Scan Conversion Algorithms for 2D Output Primitives

Types of Primitives to be Scan Converted

- Straight Lines
- Polygons
- Circles
- Ellipses and Other 2-D Curves
- Text (Characters)
Scan Conversion Algorithms for Drawing Straight Lines

- **Task**
 - Given pixel coordinates of endpoints
 - P1 \((x_1, y_1)\) and P2 \((x_2, y_2)\)
 - Determine which pixels need to be painted

- **Criteria**
 - Straight as possible between endpoints
 - Constant density (no gaps or bunching)
 - Density independent of orientation
 - **Must be fast**

Line Equations

- **Differential equation:**
 \[
 \frac{dy}{dx} = m \quad (m=\text{constant: the slope})
 \]
- **Integrate (indefinite)**
 \[
 y = mx + \text{constant}
 \]
 The constant \((b)\) is called y intercept
 (value of \(y\) when \(x=0\))
- \(y = mx + b\)
- “slope-intercept” form
Integrate between endpoints (definite)-->
\[(y_2 - y_1) = m*(x_2 - x_1)\]
\[m = (y_2 - y_1)/(x_2 - x_1)\]
(an operational definition of slope)

Integrate between endpoint \((x_1, y_1)\) and arbitrary point to be plotted \((x, y)\) -->
\[y - y_1 = m*(x-x_1)\]
\[y = m*(x-x_1) + y_1\]
This is the “point-slope” form
– Compute points \((x,y)\) given a point \((x_1,y_1)\) and the slope of the line

Parametric Form
Express \(x\) and \(y\) linearly in terms of a parameter, \(t\)
\[x = ax*t + bx\]
\[y = ay*t + by\]
ax, bx, ay, by are constants to be determined
Let \(t\) range between \(t=0\), endpoint \((x_1,y_1)\) and \(t=1\), endpoint \((x_2,y_2)\)
Determining the constants: Use endpoint values
\[x_1 = ax*0 + bx \implies bx = x1\]
\[x_2 = ax*1 + bx \implies ax = x2-x1\]
So \[x = (x_2-x_1)*t + x_1, \quad 0<=t<=1\]
And \[y = (y_2-y_1)*t + y_1\]
Brute Force Line-Drawing Algorithm

Use “point-slope” form

Step in x direction, assume x2 > x1
(if x2 > x1, swap the points)

Compute \(m = \frac{y2-y1}{x2-x1} \)

\(\text{num-pts} = x2-x1+1 \)

\(x = x1 \)

Repeat num-pts times

\(y = m(x-x1) + y1 \)

SetPixel(x, round(y))

\(x = x+1 \)

Problem if \(|y2-y1| > |x2-x1|\) --> gaps

Solution: Step in y direction

\((1,0)\) to \((6,4)\)
\(n = 6-1+1 = 6\)

\(x2-x1 = 5\)
\(y2-y1 = 4\)
no gaps!

\((1,0)\) to \((3,6)\)
\(n = 3-1+1 = 3\)

\(x2-x1 = 2\)
\(y2-y1 = 6\)
gaps!
Stepping in y direction

If \(|y_2-y_1| > |x_2-x_1|\), step in y, assume \(y_2 > y_1\)
(if \(y_1 > y_2\), swap the points):
Compute \(\text{inv}_m = (x_2-x_1)/(y_2-y_1)\)
\(\text{num-pts} = y_2-y_1+1\)
\(y = y_1\)
Repeat \(\text{num-pts}\) times
\(x = \text{inv}_m(y-y_1) + x_1\)
SetPixel(round(x), y)
\(y = y+1\)

Brute Force line algorithm, continued

- Vertical lines \((x_2 = x_1)\)
 \(y = y+1\) for each new pixel
 \(x\) doesn’t change
- Horizontal lines \((y_2 = y_1)\)
 \(x = x + 1\)
 \(y\) doesn’t change
Brute Force Method is Too Slow

- Each iteration has:
 - floating point multiply
 - floating point add
 - round() operations

