• Hidden Surface Removal
 • Back Face Culling
• 3D Surfaces
 • Bicubic Parametric Bezier Surface Patches
• 3D Graphics with OpenGL

Back-Face Culling

• Define one side of each polygon to be the visible side
 – That side is the outward-facing side
• Defining each polygon in the polygons array:
 – Systematically number vertices in counter-clockwise fashion as seen from outside of the object
First: Review of Vector Products

- Dot (Scalar) Product
 \[s = A \cdot B \]
 \[s = |A| \cdot |B| \cdot \cos(\theta) \]
 \(\theta \) is the angle between vectors A and B

 In terms of components (RH coord system):
 \[s = Ax*Bx + Ay*By + Az*Bz \]

- Cross (Vector) Product
 \(V = A \times B \), a vector
 - Magnitude: \(|V| = |A| \cdot |B| \cdot \sin(\theta) \)
 \(\theta \) is angle between vectors A and B
 - Direction: Given by right-hand rule
 - 1. Align fingers of right hand with first vector
 - 2. Rotate toward second
 - 3. Thumb points in direction of V
In the following diagram:
\[V = A \times B \] would point out of the screen toward the observer.

In terms of components (RH coordinate system):
\[
\begin{vmatrix}
 i & j & k \\
 Ax & Ay & Az \\
 Bx & By & Bz \\
\end{vmatrix}
\]
(a determinant)

\(i, j, k \) are unit vectors along x,y,z axes

Triple Product

\[
A \cdot (B \times C) = \begin{vmatrix}
 Ax & Ay & Az \\
 Bx & By & Bz \\
 Cx & Cy & Cz \\
\end{vmatrix}
\]
Determinant

(Components in terms of RH coord system)
Back-Face Culling

- Consider triangle with vertices 0, 1, 2
- Visible side of the triangle: 0,1,2
 - Vertices numbered in counter-clockwise order
 - Invisible side is: 0,2,1
 - (clockwise vertex ordering)

![Diagram of a triangle with vertices 0, 1, 2]

- Define vector N
 - Outward normal to triangle
- Define Vector V_0
 - Vector from observer to vertex 0
- Some Cases:
 - N and V_0 nearly parallel ($V_0 \cdot N = 1$)
 - Visible side of triangle 0 1 2 invisible to viewer

![Diagram showing viewpoint, V_0, and N]
• Rotate triangle about side 01 by 90 degrees
 – Now N and V0 are perpendicular (V0 · N = 0)
 – Triangle is about to become visible
 – At all other points between these two orientations:
 • V0 · N is positive
 • And triangle is invisible to viewer

• Continue rotation about side 01
• Triangle becomes visible to the viewer
• 90 degrees more, N and V0 are antiparallel
 V0 · N = -1
 Triangle facing toward viewer and is visible
 – At all intermediate orientations:
 • Triangle is visible
 • And V0 · N is negative
Criterion for Invisibility

- If \(V_0 \cdot N > 0 \), triangle 012 is invisible
- Now place triangle 012 in an arbitrary position relative to viewer V

Outward normal \(N \) is vector (cross) product of \(V_{01} \) and \(V_{02} \)

- \(V_{01} = V_1 - V_0 \)
- \(V_{02} = V_2 - V_0 \)

So: \(N = V_{01} \times V_{02} \)

Criterion for invisibility:
\(V_0 \cdot (V_{01} \times V_{02}) > 0 \)

But:
\(V_{01} = V_1 - V_0 \)
\(V_{02} = V_2 - V_0 \)
• Substituting we get:
 \[V_0 \cdot [(V_1 - V_0) \times (V_2 - V_0)] > 0, \text{ invisibility} \]
• Expanding:
 \[V_0 \cdot (V_1 \times V_2) - V_0 \cdot (V_1 \times V_0) - V_0 \cdot (V_0 \times V_2) + V_0 \cdot (V_0 \times V_0) > 0 \]
• Last Term = 0
 (Cross product of any vector with itself = 0)
• Middle two terms:
 Quantity inside () is a vector perpendicular to \(V_0 \)
 So dot product of either vector with \(V_0 \) is 0

