More NQC

Using Rotation Sensors

=« To make robot move in a straight line:
— Can measure speed of rotation of each
motor
— Adjust if not the same
— Example program:
< Rotation_sensor

—_——m—————————————————————————————|

Subprograms

& Subroutine
— Code that can be executed from many places in a program
— Like procedures, but with restrictions
+ Up to 8 allowed
+ No parameters, no result returned
« Cannot be nested
« No recursive calls
« Risky to call from different tasks
« Code is only stored once, so efficient use of memory
— Defining:
sub sub_name(){ }
— Example: 6_subs
« Main calls a subroutine that makes RCX turn 360 degrees
several times

Inline Functions

— More like C functions
« No return value (type void)
« Can have value and reference parameters
« Each time invoked a new copy of code is generated
— Can use a lot of memory

« No limit on number of inline functions
— Defining:
void function_name(parameters) { };
« JustlikeinC
— Example programs:
« 6_inline2 (parameter is value of turn time)
« 6_inline_by_ref)
- F?ferenceLparameter increments n, which is used in caller

del utoutting uad
Lid)

Macros
=« Give small pieces of code a name
= Like inline functions in that each time invoked
a new copy of the code is generated
= Can have arguments

— Just placeholders for values to be used when
invoked

= Defining:
#define macro_name(argument_list) statements;

— If more than one line is needed, must use ‘\" at end
of line

= Example program: 6_macro
— Power & time are arguments to forwards(s,t),

s

RCX Timers

= Four of them
— Count from 0 to 32767 in 1/10 second increments
— Then rollover to zero
— Reading a timer:
x = Timer(n)
— Resetting a timer:
ClearTimer(n) // Reset to zero
SetTimer(n, value) // Reset to specified value
= Timers can also be read more precisely
x = FastTimer(n) // 1/100 sec. (10 msec.) Intervals
« Example program: 12_timers

= Go forward & turn randomly until timer times out.

LCD Display

=« RCX LCD has 8 display modes

— DISPLAY_WATCH show system time, default
— DISPLAY_SENSOR1 show value of sensor 1
— DISPLAY_SENSOR2 show value of sensor 2
— DISPLAY_SENSOR3 show value of sensor 3
— DISPLAY_OUT_A show setting for output A
— DISPLAY_OUT_B show setting for output B
— DISPLAY_OUT_C show setting for output C
— DISPLAY_USER show something else

= Set mode with SelectDisplay (mode)

LCD DISPLAY_USER Mode

= Continually read a source & update
LCD display with value

— Source can be a sensor, timer, global
variable, etc.

— Can display values with a decimal point
SetUserDisplay (source, digits-after-dec-point)

= Example Programs:
— timer_display, timer_display_ok

IR Communication

— RCX can send/receive messages using its IR port
— Message values: 0 to 255
— To retrieve most recently sent message #:
x = Message(); //0returned = no message received
— Sending a message:
SendMessage(msg_number)
* Receiving is disabled while sending
— Clearing the RCX’'s message buffer:
ClearMessage();
— Example programs:
« 11 Master, 11_Slave

— Master RCX sends out messages to tell slave to go
forward, backward, or stop
* 11 _leader
Reobots-daecid ho-is-masterand-who-i k

—_——m—————————————————————————————|

Proximity Sensor using IR

« Make robot react before bumping something
« Use IR communication port in conjunction
with a light sensor
— Light sensor emits/detects red and IR “light”
— One task sends out IR message
— Another task measures change in “light” (IR)
intensity reflected back to light sensor
« Detects it, detects it again and computes change
« Large change = close; Small change & far
— Example program: 9_proximity

Serial Transmission of Data
Using IR Port

1. Set up serial communications Protocol

SetSerialComm(SERIAL_COMM_DEFAULT);
& 2400 baud, 50% duty cycle, 38 kHz carrier wave
Could be: SERIAL_COMM_4800
= SERIAL_COMM_DUTY25, SERIAL_COMM_76KHZ
Boolean OR combinations

2. Set Up Packets (how to package data bytes)
SetSerialPacket(Serial_PACKET_DEFAULT);
* No packets, just data bytes

— There are other possibilities, e.g.,
— SERIAL PACKET RCX (RCX format with checksum)

3. Put bytes into serial transmit buffer (max=16)
SetSerialData(index,value)
— Index 0-15
— Packets are built first

4. Send bytes in the buffer
SendSerial(start_index, count);

.- Reading a given byte from the buffer
X = SerialData(i);

Arrays

= Maximum size = 32
« Declare just as in C

int my_array[4];

= No bounds checking is done

Data Logging
« RCX can store data in a “datalog”
— From sensors, timers, variables, etc.