Incremental Methods--The Digital Differential Analyzer (DDA)

- Idea: get new point from previous point
- \(\frac{dy}{dx} = m \Rightarrow \Delta y/\Delta x = m \Rightarrow \Delta y = m \times \Delta x \)
- But \(\Delta y = y_{\text{new}} - y_{\text{old}} \)
- And \(\Delta x = x_{\text{new}} - x_{\text{old}} \)
 - So \(x_{\text{new}} = x_{\text{old}} + \Delta x \)
 - and \(y_{\text{new}} = y_{\text{old}} + \Delta y \)
 - i.e., \(y_{\text{new}} = y_{\text{old}} + m \times \Delta x \)
DDA, continued

- Choose $\Delta x = 1$
 - stepping in x direction
 - Pixel by pixel
- Then compute each new y value
 $$y_{new} = y_{old} + m$$

DDA Algorithm

stepping in x, $x_2 > x_1$
(If $x_1 > x_2$, swap the points)

Compute $m = (y_2 - y_1)/(x_2 - x_1)$

num-pts = $x_2 - x_1 + 1$

x = x_1
y = y_1

Repeat num-pts times
 SetPixel(x, round(y))
 $x = x + 1$
y = $y + m$
• As for the Brute force method, if $|m|>1$ and we step in x, we get gaps
 – So we can step in y

• DDA Algorithm, stepping in y, $y_2 > y_1$
 – (if $y_1 > y_2$, swap the points):
 Compute $inv_m = (x_2-x_1)/(y_2-y_1)$
 $num-pts = y_2-y_1+1$
 $x = x_1$
 $y = y_1$
 Repeat $num-pts$ times
 SetPixel(round(x),y)
 $y = y+1$
 $x = x+inv_m$

DDA is Better, but Still Not Fast Enough

• Floating point multiply gone from loop
• But loop still has a floating point add
• And a round()
• WE CAN DO BETTER!
• Best performance:
 – Only integer adds/subtracts inside loop
Bresenham's Line-drawing Algorithm

- Used in most graphics packages
- Often implemented in hardware
- Incremental (new pixel from old)
- Uses only integer operations

Basic Idea of Bresenham Algorithm:
- All lines can be placed in one of four categories:
 A. Steep positive slope (m > 1)
 B. Gradual positive slope (0 < m <= 1)
 C. Steep negative slope (m < -1)
 D. Gradual negative slope (0 >= m >= -1)
- In each case, there are only 2 choices for the next pixel to be plotted!
The Four Bresenham Cases

- Look at Case-A (Steep positive slope)
- Also assume P1 is to the left of P2 (x1<x2)
 - If not true, points can be swapped
- \(\text{delta}_y > \text{delta}_x \Rightarrow \) stepping in y
If $dl < dr$,
- Pl is closer to actual point than Pr
- i.e., if $dl - dr < 0$, choose "left" pixel
- Criterion for choosing "left" pixel (Pl) is:

 $$dl - dr = r' - r - (r+1 - r') < 0$$

 or:

 $$dl - dr = 2*r' - 2*r - 1 < 0$$
But from the equation for a straight line:

\[y = m \times x + b \]
New \(y = s+1 \)
\[s+1 = (\Delta y/\Delta x) \times r' + b \]
\[r' = (s+1-b) \times \Delta x/\Delta y \]

So:
Criterion for choosing Pl:
\[dl-dr = 2 \times r' - 2 \times r - 1 < 0 \]
\[dl-dr = 2 \times (s+1-b) \times \Delta x/\Delta y - 2 \times r - 1 < 0 \]

Result:
\[dl-dr = 2 \times (s^* + 1 - b) \times \Delta x/\Delta y - 2 \times r - 1 < 0 \]
If \(dl-dr \) is negative, choose "left" pixel
Multiply by \(\Delta y \) to get rid of divide operation
(always positive for Case-A lines)
Call result the "predictor", \(P \)
\[P = \Delta y \times (dl-dr) \]
Result:
\[P = 2 \times \Delta x \times (s+1-b) - 2 \times r \times \Delta y - \Delta y \]
Divide is gone--but it's still too complex
Bresenham's Contribution

