3-D Geometric Transformations

3-D Viewing Transformation

Projection Transformation

3-D Geometric Transformations

- Move objects in a 3-D scene
- Extension of 2-D Affine Transformations
- Three important ones:
 - Translation
 - Scaling
 - Rotations
Representing 3-D Points

- Homogeneous coordinates
- \(P (x, y, z) \rightarrow P' (x', y', z') \)

\[
\begin{array}{c|c|c|c}
| x & | & x' | \\
| y & --& y' | \\
| z & | & z' | \\
| 1 & | & 1 | \\
\end{array}
\]

Homogeneous Translation Matrix

- Given three translation components \(tx, ty, tz \)
 \[
P' = T \times P
\]
- \(T \) is the following 4 X 4 translation matrix:

\[
T = \begin{bmatrix}
1 & 0 & 0 & tx \\
0 & 1 & 0 & ty \\
0 & 0 & 1 & tz \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Scaling with respect to origin

- Given three scaling factors sx, sy, sz
 \[P' = S \cdot P \]
- S is the following 4×4 scaling matrix:
 \[
 S = \begin{bmatrix}
 sx & 0 & 0 & 0 \\
 0 & sy & 0 & 0 \\
 0 & 0 & sz & 0 \\
 0 & 0 & 0 & 1 \\
 \end{bmatrix}
 \]

Rotations

- Need to specify angle of rotation
- And axis about which the rotation is to be performed
- Infinite number of possible rotation axes
 - Rotation about any axis: linear combinations of rotations about x-axis, y-axis, z-axis
Z-Axis Rotation Matrix

\[\begin{pmatrix}
\cos(\theta) & -\sin(\theta) & 0 & 0 \\
\sin(\theta) & \cos(\theta) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix} \]

X-Axis Rotation matrix

\[\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \cos(\theta) & -\sin(\theta) & 0 \\
0 & \sin(\theta) & \cos(\theta) & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix} \]
Y-Axis Rotation Matrix

\[
\begin{bmatrix}
\cos(\theta) & 0 & \sin(\theta) & 0 \\
0 & 1 & 0 & 0 \\
-sin(\theta) & 0 & \cos(\theta) & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Rotation Sense

- Positive sense
 - Defined as counter clockwise as we look down the rotation axis toward the origin
Composite 3-D Geometric Transformations

- Series of consecutive transformations
 - Represented by homogeneous transformation matrices T_1, T_2, ..., T_n
- Equivalent to a single transformation
 - Represented by composite transformation matrix T
 - T is given by the matrix product:
 $$T = T_n \cdots T_2 T_1$$
 - First one on the left, last one on the right
- Just like in 2-D, except matrices are 4 X 4

Library of 3-D Transformation Functions

- 3-D Transformation Package
- Straightforward Extension of 2-D
- Enables setting up and transforming points & polygons
- 4 X 4 Matrices have 12 non-trivial matrix elements
- Package Might contain the following functions:
3-D Transformation Functions

- void settranslate3d(a[12], tx, ty, tz);
- void setscale3d(a[12], sx, sy, sz);
- void setrotatex3d(a[12], theta);
- void setrotatey3d(a[12], theta);
- void setrotatez3d(a[12], theta);
- void combine3d(c[12], a[12], b[12]); // C = A * B
- void xformcoord3d(c[12], vi, *vo); // vo = C * vi
- void xformpoly3d(inpoly[], outpoly[], float c[12]);

- a, b, and c are arrays
 - Contain 12 non-trivial matrix elements of a 4 X4 homogeneous transformation matrix
- vi and vo are 3-D point structures; inpoly and outpoly are polygons

Rotation about an Arbitrary Axis

- Rotate point P by angle α about a line
- Given: endpoints P1=(x1,y1,z1) & P2=(x2,y2,z2)
- Convert problem into rotation about x-axis
 1. Translate so that P1 is at origin: T1 = T(-x1,-y1,-z1)
 2. Compute spherical coordinates of the other endpoint:
 - ρ = sqrt((x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2)
 - ϕ = arccos((z2-z1)/ρ)
 - θ = arctan((y2-y1)/(x2-x1))
– 3. Rotate about z-axis by -θ so line lies in x-z plane: T2 = Rz(-θ)
– 4. Rotate about y-axis by (90-φ) to make line coincide with x-axis: T3 = Ry(90-φ)
– 5. Rotate about x-axis by given angle α: T4 = Rx(α)
– 6. Rotate back to undo step 4: T5 = Ry(φ-90)
– 7. Rotate back to undo step 3: T6 = Rz(θ)
– 8. Translate back to undo step 1: T7 = T(x1,y1,z1)

• Composite transformation then will be:
 \[T = T7^{T6^T5^T4^T3^T2^T1} \]

