
1

More NQC

Using Rotation Sensors

? To make robot move in a straight line:
– Can measure speed of rotation of each

motor
– Adjust if not the same
– Example program:

• Rotation_sensor

Subprograms
? Subroutine

– Code that can be executed from many places in a program
– Like procedures, but with restrictions

• Up to 8 allowed
• No parameters, no result returned

• Cannot be nested
• No recursive calls
• Risky to call from different tasks
• Code is only stored once, so efficient use of memory

– Defining:
sub sub_name() { };

– Example: 6_subs
• Main calls a subroutine that makes RCX turn 360 degrees

several times

Inline Functions
– More like C functions

• No return value (type void)
• Can have value and reference parameters
• Each time invoked a new copy of code is generated

– Can use a lot of memory

• No limit on number of inline functions

– Defining:
void function_name(parameters) { };
• Just like in C

– Example programs:
• 6_inline2 (parameter is value of turn time)
• 6_inline_by_ref)

– Reference parameter increments n, which is used in caller
for delays between outputting a sound

Macros
? Give small pieces of code a name
? Like inline functions in that each time invoked

a new copy of the code is generated
? Can have arguments

– Just placeholders for values to be used when
invoked

? Defining:
#define macro_name(argument_list) statements;
– If more than one line is needed, must use ‘\’ at end

of line

? Example program: 6_macro
– Power & time are arguments to forwards(s,t),

backwards(s,t), turn_right(s,t), turn_left(s,t) macros

RCX Timers
? Four of them

– Count from 0 to 32767 in 1/10 second increments
– Then rollover to zero
– Reading a timer:

x = Timer(n)

– Resetting a timer:
ClearTimer(n) // Reset to zero
SetTimer(n, value) // Reset to specified value

? Timers can also be read more precisely
x = FastTimer(n) // 1/100 sec. (10 msec.) Intervals

? Example program: 12_timers
– Go forward & turn randomly until timer times out

2

LCD Display
? RCX LCD has 8 display modes

– DISPLAY_WATCH show system time, default

– DISPLAY_SENSOR1 show value of sensor 1
– DISPLAY_SENSOR2 show value of sensor 2

– DISPLAY_SENSOR3 show value of sensor 3
– DISPLAY_OUT_A show setting for output A

– DISPLAY_OUT_B show setting for output B
– DISPLAY_OUT_C show setting for output C

– DISPLAY_USER show something else

? Set mode with SelectDisplay(mode)

LCD DISPLAY_USER Mode

?Continually read a source & update
LCD display with value
– Source can be a sensor, timer, global

variable, etc.
– Can display values with a decimal point

SetUserDisplay (source, digits-after-dec-point)

? Example Programs:
– timer_display, timer_display_ok

IR Communication
– RCX can send/receive messages using its IR port
– Message values: 0 to 255
– To retrieve most recently -sent message #:

x = Message(); // 0 returned ? no message received
– Sending a message:

SendMessage(msg_number)
• Receiving is disabled while sending

– Clearing the RCX’s message buffer:
ClearMessage();

– Example programs:
• 11_Master, 11_Slave

– Master RCX sends out messages to tell slave to go
forward, backward, or stop

• 11_leader
– Robots decide who is master and who is slave

Proximity Sensor using IR

? Make robot react before bumping something
? Use IR communication port in conjunction

with a light sensor
– Light sensor emits/detects red and IR “light”

– One task sends out IR message
– Another task measures change in “light” (IR)

intensity reflected back to light sensor
• Detects it, detects it again and computes change
• Large change ? close; Small change ? far

– Example program: 9_proximity

Serial Transmission of Data
Using IR Port

1. Set up serial communications Protocol
SetSerialComm(SERIAL_COMM_DEFAULT);
? 2400 baud, 50% duty cycle, 38 kHz carrier wave

? Could be: SERIAL_COMM_4800

? SERIAL_COMM_DUTY25, SERIAL_COMM_76KHZ
? Boolean OR combinations

2. Set Up Packets (how to package data bytes)
SetSerialPacket (Serial_PACKET_DEFAULT);

• No packets, just data bytes
– There are other possibilities, e.g.,
– SERIAL_PACKET_RCX (RCX format with checksum)

3. Put bytes into serial transmit buffer (max=16)
SetSerialData(index,value)

– Index 0-15
– Packets are built first

4. Send bytes in the buffer
SendSerial(start_index, count);

?Reading a given byte from the buffer
x = SerialData(i);

3

Arrays

? Maximum size = 32
? Declare just as in C

int my_array[4];

? No bounds checking is done

Data Logging
? RCX can store data in a “datalog”

– From sensors, timers, variables, etc.