= Can be uploaded to a host computer
CreateDatalog(const size); // to create it
* Uses same 6K RAM as programs
« Each point logged uses 3 bytes
« This instruction erases previous data
AddToDatalog(x); // to add data to it
« X can be a variable, sensor value, timer value, etc.
UploadDatalog(start_index, count);
« Not very useful since host computer usually initiates the
upload of data
=« Example program: datalog
— Use BricxCC Datalog tool to look at data retrieved

Interference Between Tasks

—_——m—————————————————————————————|

= But there’s still a problem

« Program: 10_wrong — When move_square() restarts, it starts at the beginning
— Task move_square() makes robot move in square - t?é L(;rn?ren‘e;lllaza:ﬁ ’tr?gttz\;\éi really should stop and resume at
« While turning enters into a Wait() .
— Task check_sensors() checks for bumper hit and backs up — One way to assure that hapPe”S- use a semaphore
and turns away « Semaphore — a global variable accessed by both
« While backing up enters into a Wait() tasks
— Everything is OK unless bump occurs while turning — Semaphore = 0 &« no task is driving motors
+ Instead of turning away, it moves forward & bumps obstacle — Semaphore =1 & a task is driving motors
. again . .) = When a task wants to use the motors, execute
= While check_sensors is sleeping, move_square() is following code:
still running; so when check_sensors wakes up until (semaph'ore ==0);
move_square() drives it forward into obstacle again semaphore = 1; '
= Both tasks are driving motors at cross purposes /I Use the motors
= One solution: make sure only one task is driving the semaphore = 0;
motors at any time = Program: 10_semaphore
—Program—0—stoppino:
NQC Access Control Access Control Resources
« Setting task priorities for accessing resources . Motors: ACQUIRE_OUT_A
= Automates and generalizes the idea of semaphores _ SameforBandC
= Allows a task to request ownership of a resource = Speaker:
— Motor, speaker, or a user-defined resource — ACQUIRE_SOUND
= Code in a task:

acquire(list of resources)
{ body } // If resource is not owned by a higher -priority task
/l the task gets the resource & the body executes
catch
{ } Il'fresource is owned or taken away by a higher-
1/ priority task, this task doesn't get the resource
/I body doesn't execute, & catch block executes

=« User-defined resources
— ACQUIRE_USER_1
+ Same for 2, 3, 4
— Eachiis like a token
« The task that has it runs
Difference:
— When ownership of motor is lost, default action is to stop motor
— When ownership of speaker is lost, sound is turned off

&

Setting Task Priorities in
Access Control

SetPriority (priroity _level);
— 0to 255
— lower values higher priorities
— Use at the top of a task

= Example program:
— 10_acquire_usr

Event Monitoring

= Like using interrupts instead of polling sensors
= 16 types of events can be monitored and responses
programmed (See NQC documentation for types)
1. Set up event numbers
— i.e., associate event #'s with event sources & types, e.g.,
SetEvent(1, SENSOR_1, EVENT_TYPE_PRESSED);
SetEvent(2, SENSOR_1, EVENT_TYPE_RELEASED);
2. Monitor those events
monitor (EVENT_MASK(1) + EVENT_MASK(2))
{Normal code when events have not occurred}
catch (EVENT_MASK(1))
{event 1 handler code}
catch (EVENT_MASK(2))
{event 2 handler code}

L = Example Pgm: events two touch sensor |

—_——m—————————————————————————————|

Range Event Types & Hysteresis Hysteresis

= Some sensors & event sources need to work
with a range of values
— Want to detect two threshold levels

— E.g., light sensor trying to follow edge of a black zone

* Take black = 40, white = 60
« If sensor is between, go forward
« If > 60 turn back toward black area (one way)
* If < 40, turn away from black area (other way)
= Range events

— Specify upper & lower limit for event with:
« SetUpperLimit(event #, value)
 SetLowerLimit(event #, value)

— EVENT_TYPE_HIGH: when source enters high range

L+ But could have problems with sharp thresholds
Sensors don't react instantaneously and there can be
small errors in the readings (jitter)
< So use different cutoffs for entering and leaving the
normal range
-~ Difference between two thresholds called hysteresis
— Example w/o hysteresis: Upper Limit 60 (spurious value 58->61)
« 52 55 58 60 (Event triggers a desired response) 59 58 61 57
(spurious 61 reading triggers another undesired response)
— Same example with a hysteresis of 5:
« 52 55 58 60 (Event triggers desired response) 58 61
(difference < hysteresis so no reaction) 59 58 55 52 49 53 57
62 (Event triggers desired response again)

- Set_Hysteresis(Event #, value)

EVENT TYRE L OW: when-5ource-ontorslowrang

Event hysteresis example program