So: \[V_0 \cdot (V_1 \times V_2) > 0 \]
 – For right-handed coordinate system, triple product can be expressed as a determinant
 \[
 \begin{vmatrix}
 X_0 & Y_0 & Z_0 \\
 X_1 & Y_1 & Z_1 \\
 X_2 & Y_2 & Z_2
 \end{vmatrix}
 \]
 \[V_0 \cdot (V_1 \times V_2) = \begin{vmatrix}
 X_0 & Y_0 & Z_0 \\
 X_1 & Y_1 & Z_1 \\
 X_2 & Y_2 & Z_2
 \end{vmatrix} \]
• \((X_0,Y_0,Z_0), (X_1,Y_1,Z_1), (X_2,Y_2,Z_2)\) are viewing coordinates \((xv,yv,zv)\) of vertices 0, 1, and 2
• But viewing coordinate system is left-handed
• So sign of the determinant must be reversed
Final Criterion for Invisibility

\[
\begin{vmatrix}
X_0 & Y_0 & Z_0 \\
X_1 & Y_1 & Z_1 \\
X_2 & Y_2 & Z_2
\end{vmatrix} < 0
\]

- Result can be applied to any planar polygon
- Use viewing coordinates of three consecutive polygon vertices
- Could implement as a “visibility” function
 - Computes and returns value of determinant
 - Positive means visible, negative invisible

3-D Surfaces

- Explicit Representation
 \[z = f(x, y) \]
- Plotting
 - Fix values of \(y \) and vary \(x \)
 - Gives a family of curves
 - \(z_0 = f(x, 0) \)
 - \(z_1 = f(x, \delta) \)
 - \(z_2 = f(x, 2\delta) \)
 - \(z_3 = f(x, 3\delta) \)
 - etc.
Plotting 3D Surfaces, continued

- Then fix values of x and vary y
- Gives another family of curves
 \[z_0' = f(0,y) \]
 \[z_1' = f(\delta,y) \]
 \[z_2' = f(2\delta,y) \]
 \[z_3' = f(3\delta,y) \]
 etc.

Plotting 3D Surfaces, continued

- Result is a wireframe that represents the surface
- Could be broken up into polygons
Parametric Representation of 3D Surfaces

- Need two parameters, say \(t \) and \(s \)
- \(x = x(t,s), \; y = y(t,s), \; z = z(t,s) \)
- both \(t \) and \(s \) vary over a range (0 to 1)

To plot:
- Fix values of \(s \) and for each vary \(t \) over range
 - gives one family of isoparametric curves
- Fix values of \(t \) and for each vary \(s \) over range
 - gives another family of isoparametric curves

Cubic Bezier Curves (Review)

- In matrix form, points on curve \(P \) [\(P = x,y \)] are given in terms of parameter \(t \) and four control points \(P_0, P_1, P_2, P_3 \)
- Result:
 \[P = a*t^3 + b*t^2 + c*t + d, \quad 0 \leq t \leq 1 \]
 - Can be written in a more compact form:
 \[P = T \cdot B_g \cdot P_c \]
 - \(T \): row vector of parameter powers [\(t^3 \; t^2 \; t \; 1 \)]
 - \(B_g \): the constant 4 \(\times \) 4 Bezier Geometry matrix
 - \(P_c \): column vector of the control points
Bicubic Bezier Surface Patches

- Define 4-vectors S and T:

 $$S = \begin{bmatrix} s^3 & s^2 & s & 1 \end{bmatrix}, \quad 0 \leq s \leq 1$$

 $$T = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix}, \quad 0 \leq t \leq 1$$

- Define points on surface patch $Q(s,t)$ [$Q = x,y,z$] as:

 $$Q(s,t) = S \cdot M_B \cdot \begin{bmatrix} P_0(t) \\ P_1(t) \\ P_2(t) \\ P_3(t) \end{bmatrix}$$

Control points P_0, P_1, P_2, P_3 are themselves parameterized by t

M_B is the Bezier Geometry Matrix we’ve seen before

So $P_0(t) = T \cdot M_B \cdot \begin{bmatrix} P_{00} \\ P_{01} \\ P_{02} \\ P_{03} \end{bmatrix}$

Transposing:

$$P_0(t) = \begin{bmatrix} P_{00} & P_{01} & P_{02} & P_{03} \end{bmatrix} \cdot M_B^T \cdot T^T$$

Do the same for $P_1(t)$, $P_2(t)$, $P_3(t)$

Result:

$$Q(s,t) = S \cdot M_B \cdot \begin{bmatrix} P_{00} & P_{01} & P_{02} & P_{03} \\ P_{10} & P_{11} & P_{12} & P_{13} \\ P_{20} & P_{21} & P_{22} & P_{23} \\ P_{30} & P_{31} & P_{32} & P_{33} \end{bmatrix} \cdot M_B^T \cdot T^T$$
A Bicubic Bezier Surface Patch