? Can be uploaded to a host computer
CreateDatalog(const size); // to create it

• Uses same 6K RAM as programs
• Each point logged uses 3 bytes
• This instruction erases previous data

AddToDatalog(x); // to add data to it
• x can be a variable, sensor value, timer value, etc.

UploadDataLog(start_index, count);
• Not very useful since host computer usually initiates the

upload of data

? Example program: datalog
– Use BricxCC Datalog tool to look at data retrieved

Interference Between Tasks
? Program: 10_wrong

– Task move_square() makes robot move in square
• While turning enters into a Wait()

– Task check_sensors() checks for bumper hit and backs up
and turns away

• While backing up enters into a Wait()
– Everything is OK unless bump occurs while turning

• Instead of turning away, it moves forward & bumps obstacle
again

? While check_sensors is sleeping, move_square() is
still running; so when check_sensors wakes up
move_square() drives it forward into obstacle again

? Both tasks are driving motors at cross purposes
? One solution: make sure only one task is driving the

motors at any time
– Program: 10_stopping

? But there’s still a problem
– When move_square() restarts, it starts at the beginning
– OK for small tasks, but we really should stop and resume at

the same place in the task
– One way to assure that happens: use a semaphore

? Semaphore – a global variable accessed by both
tasks
– Semaphore = 0 ? no task is driving motors
– Semaphore = 1 ? a task is driving motors

? When a task wants to use the motors, execute
following code:

until (semaphore == 0);
semaphore = 1;
// Use the motors
semaphore = 0;

? Program: 10_semaphore

NQC Access Control
? Setting task priorities for accessing resources

? Automates and generalizes the idea of semaphores
? Allows a task to request ownership of a resource

– Motor, speaker, or a user-defined resource

? Code in a task:
acquire(list of resources)

{ body } // If resource is not owned by a higher-priority task
// the task gets the resource & the body executes

catch
{ }; // If resource is owned or taken away by a higher-

// priority task, this task doesn’t get the resource
// body doesn’t execute, & catch block executes

Access Control Resources
? Motors: ACQUIRE_OUT_A

– Same for B and C

? Speaker:
– ACQUIRE_SOUND

? User-defined resources
– ACQUIRE_USER_1

• Same for 2, 3, 4

– Each is like a token
• The task that has it runs

? Difference:
– When ownership of motor is lost, default action is to stop motor
– When ownership of speaker is lost, sound is turned off
– No default action for user-defined resource

4

Setting Task Priorities in
Access Control

SetPriority(priroity_level);
– 0 to 255
– lower values higher priorities

– Use at the top of a task

? Example program:
– 10_acquire_usr

Event Monitoring
? Like using interrupts instead of polling sensors
? 16 types of events can be monitored and responses

programmed (See NQC documentation for types)
1. Set up event numbers
– i.e., associate event #’s with event sources & types, e.g.,

SetEvent(1, SENSOR_1, EVENT_TYPE_PRESSED);

SetEvent(2, SENSOR_1, EVENT_TYPE_RELEASED);

2. Monitor those events
monitor (EVENT_MASK(1) + EVENT_MASK(2))

{Normal code when events have not occurred}
catch (EVENT_MASK(1))

{event 1 handler code}
catch (EVENT_MASK(2))

{event 2 handler code}

? Example Pgm: events_two_touch_sensor

Range Event Types & Hysteresis
? Some sensors & event sources need to work

with a range of values
– Want to detect two threshold levels
– E.g., light sensor trying to follow edge of a black zone

• Take black = 40, white = 60
• If sensor is between, go forward
• If > 60 turn back toward black area (one way)
• If < 40, turn away from black area (other way)

? Range events
– Specify upper & lower limit for event with:

• SetUpperLimit(event #, value)
• SetLowerLimit(event #, value)

– EVENT_TYPE_HIGH: when source enters high range
– EVENT_TYPE_LOW: when source enters low range

Hysteresis
? But could have problems with sharp thresholds
? Sensors don’t react instantaneously and there can be

small errors in the readings (jitter)
? So use different cutoffs for entering and leaving the

normal range
? Difference between two thresholds called hysteresis

– Example w/o hysteresis: Upper Limit 60 (spurious value 58->61)
• 52 55 58 60 (Event triggers a desired response) 59 58 61 57

(spurious 61 reading triggers another undesired response)
– Same example with a hysteresis of 5:

• 52 55 58 60 (Event triggers desired response) 58 61
(difference < hysteresis so no reaction) 59 58 55 52 49 53 57
62 (Event triggers desired response again)

? Set_Hysteresis(Event #, value)
? Event_hysteresis example program