3-D Coordinate System Transformations

• There’s a symmetrical relationship between 3-D geometric transformations
 – (moving the object)
and 3-D coordinate system transformations
 – (moving the coordinate system)
• For translations, relationship is:
 \[T_{coord}(x,y,z) = T_{geom}(-x,-y,-z) \]
• For each principal-axis, rotation relationship is:
 \[R_{coord}(θ) = R_{geom}(θ) \]
• Useful in deriving 3-D viewing transformation
3D Viewing and Projection

- See CS-460/560 notes on 3-D Viewing and Projection Transformations
 http://www.cs.binghamton.edu/~reckert/460/3dview.htm

3D Viewing/Projection Transformations

- 3-D points in model must be transformed to viewing coordinate system
 - the Viewing Transformation
- Then projected onto a projection plane
 - Projection Transformation
3-D Viewing Transformation

- Converts world coordinates \((x_w, y_w, z_w)\) of a point to viewing coordinates \((x_v, y_v, z_v)\) of the point
 - As seen by a "camera" that is going to "photograph" the scene

\[(x_w, y_w, z_w) \rightarrow (x_v, y_v, z_v)\]

Viewing transformation
Projection Transformation

- Converts viewing coordinates \((x_v,y_v,z_v)\) of a point to 2-D coordinates \((x_p,y_p)\) of that point’s projection onto a projection plane.
- Think of projection plane as containing screen upon which the image is to be displayed.

\[(x_v,y_v,z_v) \rightarrow (x_p,y_p)\]

Projection transformation

Viewing Setups

- Specify position/orientation of coordinate systems & projection plane.
- Many possible viewing setups.
- We’ll use a simple, 4-parameter viewing setup:
 - Camera located at origin of viewing coordinate system.
 - Somewhat restricted.
 - But adequate for most common situations.
4-Parameter Viewing Setup

Parameters

- Position of viewpoint (camera location)
 - Position of origin of Viewing Coordinate System (VCS)
 - Specify in spherical coordinates
 - distance \(\rho \) from world coordinate system (WCS) origin
 - azimuthal angle \(\theta \)
 - polar angle \(\phi \)
- Distance \(d \) of Projection Plane from viewpoint
Viewing Setup Properties

- VCS \(z_v \)-axis points toward WCS origin
 - So objects we want to be visible must be placed close to WCS origin
- Proj. Plane is perpendicular to \(z_v \)-axis at a distance \(d \) from VCS origin
 - So \(\rho \) must be greater than \(d \)
- Center of projection coincides with VCS origin

- VCS’s \(y_v \)-axis is parallel to projection of WCS’s \(z_w \)-axis
 - So WCS \(z_w \)-axis defines "screen up" direction
- VCS’s \(x_v \)-axis is chosen so that \(x_v-y_v-z_v \) axes form a left-handed coordinate system
 - objects far from the VCS’s origin have large \(z_v \)
- 2-D Projection Plane coordinate system’s origin is at intersection of \(\rho \) and Projection Plane
 - Its \(x_p-y_p \)-axes are projections of \(x_v-y_v \) axes onto Proj. Plane
 - i.e., \(x_v-y_v \) translated a distance \(d \) along \(z_v \) axis
3-D Viewing Transformation

- Must convert xw-yw-zw to xv-yv-zv system
- A coordinate system transformation
- Perform the following steps:
 1. Translate origin by distance ρ in direction (θ, ϕ)
 2. Rotate by $-(90-\theta)$ degrees about z-axis to bring new y-axis into plane of zw and ρ
 3. Rotate by $(180-\phi)$ about x-axis to point transformed z-axis toward origin of world coordinate system
 4. Invert x-axis

Viewing Xform: 1. Translate by ρ
2. Rotate by \(-(90-\theta)\) about z

3. Rotate by \((180-\phi)\) about x
4. Invert x-axis

1. Translate by \(\rho \)

- Homogeneous transformation matrix for translation by \((x,y,z)\):

\[
T_{\text{geom}} = \begin{bmatrix}
1 & 0 & 0 & x \\
0 & 1 & 0 & y \\
0 & 0 & 1 & z \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

- Use relationship between coordinate system transformations & geometric transformations:
 \(T_{\text{coord}}(x,y,z) = T_{\text{geom}}(-x,-y,-z) \)
• So first transformation matrix, T1:

\[
T1 = \begin{pmatrix}
1 & 0 & 0 & -x \\
0 & 1 & 0 & -y \\
0 & 0 & 1 & -z \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

• Express x, y, z in terms of \(\rho \), \(\theta \), \(\phi \) (spherical coordinates)

\[
x = \rho \sin(\phi) \cos(\theta)
\]

\[
y = \rho \sin(\phi) \sin(\theta)
\]

\[
z = \rho \cos(\phi)
\]

2. Rotate by -(90-\(\theta \)) about z

• Use relationship between coordinate system rotations & geometric rotations:

\[
T_{\text{coord}}(\alpha) = T_{\text{geom}}(-\alpha)
\]