Expanding and Rearranging Terms -- x(s,t) Equation

\[x(s,t) = (1-s)^2 \left[x_{s0}(1-t)^2 + 3x_{s1}(1-t)^2 t + 3x_{s2}(1-t)t^2 + x_{s3}t^2 \right] \\
+ 3(1-s)s \left[x_{s0}(1-t)^2 + 3x_{s1}(1-t)^2 t + 3x_{s2}(1-t)t^2 + x_{s3}t^2 \right] \\
+ 3(s-s^2) \left[x_{s0}(1-t)^2 + 3x_{s1}(1-t)^2 t + 3x_{s2}(1-t)t^2 + x_{s3}t^2 \right] \\
+ 3(s-1)^2 \left[x_{s0}(1-t)^2 + 3x_{s1}(1-t)^2 t + 3x_{s2}(1-t)t^2 + x_{s3}t^2 \right] \\
+ 2\sqrt{s(1-s)} \left[x_{s0}(1-t)^2 + 3x_{s1}(1-t)^2 t + 3x_{s2}(1-t)t^2 + x_{s3}t^2 \right] \\
+ (1-t)^2 \left[x_{t0} s^2 + 3x_{t1} s^2 t + 3x_{t2} s^2 t^2 + x_{t3} s^2 t^2 \right] \\
+ 2(1-t)t \left[x_{t0} s^2 + 3x_{t1} s^2 t + 3x_{t2} s^2 t^2 + x_{t3} s^2 t^2 \right] \\
+ (1-t) 3s \left[x_{t0} s^2 + 3x_{t1} s^2 t + 3x_{t2} s^2 t^2 + x_{t3} s^2 t^2 \right] \\
+ 3t \left[x_{t0} s^2 + 3x_{t1} s^2 t + 3x_{t2} s^2 t^2 + x_{t3} s^2 t^2 \right] \\
+ 3t^2 \left[x_{t0} s^2 + 3x_{t1} s^2 t + 3x_{t2} s^2 t^2 + x_{t3} s^2 t^2 \right] \\
+ 9t^2 \left[x_{t0} s^2 + 3x_{t1} s^2 t + 3x_{t2} s^2 t^2 + x_{t3} s^2 t^2 \right] \]

- Similar equation for y(s,t)
Plotting One Set of Isoparametric Curves

For \(s=0; s<=1; s+=\delta\)
- Compute & store \(x(s,0), y(s,0), z(s,0)\)
- Project to screen and store \(--> xs(s,0), ys(s,0)\)
 MoveTo(xs(s,0), ys(s,0))
 For \(t=0; t<=1; t+=\delta\)
 - Compute & store \(x(s,t), y(s,t), z(s,t)\)
 - Project to screen and store \(--> xs(s,t), ys(s,t)\)
 - LineTo(xs(s,t), ys(s,t))

Plotting the Other Set of Isoparametric Curves

For \(t=0; t<=1; t+=\delta\)
- MoveTo(xs(0,t), ys(0,t))
For \(s=0; s<=1; s+=\delta\)
 - LineTo(xs(s,t), ys(s,t))
Introduction to 3D Graphics with OpenGL

3D Graphics Using OpenGL

- Building Polygon Models
- ModelView & Projection Transformations
- Quadric Surfaces
- User Interaction
- Hierarchical Modeling
- Animation
OpenGL 3D Coordinate System

- A Right-handed coordinate system
 - Viewpoint is centered at origin initially

![3D Coordinate System Diagram]

Defining 3D Polygons in OpenGL

- e.g., front face of a cube

```cpp
glBegin(GL_POLYGON)
glVertex3f(-0.5f, 0.5f, 0.5f);
glVertex3f(-0.5f, -0.5f, 0.5f);
glVertex3f(0.5f, -0.5f, 0.5f);
glVertex3f(0.5f, 0.5f, 0.5f);
glEnd();
```

- need to define the other faces
Projection Transformation

- First tell OpenGL you’re using the projection matrix
 `glMatrixMode(GL_PROJECTION);`
- Then Initialize it to the Identity matrix
 `glLoadIdentity();`
- Then define the viewing volume, for example:
 `glFrustum(-1.0, 1.0, -1.0, 1.0, 2.0, 7.0);`
 - (left, right, bottom, top, near, far)
 - near & far are positive distances, near < far
 - Viewing volume is the frustum of a pyramid
 - Used for perspective projection
 or `glOrtho(-1.0, 1.0, -1.0, 1.0, 2.0, 7.0);`
 - Viewing volume is a rectangular solid
 - for parallel projection
- For both the viewpoint (eye) is at (0,0,0)

