3-D Graphics

Overview of 3-D Computer Graphics

- Display image of real or imagined 3-D scene on a 2-D screen
Some Aspects of 3-D Graphics

- Modeling and Rendering
 - Wireframe Models
 - Polygon Mesh Models
- Rendering
 - Types of Projections
 - The Viewing Pipeline
 - Hidden surface removal
 - Shading

Problem # 1: Modeling

- Representing objects in 3-D space
- First need to represent points
- Use a 3-D coordinate system, e.g.:
 - Cartesian: (x, y, z)
 - Spherical: (rho, theta, phi)
 - Cylindrical: (r, theta, z)
Conversions

- Spherical to Cartesian
 \[x = \rho \cdot \sin(\phi) \cdot \cos(\theta) \]
 \[y = \rho \cdot \sin(\phi) \cdot \sin(\theta) \]
 \[z = \rho \cdot \cos(\phi) \]

RH Coord System
Could be LH
Viewing system

Types of 3-D Models

- 1. Boundary Representation (B-Rep)
 - Surface descriptions
 - Two common ones:
 - A. Polygonal
 - B. Bicubic parametric surface patches
- 2. Solid Representation
 - Solid modeling
Polygonal Models

- Object surfaces approximated by a mesh of planar polygons

Scene -->
Objects -->
Sub-objects -->
Polygons -->
Vertices (points)

Polygon Mesh Model
Example Scene
Bicubic Parametric Surface Patches

- Objects represented by nets of elements called surface patches
 - Polynomials in two parametric variables
 - Usually cubic
 - Bezier surface patches
 - B-Spline surface patches
Bicubic Parametric Surface Patches

Solid Representation--Solid Modeling

- Objects represented exactly by combinations of elementary solid objects
 - e.g., spheres, cylinders, boxes, etc
 - Called geometric primitives
Constructive Solid Geometry (CSG)

- Complex objects built up by combining geometric primitives using Boolean set operations
 - union, intersection, difference
- and linear transformations
- Object stored as a tree
 - Leaves contain primitives
 - Nodes store set operators or transformations
Problem # 2: Rendering

- Displaying a 2-D view of a 3-D model

A. Projection

- Going from 3-D to 2-D
 - Every world coordinate point in scene \((x_w,y_w,z_w)\) maps to a point on device viewing screen \((x_s,y_s)\)

- Camera model
 - Construct projection rays
 - From points in scene through projection plane terminating on “Center of Projection”
 - Camera point or view point
 - Projection Point:
 - Intersection of projection ray with projection plane
Two Basic Types of Projection

1. Parallel projection
 - Center of Projection at infinity
 - So projection rays are parallel
 - Equal-size objects at different distances from screen project to same size images
 - Parallel lines in scene project to parallel lines on screen
 - Useful in CAD
2. Perspective projection
 – Center of Projection at finite distance from screen
 – Far objects of the same size project to smaller images than close objects
 • Farther objects appear to be smaller
 • More realistic images
 • Parallel lines in scene don’t necessarily project to parallel lines on screen
B. Hidden surface removal

- Surfaces facing away from viewer are invisible
 - Should not be displayed
 - Backface culling
- Surfaces blocked by objects closer to viewer are invisible
 - Should not be displayed
 - General hidden surface removal algorithms

C. Shading

- Projections of surfaces should be colored (shaded)
- Color depends on intensity of light reflected from surface into viewer’s eye
- Need an illumination/reflection model
 - Must take into account:
 - Material properties of surfaces
 - How light interacts with them
D. Other effects

- Shadows
- Transparency
- Multiple reflections
- Atmospheric absorption
- Surface textures
- Lots of others
- Physics and Optics!!

The Viewing Pipeline

- Chain of transformations/operations needed to go from a 3-D model to a 2-D image on the viewing screen
1. Local coordinate space (3-D):
 Individual object descriptions given
 | Modeling Transformations
 | (Geometric transformations)

2. World coordinate space (3-D):
 Scene is composed
 Objects, lights positioned
 | 3-D Viewing Transformation

3. Viewing coordinate space (3-D):
 Eye/camera coordinate system
 | 3-D clipping
 | Backface culling

4. 3-D viewing volume:
 Eye/camera coordinate system
 | Projection Transformation
5. 2-D projection plane description:
 2-D World coordinate system window
 | 2-D Viewing xformation (window to viewport)
 | 2-D clipping
 | Hidden surface removal
 | Shading
 | Other effects
 v

6. 2-D Device coordinate space:
 2-D Screen coordinate system viewport

3-D Modeling with Polygons

- Two types of polygon models
 1. Wireframe
 - Store the polygon edges
 - List of edge endpoints
 - Not useful for shaded images
 2. Polygon Mesh
 - Store the polygon faces:
 - Array of vertex lists
 - One list for each polygon
Data structures

- Polygons represent/approximate object surfaces
- In either case we must store 3-D world coordinates of each vertex
 - Use an array of 3-D points:
    ```
    struct point3d {
      float x; float y; float z;
    };
    // a single 3-D point
    struct point3d w_pts[];  // w_pts is the 3-D points array
    ```

