx:3,@aa:8 B #xx:3of @aa:8)1 4 1 414 4 8
BSET Rn,Rd B| (Rn8 of Rd8) 1 2 -1 4-14 4 2
BSET Rn,@Rd Bl (Rn8 of @Rd16) 1 4 -1 4-1 4 4 8
BSET Rn,@aa:8 B (Rn8of @aa:8)1 4 1 414 4 8
BCLR #xx:3,Rd B| (#xx:3 of Rd8)- 0 2 -1 4-14 4 2
BCLR #xx:3,@Rd B| (#xx:3 of @Rd16) 0 4 - 4 -1 4 4 8
BCLR #xx:3,@aa:8 B #xx:3 of @aa:8) 0 4 1 414 4 8
BCLR Rn,Rd B| (Rn8 of Rd8) 0 2 -1 4-14 4 2
BCLR Rn,@Rd B| (Rn8 of @Rd16)} 0 4 -1 4-1 4 4 8
BCLR Rn,@aa:8 B (Rn8 of @aa:8) 0 4 -1 4-1 4 4 8
BNOT #xx:3,Rd B| (#xx:3 of Rd8)- (#xx:3 of Rd8) 2 4 T+ - A 2
BNOT #xx:3,@Rd B| (#xx:3 of @Rd16)- (#xx:3 of @Rd16| 4 - - -1 - - 8
BNOT #xx:3,@aa:8 B (#xx:3 of @aa:8)- (#xx:3 of @aa:8) 4 -1 -1-1- - 8

120

Appendix B. Instruction Set List (cont.)

Addressing mode/
instruction length
Mnemonic Operation = — Condition code Eg”
Xl|o|© 8
3 s| 2™ 2
= A EE R 5
N SRS S
%) # x| 9[9|®®8|8, InInlzlvic|Z
BNOT Rn,Rd B| (Rn8 of Rd8)- (Rn8 of Rd8) 2 -1 4 - 4 -
BNOT Rn,@Rd B| (Rn8 of @Rd16)— (Rn8 of @RA16 4 - -|-|- -1 8
BNOT Rn,@aa:8 H (Rn8 of @aa:8)- (Rn8 of @aa:8) 4 - -l-1- -1 8
BTST #xx:3,Rd B| (#xx:3 of Rd8)- Z 2 - =1-10 -2
BTST #xx:3,@Rd B (#xx:3 of @RA16) Z 4 o I e -1 6
BTST #xx:3,@aa:8 B (#xx3of @aa8) Z 4 - =1-10 -|s
BTST Rn,Rd B| (Rn8 of Rd8). Z 2 - -1-10 -2
BTST Rn,@Rd Bl (Rn8of @Rd16) Z 4 - =1-10 -|s
BTST Rn,@aa:8 B (Rn8of @aa:8)Z 4 - -l-1¢ -16
BLD #xx:3,Rd B| (#xx:3 of Rd8)- C 2 -1 -1-1- 012
BLD #xx:3,@Rd B| (#xx:3 of @Rd16). C 4 -1 -1-1- 016
BLD #xx:3,@aa:8 Bl (#xx:3 of @aa:8) C 4 -1 -1-1- 016
BILD #xx:3,Rd B[(#xx3of Rd8)- C 2 - —-1-1- o 12
BILD #xx:3,@Rd B| #xx:3of @Rd16). C 4 - -|-1- 0|6
BILD #xx:3,@aa:8 Bl (#xx:3 of @aa:8) C 4 - -l-1- 0|6
BST #xx:3,Rd Bl C- (#xx:3 of Rd8) 2 -1 14 - 4 1 2
BST #xx:3,@Rd Bl C- (#xx:3 of @Rd16) 4 - 1 + 1+ B
BST #xx:3,@aa:8 B C. (#xx:3 of @aa:8) 4 - 4 4 -+ B
BIST #xx:3,Rd B| C- (#xx:3 of Rd8) 2 -1 14 -] - 4 2
BIST #xx:3,@Rd Bl C- (#xx:3 of @Rd16) 4 -1 4 - - B
BIST #xx:3,@aa:8 H C. (#xx:3 of @aa:8) 4 - 4 4 L L B
BAND #xx:3,Rd B| CJ#xx:3 of Rd8)- C 2 -1 -1-1- 012
BAND #xx:3,@Rd B| QJ#xx:3 of @Rd16)- C 4 -1 -1-1- 016
BAND #xx:3,@aa:8 B C#xx:3 of @aa:8)- C 4 -1 -1-1- 016
BIAND #xx:3,Rd B| QJ#xx:30ofRd8)- C 2 - -l-1- 012
BIAND #xx:3,@Rd B| @#xx:3 of @Rd16)- C 4 - -l-1- o6
BIAND #xx:3, @aa:8 Bl Ci#xx:3 of @aa:8)- C 4 - -l-1- o6
BOR #xx:3,Rd B| Cl#xx:3 of Rd8)- C 2 -1 -1-1- 012
BOR #xx:3,@Rd Bl Ci#xx:3 of @Rd16)- C 4 -1 -1-1- 016
BOR #xx:3, @aa:8 B Q#xx:3 of @aa:8)- C 4 -1 -1-1- 016
BIOR #xx:3, Rd B| CI(#xx:30ofRd8)- C 2 o e e o 12