The Viewing Volume

- Everything outside viewing volume is clipped
- Think of near plane as being window’s client area
Modelview Transformation

Our cube is not visible
It lies in front of near clipping plane

Positioning the Camera

- By default it’s at (0,0,0), pointing in –z direction, up direction is y-axis
- Can set the camera point
- And the “lookat” point
- And the up direction

```
gluLookAt(xc,yc,zc,xa,ya,za,xu,yu,zu);
```

(xc,yc,zc) coordinates of virtual camera
(xa,ya,za) coordinates of lookat point
(xu,yu,zu) up direction vector

- Example:

```
gluLookAt(2.0,2.0,2.0,0.0,0.0,0.0,0.0,0.0,1.0);
```

camera at (2,2,2), looking at origin, z-axis is up
Modelview Transformation

- Used to perform geometric translations, rotations, scalings
- Also implements the viewing transformation
- If we don’t position the camera, we need to move our cube into the viewing volume
  ```
glMatrixMode(GL_MODELVIEW);
gLoadIdentity();
glTranslate(0.0f, 0.0f, -3.5f);
  ```
 - Translates cube down z-axis by 3.5 units

- OpenGL performs transformations on all vertices
- First modelview transformation
- Then projection transformation
- The two matrices are concatenated
- Resulting matrix multiplies all points in the model
OpenGL Geometric Transformations

- “Modeling” Transformations

```c
glScalef(2.0f, 2.0f, 2.0f); // twice as big
   parameters: sx, sy, sz
```

```c
glTranslatef(2.0f, 3.5f, 1.8f); // move object
   parameters: tx, ty, tz
```

```c
glRotatetf(30.0f, 0.0f, 0.0f, 1.0f); // 30 degrees about z-axis
   parameters:
   – angle
   – (x,y,z) -> coordinates of vector about which to rotate
```

OpenGL Composite Transformations

- Combine transformation matrices
- Example: Rotate by 45 degrees about a line parallel to the z axis that goes through the point (xf,yf,zf) – the fixed point
  ```c
  glMatrixMode(GL_MODELVIEW);
  glLoadIdentity();
  glTranslate(xf,yf,zf);
  glRotate(45, 0.0,0.0,1.0);
  glTranslate(-xf,-yf,-zf);
  ```

- **Note last transformation specified is first applied**
 – Because each transformations in OpenGL is applied to present matrix by postmultiplication
Typical code for a polygon mesh model

```c
glMatrixMode(GL_PROJECTION);
gLoadIdentity();
glFrustum(-1.0, 1.0, -1.0, 1.0, 2.0, 7.0);
glMatrixMode(GL_MODELVIEW);
gLoadIdentity();
glTranslatef(0.0f, 0.0f, -3.5f); // translate into viewing frustum
glRotatef(30.0f, 0.0f, 0.0f, 1.0f); // rotate about z axis by 30
gLClearColor(1.0f, 1.0f, 1.0f, 1.0f); // set background color
glClear(GL_COLOR_BUFFER_BIT); // clear window
glColor3f(0.0f, 0.0f, 0.0f); // drawing color
gLPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
gBegin(GL_POLYGON); //define polygon vertices here
gEnd();
```

- See 3dxform example program

The OpenGL Utility Library (GLU) and Quadric Surfaces

- Provides many modeling features
 - Quadric surfaces
 - described by quadratic equations in \(x,y,z \)
 - spheres, cylinders, disks
 - Polygon Tessellation
 - Approximating curved surfaces with polygon facets
 - Non-Uniform Rational B-Spline Curves & Surfaces (NURBS)
- Routines to facilitate setting up matrices for specific viewing orientations & projections
Modeling & Rendering a Quadric with the GLU

1. Get a pointer to a quadric object
2. Make a new quadric object
3. Set the rendering style
4. Draw the object
5. When finished, delete the object

OpenGL GLU Code to Render a Sphere

GLUquadricObj *mySphere;
mySphere = gluNewQuadric();
gluQuadricDrawStyle(mySphere, GLU_FILL);
 // some other styles: GLU_POINT, GLU_LINE
gluSphere(mySphere, 1.0, 12, 12);
 // radius, # longitude lines, # latitude lines
The GLUT and Quadric Surfaces

- Many predefined quadric surface objects
 - glutWire***()
 - glutSolid***()
 - Some examples:
 - glutWireCube(size); glutSolidCube(size);
 - glutWireSphere(radius,nlongitudes,nlatitudes);
 - glutWireCone(rbase,height,nlongitudes,nlatitudes);
 - glutWireTeapot(size);
 - Lots of others
 - See cone_perspective example program