- Try to find a recurrence relation for P
- Call P_n the new value, and P_0 the old value
 - Then $P_n = P_0 + \Delta P$
- Call s_n & s_0 the new & old values of s
- Call r_n & r_0 the new & old values of r

Predictor P:
$$P = 2^*\Delta x^*(s+1-b) - 2^*r^*\Delta y - \Delta y$$

Change in Predictor:
$$\Delta P = P_n - P_0$$
$$P_n = P_0 + \Delta P$$

Point just plotted: (r_0,s_0)

Two cases for new point:
- Left case ($r_n=r_0$ and $s_n=s_0+1$)
- Right case ($r_n=r_0+1$ and $s_n=s_0+1$)

For both cases:
$$P_0 = 2^*\Delta x^*(s_0+1-b) - 2^*r_0^*\Delta y - \Delta y$$
Predictor P: $P=2^* \Delta x^*(s+1-b) - 2^*r^*\Delta y - \Delta y$

New Point Left Case $(ro, so+1)$:

$P_n = 2^* \Delta x^*((so+1)+1-b) - 2^*ro^*\Delta y - \Delta y$
$P_o = 2^* \Delta x^*(so+1-b) - 2^*ro^*\Delta y - \Delta y$

Subtracting P_o from P_n gives ΔP

Result:

$\Delta P = 2^*\Delta x$

New Point Right Case $(ro+1, so+1)$:

$P_n = 2^* \Delta x^*((so+1)+1-b) - 2^*(ro+1)^*\Delta y - \Delta y$
$P_o = 2^* \Delta x^*(so+1-b) - 2^*ro^*\Delta y - \Delta y$

Again subtracting P_o from P_n gives ΔP:

$\Delta P = 2^*(\Delta x - \Delta y)$

- Both results are very simple (Integers!!)
- Look at current value of the predictor:
 - If ($P < 0$) // left case
 $P = P + 2^*\Delta x$
 $x = x$
 $y = y + 1$
 - If ($P>0$) // right case
 $P = P + 2^*(\Delta x-\Delta y)$
 $x = x + 1$
 $y = y + 1$
But to start things off, we need an initial value P_0 of the predictor

Substitute left-hand endpoint (x_1,y_1) into predictor definition:

$$P = 2\Delta x(s+1-b) - 2r\Delta y - \Delta y$$

\Rightarrow

$$P_0 = 2\Delta x(y_1+1-b) -2x_1\Delta y - \Delta y$$

And use fact that (x_1,y_1) is on line:

i.e., $y_1 = (\Delta y/\Delta x)x_1 + b$

$$P_0= 2\Delta x^*(\Delta y/\Delta x)x_1 + b +1 - b) -2x_1\Delta y - \Delta y$$

$$P_0=2\Delta yx_1 + 2\Delta x -2x_1\Delta y - \Delta y$$

Result: $P_0 = 2\Delta x - \Delta y$

Case-A Bresenham Algorithm

(Steep positive slope)

If $(x_1>x_2)$ swap endpoints;

$\text{del}_x = x_2-x_1; \; \text{del}_y = y_2-y_1;$

$P = 2\text{del}_x - \text{del}_y;$

$c\left\text{left} = 2\text{del}_x; \; c\text{right} = 2\text{del}_x - 2\text{del}_y;$

$x = x_1; \; y = y_1; \; \text{num}_pts = |\text{del}_y| + 1;$

Repeat num_pts times

SetPixel(x,y); $y = y + 1$;

If $(P < 0)$

$P = P + c\left\text{left}$;

