Introduction to Microsoft
Windows MFC Programming:
the Application/Window
Approach

MFC Windows Programming
(App/Window Approach)
= The Microsoft Foundation Class (M FC)
Library

= A Hierarchy of C++ classesdesigned
to facilitate Windows programming

= Anaternativeto using Win32
API functions

= A Visua C++ Windows application can use
either Win32 API, MFC, or both

| C++ Windows Application

| Win32 API |

I

Computer Hardware

The Relationship between Windows
MFC and Win32 API Programming

Microsoft Foundation Classes

= About 200 MFC classes (versus 2000+ API
functions)

= Provide aframework upon which to build
Windowsapplications

= Encapsulate most of the Win32 APl in aset
of logically organized classes

Some char acteristicsof MFC:

= 1. Convenience of reusable code:

— Many tasks common to all Windows apps are
provided by MFC

— Our programs can inherit and modify this
functionality as needed

— Wedon't need to recreate these tasks

— MFC handles many clerica detailsin Windows
programs

MFC Characteristics, continued

= 2. Produce smaller executables:
— Typically 1/3 the size of their API counterparts
= 3. Can lead to faster program devel opment:
— But there's a steep learning curve--

— Especially for newcomersto object -oriented
programming

MFC Characteristics, continued

& 4. MFC Programs must bewrittenin C++
and require the use of classes

= Programmer must have good grasp of:
— How classes are declared, instantiated, and used
— Encapsulation
— Inheritance
— Polymorphism--virtual functions

MFC ClassHierarchy

= (Seeonlinehelp on " Hierarchy Chart")--

Some Important MFC Classes

=« CObject: At top of hierarchy ("Mother of al
classes")
= Providesfeatureslike:
— Serialization
« Streaming object’ s persistent datato or froma
storage medium (disk reading/writing)
— Diagnostic & Debugging support
& All itsfunctionality isinherited by any

classesderived fromit

Important Derived Classes-

= CFile: Support for file operations

« CArchive: Works with CFile to facilitate
serialization and file 1/0

=« CDC: Encapsulates the device context
(Graphical Drawing)

= CGdiObject: Baseclassfor variousdrawing
objects (brushes, pens, fonts, etc.)

= CMenu: Encapsulates menu management

= CCmdTarget: Encapsulates message passing
process & isparent of:

— CWnd: Encapsulates many important windows
functions and data members

— Example: m_hwnd stores the window’ s handle
— Base class al windows are derived from
— Most common:
¢ CFrameWindow: Can contain other windows
—("normal" kind of window we've used)

» CView: Encapsulates process of displaying and
interacting with data

Niala aoanal atac cliol oo Lo, oo
A SO T RCANSHTAES CHAro DOXES

= CCmdTarget also parent of:
— CWinThread Definesathread of execution and
isthe parent of:

* CWinApp: Most important class dealt within MFC
applications:

« Encapsulates an MFC application
« Controlsfollowing aspects of Windows programs:
— Startup, initialization, execution, shutdown
— An application should have one CWinA pp object
— When instantiated, application beginsto run
— CDocument

« Encapsul ates the data associated with a program

MFC Classes and Functions
« Primary task in writing MFC program--to create
classes
= Most will be derived from MFC library classes
= MFC ClassMember Functions-
— Most functions called by an application will be
members of an MFC class
= Examples:

— ShowWindow()--a member of CWnd class
— TextOut()--a member of CDC
— LoadBitmap()--a member of CBitmap

= Appscanaso cal API functionsdirectly
— Use Global Scope Resolution Operator, for
example:
— ::UpdateWindow(hwnd);
= Usually more convenient to use MFC
member functions

M FC Global Functions--

= Not members of any MFC class
= Begin with Afx prefix (Application
FrameworKS)
= Independent of or span MFC classhierarchy
= Example:
— AfxMessageBox()
— Message boxes are predefined windows

— Can be activated independently from the rest of
an application

Some Important Global Functions

= AfxAbort () -- uconditionally terminate an app

= AfxBeginThread() -- Create & run anew thread

= AfxGetApp() -- Returnsapointer to the
application object

= AfxGetMainWnd() -- Returns a pointer to
application’s main window

= AfxGetlnstanceHandl&() -- Returns handle to
applications' scurrent instance

= AfxRegisterWndClass() - Register acustom
WNDCLASS for an MFC app

A Minimal MFC Program
(App/Window Approach)
=« Simplest MFC programs must contain two classes
derived from hierarchy:
— 1. An application class derived from CWinApp
« Definesthe application
* provides the message |oop
— 2. A window class usudly derived from
CFrameWnd
« Definesthe application's main window
=« These & other MFC classes brought in by using

— Finclode <Aberma b
HEGC-<APOHT

M essage Processing under MFC

= Like APl programs, MFC programs must handle
messages from Windows
= APl mechanism: big switch/case statement

= MFC mechanism: "messagemaps" (lookup
tables)

« Table entries:
— Message number

— Pointer to a derived class member message-processing
function
» Thesearemembersof CWnd
* Youoverridethe onesyou want your app to respond to

M essage M apping
& Programs must:

— Declare message-processing functions
* e.g., OnWhatever() for WM_WHATEV ER message
— Map them to messages app is going to respond to
« Mapping done by "message-mapping macros’
« Bind amessageto ahandler function
+ eg, ON_WM_WHATEVER()

= Most MFC application windows use awindow procedure,
WhndProc(), supplied by thelibrary

= Message maps enable library window procedureto find the
function corresponding to the current msg.