121

Appendix B. Instruction Set List (cont.)

Addressing mode/
instruction length

Mnemonic Operation =& - Condition code g
Xlx|lo|Q 8

. 3 < 9|5 :;— rcs 2

o Branc_h_lng C_: sl 0? g g g) 5

@ condion | % /ZI8|®|®|6|®|6|I [H|N|z|V]|c |2

BIOR #xx:3,@Rd B| C(#xx:3 of @Rd16)- C 4 -|-1- 40|66

BIOR #xx:3, @aa:8 B Q#xx:3of @aa:8)- C 4 -1 4016

BXOR #xx:3,Rd B| QI(#xx:3 of Rd8)- C 2 -1-1- 4¢1]2

BXOR #xx:3,@Rd B| Cl(#xx:3 of @Rd16)- C 4 —-1- H49¢]|6

BXOR #xx:3, @aa:8 B QO#xx:3 of @aa:8) C 4 —-1- H49¢]|6

BIXOR #xx:3,Rd B| @#xx:3ofRd8)- C 2 -1 402

BIXOR #xx:3,@Rd B| @(#xx:3 of @Rd16)- C 4 |-l do]s

BIXOR #xx:3, @aa:8 Bl cwxx3of @aa8)- C 4 |-l do]s
BRA d:8 (BT d:8) —| Pc- pc+d:8 2 4 - 4 A 4
BRN d:8 (BF d:8) —-| Pc-pPc+2 2 - - 4 - 4
BHI d:8 — | if condition cOz=0 2 —-1 4 - 4
BLS d:8 — | istrue then az=1 2 —-1 4 - 4
BCC d:8 (BHS d:8) -| PG Pc+d:8[C=0 2 1 - s 4

BCS d:8 (BLO d:8) —| else next; c=1 D - |-~ 1-1-1-
BNE d:8 - Z=0 2 4 -1 1 1 4
BEQ d:8 - z=1 2 4 4 4
BVC d:8 - V=0 2 -1 4 A 4
BVS d:8 - V=1 2 - 1 A 4
BPL d:8 - N=0 2 4 -1 1 1 4
BMI d:8 - N=1 2 - -1 4 - 4
BGE d:8 - NIV =0 2 —1-1- - 4
BLT d:8 - NOV =1 2 -1-1 - - 4
BGT d:8 - ZO(NOV) =0 2 -1-1- 4 4
BLE d:8 - ZO(NOV) =1 2 -1-1- 4 4
JMP @Rn —-| PC- Rnl6 2 -1 4 - 4
JMP @aa:16 —-| PG aa:l6 4 - - 4 - 6
IJMP @ @aa:8 -4 PG @aa8 2 - - 4 A g
BSR d:8 —-| SP-2. SP 2 -1 -1 4 A 6

PC - @SP
PC — PC+d:8

122

Appendix B. Instruction Set List (cont.)