Interaction in OpenGL

- OpenGL GLUT Callback Functions
 - GLUT’s version of event/message handling
 - Programmer specifies function to be called by OS in response to different events
 - Specify the function by using glut***Func(ftn)
 - We’ve already seen glutDisplayFunc(disp_ftn)
 - disp_ftn called when client area needs to be repainted
 - Like Windows response to WM_PAINT messages
 - All GLUT callback functions work like MFC On***() event handler functions
Some Other GLUT Callbacks

- glutReshapeFunc(ftn(width, height))
 - Identifies function ftn() invoked when user changes size of window
 - height & width of new window returned to ftn()
- glutKeyboardFunc(ftn(key, x, y))
 - Identifies function ftn() invoked when user presses a keyboard key
 - Character code (key) and position of mouse cursor (x, y) returned to ftn()
- glutSpecialFunction(ftn(key, x, y))
 - For special keys such as function & arrow keys

Mouse Callbacks

- glutMouseFunc(ftn(button, state, x, y))
 - Identifies function ftn() called when mouse events occur
 - Button presses or releases
 - Position (x, y) of mouse cursor returned
 - Also the state (GLUT_UP or GLUT_DOWN)
 - Also which button
 - GLUT_LEFT_BUTTON, GLUT_RIGHT_BUTTON, or GLUT_MIDDLE_BUTTON
Mouse Motion

- **Move event**: when mouse moves with a button pressed –
 - `glutMotionFunctionFunc(ftn(x,y))`
 - `ftn(x,y)` called when there's a move event
 - Position `(x,y)` of mouse cursor returned
- **Passive motion event**: when mouse moves with no button pressed
 - `glutPassiveMotionFunctionFunc(ftn(x,y))`
 - `ftn(x,y)` called when there's a passive motion event
 - Position `(x,y)` of mouse cursor returned

GLUT Menus

- Can create popup menus and add menu items with:
 - `glutCreateMenu (menu-ftn(ID))`
 - Menu-ftn(ID) is callback function called when user selects an item from the menu
 - ID identifies which item was chosen
 - `glutAddMenuEntry(name, ID_value)`
 - Adds an entry with name displayed to current menu
 - ID_value returned to menu_ftn() callback
 - `glutAttachMenu(button)`
 - Attaches current menu to specified mouse button
 - When that button is pressed, menu pops up
Hierarchical Models

- In many applications the parts of a model depend on each other
- Often the parts are arranged in a hierarchy
 - Represent as a tree data structure
 - Transformations applied to parts in parent nodes are also applied to parts in child nodes
 - Simple example: a robot arm
 - Base, lower arm, and upper arm
 - Base rotates ➔ lower and upper arm also rotate
 - Lower arm rotates ➔ upper arm also rotates

Simple Robot Arm Hierarchical Model
Use of Matrix Stacks in OpenGL to Implement Hierarchies

- Matrix stacks store projection & model-view matrices
- Push and pop matrices with:
 - `glPushMatrix();`
 - `glPopMatrix();`
- Can use to position entire object while also preserving it for drawing other objects
- Use in conjunction with geometrical transformations
- Example: Robot program

OpenGL Hierarchical Models

- Set up a hierarchical representation of scene (a tree)
- Each object is specified in its own modeling coordinate system
- Traverse tree and apply transformations to bring objects into world coordinate system
- Traversal rule:
 - Every time we go to the left at a node with another unvisited right child, do a push
 - Every time we return to that node, do a pop
 - Do a pop at the end so number of pushes & pops are the same
GLUT Animation

- Simple method is to use an “idle” callback
 - Called whenever window’s event queue is empty
 - Could be used to update display with the next frame of the animation
 - Identify the idle function with:
 - glutIdleFunc(idle_ftn())
 - Simple Example:
    ```
    void idle_ftn()
    {
      glutPostRedisplay();
    }
    ```
 - Posts message to event queue that client area needs to be repainted
 - Causes display callback function to be invoked
 - Effectively displays next frame of animation

Double Buffering

- Use two display buffers
- Front buffer is displayed by display hardware
- Application draws into back buffer
- Swap buffers after new frame is drawn into back buffer
- Implies only one access to display hardware per frame
- Eliminates flicker
- In OpenGL, implement by replacing glFlush() with glutSwapBuffers() in display callback
- In initialization function, must use:
  ```
  glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
  ```
- See anim_square & cone_anim examples