Else

${P = P + c\text{right}; \; x = x + 1;}$
• Can be generalized to handle Case-C (steep negative slope) lines
• Compute $sdy = \text{sign}(\Delta y)$
 $= 1 \quad \text{if } y_2 > y_1$
 $= -1 \quad \text{if not}$
• Then, in definition of P and $cright$:
 \begin{itemize}
 \item Replace Δy with $sdy^*\Delta y$
 \item Replace $y = y + 1$ with $y = y + sdy$
 \end{itemize}
• Then both Case-A and Case-C lines are handled

More Info on Bresenham Line-drawing Algorithm

• See Hearn & Baker Text Book
• Section 3-1 (pages 88-95)
• Specifically Case-B lines
Speeding Up Bresenham

- Bresenham’s algorithm calls SetPixel()
- Not optimized
 - SetPixel(x,y) must work for any pixel
 - For W x H screen, Address = W*y + x
 - Multiply involved (even though hidden)
- Bresenham: We know next pixel is one of two choices
- Faster to access frame buffer directly using addresses -- not values of x and y

Assume Row major order
Take advantage of symmetry
Store addresses instead of coordinates (x,y)

Example: W x H x 256 direct color mode
- One byte per pixel
 - Byte Address = W*y + x
 - Look at Case A (gradual +m)
- Only integer add needed
Case A Line (gradual +m)

- Aliasing (Jaggies) is inherent in Raster Scan systems.
- Anti-aliasing technique for grayscale:
 - Consider broad line covering several pixels.
 - Border pixels:
 - Set intensity proportional to % of pixel inside line.
 - Produces blurring.
 - Looks less jagged.
 - But must compute areas (computation intensive).
 - Can use statistical sampling instead.
Polyline (POINT *p, int n)
{
 int xo, yo, xn, yn;
 if (n==0) return;
 xo=p[0].x; yo=p[0].y;
 if (n==1) {SetPixel(xo, yo); return;}
 for (i=1; i<n; i++)
 {xn=p[i].x; yn=p[i].y;
 Line(xo,yo,xn,yn);
 xo=xn; yo=yn;}
}
Calling the Polyline Algorithm

POINT pt[3];
pt[0].x=50; pt[0].y=10;
pt[1].x=250; pt[1].y=50;
pt[2].x=125; pt[2].y=130;
Polyline(pt,3);

Scan Converting Circles

Given:
Center: (h,k)
Radius: r

Equation:
\[(x-h)^2 + (y-k)^2 = r^2\]

To simplify we'll translate origin to center
Simplified Equation:
\[x^2 + y^2 = r^2\]
Circle has 8-fold symmetry
So only need to plot points in 1st octant
\(\Delta x > \Delta y \) so step in x direction

Brute Force Circle Algorithm

Suppose we have a Set8pixel() routine
\[x_{\text{fin}} = 0.707 \times r \]
For (x=0; x<=xfin ; x++)
{
 y = \sqrt{r^2 - x^2};
 Set8Pixel(round(x), round(y));
}
TOO SLOW!!
The Set8Pixel(x,y) routine

SetPixel(x,y);
SetPixel(x,-y);
SetPixel(-x,y);
SetPixel(-x,-y);
SetPixel(y,x);
SetPixel(y,-x);
SetPixel(-y,x);
SetPixel(-y,-x);

Could Use Parametric Equations

for (theta=90; theta>=45; theta- -)
{
 x = r*cos(theta);
 y = r*sin(theta);
 Set8Pixel(round(x), round(y));
}

EVEN SLOWER!
DDA Circle Approximation

\[x^2 + y^2 = r^2 \]

Take Derivative:
\[2x + 2y \frac{dy}{dx} = 0 \]
\[dy = \frac{-x}{y} dx \]
Step in x direction (dx=1)
\[dy = \frac{-x}{y} \]
\[y = y + dy \text{ (approximation)} \]

DDA Circle Algorithm

\[x=0; \ y=r; \]
\[x_{\text{fin}}=0.707*r; \]

while \(x \leq x_{\text{fin}} \)

\{
 \text{Set8Pixel(} \text{round} (x), \text{ round} (y));
 y = y - \frac{x}{y};
 x = x + 1;
\}