Addressing mode/
instruction length
Mnemonic Operation = & - Condition code E
© L El g
S EREHE = s
8 AR REE R S
n #Q‘@)@@@@@)EIHNZVCZ
JSR @Rn -1 SP-2 SP 2 4 -1 4 4 4 1 ¢
PC- @SP
PC - Rn16
JSR @aa:16 4 SP-2 SP 4 4 -1 4 4 4 1 &
PC- @SP
PC — aa:16
JSR @@aa:8 SP-2 SP 2 4 -4 4 4 4 9
PC - @SP
PC - @aa:8
RTS -| PC- @SP 2l 4 -14 4 4+ + 8
SP+2- SP
RTE —-| CCR- @SP 21010 |00]0]90]10
SP+2- SP
PC - @SP
SP+2- SP
SLEEP —| Transit to sleep mode. 21-|-1-1-1-1-12
LDC #xx:8,CCR B| #xx:8- CCR 2 Ol ¢ 00002
LDC Rs,CCR Bl Rs8. CCR 2 Ol ¢ 00002
STC CCR,Rd B CCR- Rd8 2 4 -1 4 4 4 4
ANDC #xx:8,CCR B| CCR#xx:8 - CCR 2 Ol ¢ 00002
ORC #xx:8,CCR B CCR#xx:8 -~ CCR 2 Ol ¢ 00002
XORC #xx:8,CCR B CCR#xx:8 -~ CCR 2 Ol ¢ 00002
NOP —| PC— PC+2 2l 4 -1 4 4 4 4 2

Notes: The number of states is the number of states required for execution when the instruction and its

operands are located in on-chip memory.
O Setto “1” when there is a carry or borrow from bit 11; otherwise cleared to “0.”

+ 8 O O ™

IN

If the result is zero, the previous value of the flag is retained; otherwise the flag is cleared to “0.”
Set to “1” if decimal adjustment produces a carry; otherwise cleared to “0.”
The number of states required for execution is 4n+8 (n = value of R4L)
These instructions are not supported by the H8/338 Series.
Set to “1” if the divisor is negative; otherwise cleared to “0.”
Cleared to “0” if the divisor is not zero; undetermined when the divisor is zero.

Appendix C. Number of Execution States

Thetables in this appendix can be used to cal culate the number of states required for
instruction execution. Table C-1 indicates the number of states required for each cycle
(instruction fetch, branch address read, stack operation, byte data access, word data access,
internal operation). Table C-2 indicates the number of cycles of each type occurring in each
instruction. The total number of states required for execution of an instruction can be
calculated from these two tables as follows:

Execution states=1 xS +JIJx S+ K xSK+L xSL + M x Sv + N x SN

Examples: Mode 1 (on-chip ROM disabled), stack located in external memory, 1 wait state
inserted in external memory access.

1. BSET #0, @FFC7
From table C-2:
I=L=2, J=K=M=N=0
From table C-1:
S =8 S =3
Number of states required for execution= 2 x 8 + 2 x 3 =22

2. JISR@@ 30
From table C-2:
=2, J=K=1, L=M=N=0
From table C-1:
S=S=%=8
Number of states required for execution= 2x8+1x8+1x 8= 32

124

Table C-1. Number of States Taken by Each Cyclein Instruction Execution

Execution Status Access L ocation

(instruction cycle) On-Chip Memory On-Chip Reg. Field External Memory
Instruction fetch S
Branch address read S 6 6 +2m
Stack operation S 2
Byte data access S 3 3+m
Word data access Sw 6 6 +2m
Internal operation N 2

Notes: 1. m: Number of wait states inserted in access to external device.
2. The byte data access cycle to an external device by the MOV FPE and MOV TPE
instructions requires 9 to 16 states since it is synchronized with the E clock. See
the Hardware Manual for timing details.

