

Introduction to BIObot Robot

By Abraham Howell

Outline

- « Introduce BIObot
- « Discuss How to Program & Control BIObot
- « Demonstrate How to Bluetooth Pair with BIObot and Control Using HyperTerminal
- « Introduce & Demo Manual Control GUI
- « Examine Manual Control GUI Source Code

BIObot's Specifications

- « Autonomous roBot controller, A.B.E., is the “heart and brains” of BIObot. A specially designed firmware resides in the PIC18F452 so that BIObot can be controlled using simple asynchronous serial commands (ASCII Chars).
- « (5)-Infrared (IR) Sensors, (2)-Light Sensors, and (2)-Low cost quadrature wheel encoders.
- « Read/write passive Radio Frequency Identification (RFID) tags.
- « Extended digital I/O and I₂C is available for the connection of additional sensors.

BIObot Robot

BIObot Front View

BIObot Rear View

Sharp GP2D120 IR Sensor

- Capable of sensing objects 1.5"-12" away.
- Returns a varying output voltage 0-5 volts.
- PIC's analog to digital (A/D) hardware converts output voltage to an 8-bit number.
- This 8-bit number can be correlated to a detection distance in inches, feet, cm, m, etc...

Light Sensors

- Consist of a cadmium sulfide (CDS) cell placed into a voltage divider with an appropriately sized second resistor.
- Output of voltage divider returns 0-5 volts and is converted to an 8-bit number using PIC's A/D hardware.
- A larger 8-bit value corresponds to bright light, while smaller values indicate dark conditions.
- Can be used for light tracking or avoidance behaviors.

Battery Voltage Circuit

- Output from battery pack is connected to a voltage divider with appropriately sized resistors so that the battery voltage is mapped to the range of 0-5 volts.
- PIC's A/D hardware converts this to an 8-bit value.

$$V_{in} \rightarrow R_1 = 4.7k \parallel R_2 = 2.7k \rightarrow GND$$

$$V_{out} = (8\text{-bit A/D value}) * (7.4k * 5V) / (2.7k * 255)$$

Recharge batteries if voltage falls below 6.90 volts (128).

WW02 Encoders

- Provide two 0-5 volt signals; a 25us clock and direction signal which are captured by the PIC.
- There are a total of 128 encoder transitions per wheel rotation and the wheel diameter is 2.621".
- PIC uses this information to perform Proportional, Integral, and Derivative (PID) position and velocity control.

RFID Module

- PIC communicates with RFID module using a software UART.
- Read/Write 125 KHz Passive Tags. Read range is about 0 - 4".
- Tag contains a total of eight 4-byte storage blocks.
- Only block# 's 3, 4, 5, 6, and 7 can be used to store data.
- Currently, Biobot only reads/writes block#3.
- Example: Write -> "abcd" then Read -> "61626364"

Configure HyperTerminal

Configure COM Port

Select Properties

Configure HyperTerminal

Select Settings Tab

Configure connection settings

Configure HyperTerminal

Exit Settings

Open connection

Demo HyperTerminal and Manual Control Center Software

Questions?