• So transformation is \(T2 = Rz(90-\theta) \):

\[
T2 = \begin{pmatrix}
\cos(90-\theta) & -\sin(90-\theta) & 0 & 0 \\
\sin(90-\theta) & \cos(90-\theta) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
3. Rotate by \((180-\phi)\) about \(x\)

- Again use relationship between geometric & coordinate system rotations:

 So \(T_3 = R_x(\phi - 180)\):

 \[
 T_3 = \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & \cos(\phi - 180) & -\sin(\phi - 180) & 0 \\
 0 & \sin(\phi - 180) & \cos(\phi - 180) & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \]

4. Invert \(x\)-axis

- Result of step 3: \(x\)-axis points opposite from direction it should
 - Because WCS is right-handed, while VCS is left-handed
- So need to reflect across \(y''-z''\) plane
 - Will convert \(x\) to \(-x\)

 \[
 T_4 = \begin{bmatrix}
 -1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \]
Composite Viewing Transformation Matrix

- $T_v = T_4 \times T_3 \times T_2 \times T_1$
- **Important Result** (after simplification):

$$
T_v = \begin{vmatrix}
-sin(\theta) & cos(\theta) & 0 & 0 \\
-cos(\phi) \times cos(\theta) & -cos(\phi) \times sin(\theta) & sin(\phi) & 0 \\
-sin(\phi) \times cos(\theta) & -sin(\phi) \times sin(\theta) & -cos(\phi) & \rho \\
0 & 0 & 0 & 1
\end{vmatrix}
$$

Projection Transformation

- Look down x_v axis at viewing setup:
 - Triangles OAP' & OBP are similar
 - So set up proportion:
 $$
 \frac{y_p}{y_v} = \frac{d}{z_v}
 $$
 Solve for y_p:
 $$
 y_p = \frac{(y_v \times d)}{z_v}
 $$
 - Look down y_v axis for x_p:
 - Result: $x_p = \frac{(x_v \times d)}{z_v}$
Plotting Points on Screen

- Get screen coordinates \((xs,ys)\) from Projection Plane coordinates \((xp,yp)\)
- Final Transformation:
 2D Window-to Viewport Transformation
 \((xs,ys) \leftarrow (xp,yp)\)
- See earlier notes
 - Replace \(xv,yv\) with \(xs,ys\)
 - Replace \(xw,yw\) with \(xp,yp\)

Skeleton Pyramid Program:
Data Structures

```c
// Build and display a polygon mesh model of a 4-sided pyramid:
struct point3d {float x; float y; float z;} // a 3d point
struct polygon {int n; int *inds;}           // a polygon
struct point3d  w_pts[5];    // 5 world coordinate vertices
struct point3d  v_pts[5];     // 5 viewing coordinate vertices
POINT  s_pts[5];                // 5 screen coordinate vertices
struct polygon  polys[5];    // 5 polygons define the pyramid

// global variables:
int  screen_dist; float rho, theta, phi;  // viewing parameters
int xmax,ymax;           // Screen dimensions
Int  num_vertices=5, num_polygons=5;
```
Skeleton Pyramid Program:
Function Prototypes

void coeff (float r, float t, float p); // calculates viewing transformation
 // matrix elements, vii
void convert (float x, float y, float z,
 float *xv, float *yv, float *zv,
 int *xs, int *ys); // converts a 3D world coordinate point to
 // 3D viewing & 2D screen coordinates
 // i.e., viewing, projection , and
 // window-to-viewport transformations
void build_pyramid (void); // sets up pyramid points and polygons
 // arrays (see last set of notes)
void draw_polygon (int poly); // draws polygon poly

Skeleton Pyramid Program:
Function Skeletons

// Main Function--Called whenever pyramid is to be displayed
void main_ftn () {
 // Get or set values of rho, theta, phi, and screen_dist
 build_pyramid (void); // build polygon model of the pyramid
 coeff (rho,theta,phi); // compute transformation matrix elements
 for (int i=0; i<num_vertices; i++) {
 // Loop to convert polygon vertices from world coordinates
 // to viewing and screen coordinates; must call convert () each time
 for (int f=0; f<num_polygons; f++) {
 // Loop to draw each polygon face
 // must call draw_polygon (f)
 }
 }
}
Void coeff (float r, float t, float p)
{ // Code to compute non-trivial viewing transformation matrix

void convert (float x, float y, float z,
 float *xv, float *yv, float *zv, int *xs, int *ys)
{ // Code to compute viewing coordinates and screen coordinates of
 // a point from its 3-D world coordinates. Must implement viewing,
 // projection, and window-to-viewport transformations described
 // in class }

void build_pyramid (void)
{ // Code to define the pyramid by setting up w_pts & polys arrays }

void draw_polygon (int poly)
{
 // Code to draw polygon poly by:
 // obtaining its vertex index values from the polys array
 // getting the screen coordinates of each vertex from the s_pts array
 // making appropriate calls to the system polygon-drawing primitive
}