Storing Polygons in a Wireframe Model

- Store polygon edges as an array
- Each element a pair of indices into the 3D points array:
  ```
  int edges[][2];  // Each second-index value gives the
                  // position of an edge’s endpoint vertex
                  // in the 3-D points array
  ```
Storing Polygons in a Polygon Mesh Model

- Object: Can be represented as an array of polygons
- Each polygon consists of:
 - (a) the number of vertices in the polygon
 - (b) a list of indices into the 3-D points array
 - (An index gives the position of a vertex in the 3-D points array)

```
struct polygon {int n; int *inds};
// n: The number of vertices
// inds: List of indices into the points array
  // Specifies which vertices form the polygon

struct polygon object[N];
// The object being modeled
// An array of polygons
```
Example--A Pyramid

- Pyramid below has 5 vertices, 8 edges and 5 polygon faces

Vertex Coordinates

<table>
<thead>
<tr>
<th>vertex</th>
<th>xw</th>
<th>yw</th>
<th>zw</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>150</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>150</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>150</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>75</td>
<td>75</td>
<td>150</td>
</tr>
</tbody>
</table>
The Pyramid’s Points Array

struct point3d w_pts[5];
 // Pyramid vertices in world coords.
int b=150, h=75; // Dimensions of pyramid

 // Set up world coordinate points array
w_pts[0].x=w_pts[0].y=w_pts[0].z=0;
w_pts[1].x=b; w_pts[1].y=w_pts[1].z=0;
w_pts[2].x=w_pts[2].y=b; w_pts[2].z=0;
w_pts[3].x=w_pts[3].y=0; w_pts[3].y=b;
w_pts[4].x=w_pts[4].y=b/2; w_pts[4].z=h;

Edge Array (Wireframe)

<table>
<thead>
<tr>
<th>Edge</th>
<th>Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0, 1</td>
</tr>
<tr>
<td>1</td>
<td>1, 2</td>
</tr>
<tr>
<td>2</td>
<td>2, 3</td>
</tr>
<tr>
<td>3</td>
<td>3, 0</td>
</tr>
<tr>
<td>4</td>
<td>0, 4</td>
</tr>
<tr>
<td>5</td>
<td>1, 4</td>
</tr>
<tr>
<td>6</td>
<td>2, 4</td>
</tr>
<tr>
<td>7</td>
<td>3, 4</td>
</tr>
</tbody>
</table>
Edge Array

- Edge array could be generated by:

```c
int edges[8][2] =
{{0,1},{1,2},{2,3},{3,0},{0,4},{1,4},{2,4},{3,4}};
```

Polygons Array (Mesh)

<table>
<thead>
<tr>
<th>polygon</th>
<th># vertices</th>
<th>vertices</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>0,1,4</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1,2,4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2,3,4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0,4,3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0,3,2,1</td>
</tr>
</tbody>
</table>

Polygons:
0: Left
1: Front
2: Right
3: Back
4: Base
Polygon array could be generated by:

```c
struct polygon object[5];
// Allocate Space:
for (i=0;i<=3;i++)
  { object[i].n=3; object[i].inds = (int *) calloc(3,sizeof(int)); }
object[4].n=4; object[4].inds = (int *) calloc(4,sizeof(int));
// Define the polygons in the object
// define the side triangles
object[0].inds[0]=0; object[0].inds[1]=1; object[0].inds[2]=4;
// define the square base
object[4].inds[3]=1;
```

More Complex 3-D Objects

- **Approximate** surfaces with polygons
- Often points, edges, and/or polygons arrays can be generated procedurally
Example 1: A Cone

- Approximate with n triangular sides
- n+1 vertices (apex + n in the base)
- And a Base polygon with n sides
 (example, n=12)
Cone Points Array

- Base points:
 \[x = R \times \cos (i \times \theta); \]
 \[y = R \times \sin (i \times \theta); \]
 \[// \theta = \frac{360}{n} \]
 \[z = 0; \]

- Apex point:
 \[x = y = 0; \]
 \[z = h; // (height of cone) \]

Cone Polygons Array

\[\text{poly}[0] = \{12, \{12,11,10,9,8,7,6,5,4,3,2,1\}\}; \]
\[\text{poly}[1] = \{3, \{1,2,0\}\}; \]
\[\text{poly}[2] = \{3, \{2,3,0\}\}; \]
\[\text{poly}[3] = \{3, \{3,4,0\}\}; \]
\[\text{poly}[4] = \{3, \{4,5,0\}\}; \]
\[\ldots \]
\[\text{poly}[12] = \{3, \{12,1,0\}\}; \]

- The triangles can be generated in a loop
Example 2: A Sphere

- Divide with \(n\) lines of latitude and \(m\) lines of longitude
- Gives triangles and quadrilaterals
- Latitude/Longitude intersection points used as approximating-polygon vertices
- Number of vertices = \(mn+2\)
- Number of polygons = \((n+1)m\)
- Example \(n=3, m=8\)