125

Table C-2.

Number of Cyclesin Each Instruction

Instruction

Mnemonic

Instruction
Fetch

Branch
Addr. Read

Stack
Operation

Byte Data
Access

Word Data
Access

Internal
Operation

J

K

L

M

N

ADD

ADD.B #xx:8, Rd
ADD.B Rs, Rd
ADD.W Rs, Rd

ADDS

ADDS.W #1/2, Rd

ADDX

ADDX.B #xx:8, Rd
ADDX.BRs, Rd

AND

AND.B #xx:8, Rd
AND.B Rs, Rd

ANDC

ANDC #xx:8, CCR

BAND

BAND #xx:3, Rd
BAND #xx:3, @Rd
BAND #xx:3, @aa:8

Bcc

BRA d:8 (BT d:8)
BRN d:8 (BF d:8)
BHI d:8
BLS d:8
BCC d:8 (BHS d:8)
BCSd:8 (BLO d:8)
BNE d:8
BEQ d:8
BVC d:8
BVS d:8
BPL d:8
BMI d:8
BGE d:8
BLT d:8
BGT d:8
BLE d:8

BCLR

BCLR #xx:3, Rd
BCLR #xx:3, @Rd
BCLR #xx:3, @aa8
BCLRRn,Rd

PN N P NN N DN DN DN DN DN DN DN DN DN DNDDNDNDNDDNDDNDDND PR PR PR,

126

Instruction | Branch Stack |Byte Data| Word Data| Internal
Instruction Mnemonic Fetch |Addr. Read|Operation| Access Access |Operation
I J K L M N