Floating Pt. Divide--STILL TOO SLOW!
Midpoint Circle Algorithm

- Extension of Bresenham ideas
- Circle equation: \(x^2 + y^2 = r^2 \)
- Define a circle function:
 \[f = x^2 + y^2 - r^2 \]
- \(f=0 \implies (x,y) \text{ is on circle} \)
- \(f<0 \implies (x,y) \text{ is inside circle} \)
- \(f>0 \implies (x,y) \text{ is outside circle} \)

- We’ve just plotted \((x_k,y_k)\)
- \((\Delta x > \Delta y)\), so we’re stepping in \(x\)
- Next pixel is either:
 - \((x_k + 1, y_k)\) -- the “top” case or
 - \((x_k + 1, y_k-1)\) -- the “bottom” case
- Look at midpoint
Midpoint Circle Choices

- Evaluate f at midpoint $(x=x_k+1, y=y_k-1/2)$
- Define Predictor: $P_k = f(x_k+1, y_k-1/2)$
 - $P_k < 0$ ==> inside (choose top pixel)
 - $P_k > 0$ ==> outside (choose bottom pixel)
 - $P_k = (x_k+1)^2 + (y_k-1/2)^2 - r^2$
- $P_k = x_k^2 + 2x_k +5/4 +y_k^2 -y_k - r^2$
- As for Bresenham, try to get a recurrence relation for P
Top Case (\(x_{k+1} = x_k + 1, \ y_{k+1} = y_k\)):

\[P_{k+1} = f(x_{k+1} + 1, \ y_{k+1} - 1/2) \]

But \(x_{k+1} = x_k + 1\) and \(y_{k+1} = y_k\)

So \(P_{k+1} = ((x_{k+1} + 1)^2 + (y_k - 1/2)^2 - r^2 \]

\[P_{k+1} = (x_k + 2)^2 + (y_k - 1/2)^2 - r^2 \]

\[P_{k+1} = x_k^2 + 4x_k + 4 + y_k^2 - y_k + 1/4 - r^2 \]

But, \(P_k = x_k^2 + 2x_k + 5/4 + y_k^2 - y_k - r^2 \)

\[\Delta P_k = P_{k+1} - P_k \]

So \(\Delta P_k = 2x_k + 3\), But \(x_{k+1} = x_k + 1\)

So \(\Delta P_k = 2x_k + 1\)

Bottom Case (\(x_{k+1} = x_k + 1, \ y_{k+1} = y_k - 1\)):

\[P_{k+1} = f(x_{k+1} + 1, \ y_{k+1} - 1/2) \]

\[P_{k+1} = ((x_{k+1} + 1)^2 + ((y_k - 1) - 1/2)^2 - r^2 \]

\[P_{k+1} = ((x_{k+1} + 1)^2 + ((y_k - 1) - 3/2)^2 - r^2 \]

\[P_{k+1} = x_k^2 + 4x_k + 4 + y_k^2 - 3y_k + 9/4 - r^2 \]

But \(P_k = x_k^2 + 2x_k + 5/4 + y_k^2 - y_k - r^2 \)

\[\Delta P_k = P_{k+1} - P_k \]

So \(\Delta P_k = 2x_k - 2y_k + 5\)

\[\Delta P_k = 2(x_{k+1} - y_{k+1}) + 1 \]
• Initial P:

\[P_0 (x_0=0, y_0=r) \]
\[P_0 = (x_0 + 1)^2 + (y_0 - 1/2)^2 - r^2 \]
\[P_0 = 5/4 - r \quad \rightarrow \quad 1-r \quad \text{(rounding to integer)} \]

Midpoint Circle Algorithm

```plaintext
x=0; y=r;   P=1-r;
Set8Pixel(x,y);
while (x<y)
{
    x = x + 1; Set8Pixel(x,y);
    if (P < 0)
        P = P + x<<1 + 1;
    else
        { y = y - 1; P = P + (x-y)<<1 + 1;}
}
```