Example: \(n=3, m=8\)
\(8 \times 3 + 2 = 26\) vertices
Can get \(x\), \(y\), \(z\) from spherical coordinates
Loop \(j: 0\to n-1\) (latitudes), \(i: 0\to m-1\) (longitudes)
\(x = R \times \sin(i\theta) \times \cos(j\phi);\)
\(y = R \times \sin(i\theta) \times \sin(j\phi);\)
\(z = R \times \cos(j\phi);\)
(3+1)*8 = 32 polygons
Number them in a consistent way
poly[0] = {4, {1,2,10,9}}; // Upper Hemisphere
poly[1] = {4, {2,3,11,10}};
etc.
poly[8] = {3, {0,9,10}};
poly[9] = {3, {0,10,11}};
etc.
These can be
generated in a loop

3-D Geometric Transformations

• Move objects in a 3-D scene
• Extension of 2-D Affine Transformations
• Three important ones:
 – Translation
 – Scaling
 – Rotations
Representing 3-D Points

- Homogeneous coordinates
- \(P (x,y,z) \rightarrow P' (x',y',z') \)

\[
\begin{pmatrix}
 x \\
 y \\
 z \\
 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{pmatrix}
\]

Translations

- Given 3-D translation vector \(T=(tx, ty, tz) \)
- Component equations
 \[
 \begin{align*}
 x' &= x + tx \\
 y' &= y + ty \\
 z' &= z + tz
 \end{align*}
 \]
- Represent translation as matrix equation
 \[
P' = T \times P
 \]
- \(T \) is a 4 X 4 Homogeneous Matrix
Homogeneous Translation Matrix

\[
T = \begin{bmatrix}
1 & 0 & 0 & tx \\
0 & 1 & 0 & ty \\
0 & 0 & 1 & tz \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

- Notice obvious extension from 2-D to 3-D

Scaling with respect to origin

- Given three scaling factors sx, sy, sz
 \[P' = S \times P \]
- S is the following 4 X 4 scaling matrix:

\[
S = \begin{bmatrix}
sx & 0 & 0 & 0 \\
0 & sy & 0 & 0 \\
0 & 0 & sz & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
- Again obvious extension from 2D
Rotations

- Need to specify angle of rotation
- And axis about which the rotation is to be performed
- Infinite number of possible rotation axes
 - Rotation about any axis: linear combinations of rotations about x-axis, y-axis, z-axis

Rotations about z-axis

- Consider rotation of point $P=(x,y,z)$ by angle theta about the z-axis giving rotated point $P'=(x',y',z')$
 - Same x,y equations as in the 2-D case
 - z will not change
Z-Axis Rotation Component Equations

\[
x' = x \cdot \cos(\theta) - y \cdot \sin(\theta)
\]

\[
y' = x \cdot \sin(\theta) + y \cdot \cos(\theta)
\]

\[
z' = z
\]

- Represented as homogeneous matrix equation:
 \[
P' = R_z \cdot P
\]

Z-Axis Rotation Matrix

\[
R_z = \begin{bmatrix}
\cos(\theta) & -\sin(\theta) & 0 & 0 \\
\sin(\theta) & \cos(\theta) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Rx Matrix for rotations about x-axis

- Symmetry argument

\[
\begin{array}{ccc}
| & | & \\
| & | & \text{Make replacements:} \\
| & | & \text{x} \rightarrow \text{y} \\
| & | & \text{y} \rightarrow \text{z} \\
------x & ------y & z \rightarrow x \\
/ & / & \\
/ & / & \\
z & x & \\
\end{array}
\]

about z about x

- Original rotation about z-axis equations:

\[
x' = x'\cos(\theta) - y'\sin(\theta) \\
y' = x'\sin(\theta) + y'\cos(\theta) \\
z' = z
\]

- x->y, y->z, z->x transformed equations:

\[
y' = y'\cos(\theta) - z'\sin(\theta) \\
z' = y'\sin(\theta) + z'\cos(\theta) \\
x' = x
\]

- Represented as matrix equation:

\[
P' = Rx \times P
\]

\[
Rx = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & \cos(\theta) & -\sin(\theta) & 0 & 0 \\
0 & \sin(\theta) & \cos(\theta) & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]
Ry Rotation Matrix

- Symmetry:

\[
\begin{array}{cc}
 y & x \\
 \downarrow & \downarrow \\
 \text{Replacements:} & \\
 \downarrow & \downarrow \\
 ----x & ----z \\
 / & / \\
 / & / \\
 z & y \\
 \text{about z} & \text{about y}
\end{array}
\]

\[
x \rightarrow z \\
y \rightarrow x \\
z \rightarrow y
\]

\[
z' = z \cos(\theta) - x \sin(\theta)
\]

\[
x' = z \sin(\theta) + x \cos(\theta)
\]

\[
y' = y
\]
\[P' = R_y \cdot P \]

\[
R_y = \begin{bmatrix}
\cos(\theta) & 0 & \sin(\theta) & 0 \\
0 & 1 & 0 & 0 \\
-\sin(\theta) & 0 & \cos(\theta) & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Rotation Sense

- Positive sense
 - Defined as counter clockwise as we look down the rotation axis toward the origin