BCLR BCLR Rn, @Rd 2 2

BCLR Rn, @aa:8 2 2
BIAND BIAND #xx:3, Rd 1

BIAND #xx:3, @Rd 2 1

BIAND #xx:3, @aa:8 2 1
BILD BILD #xx:3, Rd 1

BILD #xx:3, @Rd 2 1

BILD #xx:3, @aa:8 2 1
BIOR BIOR #xx:3, Rd 1

BIOR #xx:3, @Rd 2 1

BIOR #xx:3, @aa.8 2 1
BIST BIST #xx:3, Rd 1

BIST #xx:3, @Rd 2 2

BIST #xx:3, @aa:8 2 2
BIXOR BIXOR #xx:3, Rd 1

BIXOR #xx:3, @Rd 2 1

BIXOR #xx:3, @aa.8 2 1
BLD BLD #xx:3, Rd 1

BLD #xx:3, @Rd 2 1

BLD #xx:3, @aa:8 2 1
BNOT BNOT #xx:3, Rd 1

BNOT #xx:3, @Rd 2 2

BNOT #xx:3, @aa:8 2 2

BNOT Rn, Rd 1

BNOT Rn, @Rd 2 2

BNOT Rn, @aa:8 2 2
BOR BOR #xx:3, Rd 1

BOR #xx:3, @Rd 2 1

BOR #xx:3, @aa:8 2 1
BSET BSET #xx:3, Rd 1

BSET #xx:3, @Rd 2 2

BSET #xx:3, @aa:8 2 2

BSET Rn, Rd 1

BSET Rn, @Rd 2 2

127

Instruction| Branch Stack [Byte Data|Word Data| Internal
Instruction Mnemonic Fetch |Addr. Read|Operation| Access Access |Operation
I J K L M N
BSET BSET Rn, @aa:8 2 2
BSR BSR d:8 2 1
BST BST #xx:3, Rd 1
BST #xx:3, @Rd 2 2
BST #xx:3, @aa.8 2 2
BTST BTST #xx:3, Rd 1
BTST #xx:3, @Rd 2 1
BTST #xx:3, @aa:8 2 1
BTST Rn, Rd 1
BTST Rn, @Rd 2 1
BTST Rn, @aa:8 2 1
BXOR BXOR #xx:3, Rd 1
BXOR #xx:3, @Rd 2 1
BXOR #xx:3, @aa:8 2 1
CMP CMP. B #xx:8, Rd 1
CMP.B Rs, Rd 1
CMPW Rs, Rd 1
DAA DAA.B Rd 1
DAS DASB Rd 1
DEC DEC.B Rd 1
DIVXU DIVXU.B Rs, Rd 1 6
EEPMOV |EEPMOV 2 2n+2*1
INC INC.B Rd 1
JMP JMP @Rn 2
IMP @aa:16 2 1
IMP @@aa:8 2 1 1
JSR JSR @Rn 2 1
JSR @aa:16 2 1 1
JSR @@aa:8 2 1 1
LDC LDC #xx:8, CCR 1
LDCRs, CCR 1
MQV MOV.B #xx:8, Rd 1
MOQOV.B Rs, Rd 1
MOV.B @Rs, Rd 1 1

128

Instruction | Branch Stack |Byte Data|Word Data| Internal
Instruction Mnemonic Fetch |Addr. Read|Operation| Access Access |Operation
I J K L M N
MOV MOV.B @(d:16, Rs), Rd 2 1
MOV.B @Rs+, Rd 1 1 1
MOV.B @aa:8, Rd 1 1
MOV.B @aa:16, Rd 2 1
MOV.B Rs, @Rd 1 1
MOV.B Rs, @(d:16, Rd) 2 1
MOV.B Rs, @-Rd 1 1 1
MOV.B Rs, @aa:8 1 1
MOV.B Rs, @aa:16 2 1
MOV.W #xx:16, Rd 2
MOV.W Rs, Rd 1
MOV.W @Rs, Rd 1 1
MOV.W @(d:16, Rs), Rd 2 1
MOV.W @Rs+, Rd 1 1 1
MOV.W @aa:16, Rd 2 1
MOV.W Rs, @Rd 1 1
MOV.W Rs, @(d:16, Rd) 2 1
MOV.W Rs, @-Rd 1 1 1
MOV.W Rs, @aa:16 2 1
MOVFPE |MOVFPE @aa:16, Rd 2 1"2
MOVTPE |MOVTPERs, @aa 16 2 1"2
MULXU |MULXU.BRs, Rd 1 6
NEG NEG.B Rd 1
NOP NOP 1
NOT NOT.B Rd 1
OR OR.B #xx:8, Rd 1
OR.BRs, Rd 1
ORC ORC #xx:8, CCR 1
ROTL ROTL.BRd 1
ROTR ROTR.B Rd 1
ROTXL ROTXL.B Rd 1
ROTXR |ROTXR.BRd 1
RTE RTE 2 2 1
RTS RTS 2 1 1

129

Instruction| Branch Stack [Byte Data|Word Data| Internal
Instruction Mnemonic Fetch |Addr. Read|Operation| Access Access |Operation
I J K L M N

SHAL SHAL.B Rd 1
SHAR SHAR.B Rd 1
SHLL SHLL.B Rd 1
SHLR SHLR.B Rd 1
SLEEP SLEEP 1
STC STC CCR, Rd 1
SUB SUB.B Rs, Rd 1

SUB.W Rs, Rd 1
SUBS SUBS.W #1/2, Rd 1
SUBX SUBX.B #xx:8, Rd 1

SUBX.B Rs, Rd 1
XOR XOR.B #xx:8, Rd 1

XOR.BRs, Rd 1
XORC XORC #xx:8, CCR 1
Notes:

*1
each.

*2 Dataaccessrequires 9 to 16 states.

130

n: Initial valuein R4L. The source and destination operands are accessed n + 1 times

	Contents H8/300 Programming Manual
	Section 1. CPU
	Section 2. Instruction Set
	Appendix A. Operation Code Map
	Appendix B. Instruction Set List
	Appendix C. Number of Execution States