STEPSIN WRITING A
SIMPLE MFC PROGRAM
(App/Window Approach)

User Moves Mouse

generates:

User Moves Mouse

generates:

WM_MOUSEMOYE WM_MOUSEMOVE
message '5:

nessage

Delivered to: Delivered to:

Program’s WndProc()
switch (message) search message maps for
{

MFC's Window Procedure

ON_WM_ MOUSEMOVE ()
case WM_MOUSEMOVE: —
Handler for message

}

calls:

CWnd: : OntdouseMove()

Win32 API Message Handling UFC Wessage Handling

DECLARATIONS (.h)

1. Declare awindow class derived from
CFrameWnd (e.g., CMainWin)--

= Class Members:
— The constructor

— Message-processing function declarations for messages
the application will respond to
* eg., void OnChar()

— DECLARE_MESSAGE_MAP() macro:
« Allows windows based on this class to respond to messages

Declares that a message map will be used to map messages to
overriding functions in the application

« Should be |ast class member declared

2. Declare an application class derived from
CWinApp (e.g., CApp)--

= Must override CWinApp's I nitl nstance()
virtual function:

— Called each time a new instance of application
is started

—i.e., when an object of this classis instantiated

— Purposeisfor application to initialize itself

— Good placeto put code that does stuff that has
to be done each time program starts

IMPLEMENTATION (.CPP)

.. Define constructor for class derived from
CFramewWnd (CMainWin)

= Should call member function Create() to create the
window

k- Doeswhat CreateWindow() doesin API

P. Define message map for class derived from
CFramewWnd (CMainWin)--

BEGIN_MESSAGE_MAP(owner, base)
List of "message macros' [e.g., ON_WM_CHAR()]

CND MECCCACT A AN/
L A A S) = L B W

3. Define (implement) message-processing
functions declared in declarations (1) above
4. Define (implement) | nitl nstance() overriding

function--
= Donein class derived from CWinApp (CApp):

— Should haveinitialization code for each new app instance:
« Create aCMainWin object = pointer to program's main window
— (Used to refer to the window, like hwnd in AP programs)
« Invoke object's ShowWindow() member function
* Invoke object'sUpdateWindow() member function
* Must return non-zero to indicate success

— [MFC'simplementation of WinMain() calls this function]

= Now nature & form of simple window &
application have been defined

= But neither exists--

= Must instantiate an application object
derived fromCWinApp (CApp)

5. Create an instance of the app class(CApp)

& Causes AfxWinMain() to execute
— It'snow part of MFC [WINMAIN.CPP|

= AfxWinMain() does the following:
— Cals AfxWinlnit()--
« which calls AfxRegister Class() to register window class
— Calls CApp::Initlnstancg) [virtual function
overridden in 4 abovel--
» which creates, shows, and updates the window
— Cals CWinApp::Run() [In THRDCORE.CPP}--
« which calls CWinThread::PumpMessage()--

=« After WinApp::Run() returns:
— (i.e., when the WM_QUIT message is received)

= AfXWinTerm() iscaled--
— which cleans up and exits

o\ loon
—‘_W‘h"eh'eemamﬁ't‘he‘eemﬁg\/- =2

PROG1 Example MFC
Application:

« Just createsa skeleton framewindow

Stepsin Creating and Buildingan MFC
Application like PROGL1 “manually”
1. “File| New”
— Specify an empty Win32 project asin previous examples
. “Project | New | C++” or “Project | Add to existing | C++”
— Enter or copy/paste .cpp filetext (e.g., PROG1.CPP)--see
IMPLEMENTATION above
3. “File| New | C++ header” or “Project | Add to existing | header”
— Enter or copy/paste .h file text (e.g., PROG1.H)--see
DECLARATION above
4. “Project | Properties | General” (with progl highlighted in
Solution Explorer window):
— From*“Useof MFC”, choose:
— "UseMFCinaShared DLL"

Y

Buiteth reet-aststet
—Btietheprof

How It Works

CApp object is created <
MFC'sWinMain() executes &
Registers class (default)
Callsour CApp::Initlnstance() &
Our override creates a CM ainWin object
Our CMainWin constructor calls Create() s window created

Our CApp::Initlnstance() override callswindow's
ShowWindow() = window is displayed

Our override calls UpdateWindow() s client area painted
WinMain() continues by calling itsRun() function.e
Call to PumpMessage()
Which starts the message | oop

MSG1 Example MFC
Application: Mouse/Character
M essage Pr ocessing

= User presses mouse button.es
— Left/Right Button down string displayed at
current mouse cursor position
= Keyboard key pressedes

— Character displayed at upper left hand corner of
client area

MSG1

= Global integersto keep track of wheretext
isto appear
= Global string to hold text to be displayed
= Getting aDC:
— CPaintDC dc(this)
« Constructor performs CWnd::BeginPaint ()
* Destructor performs CWnd::EndPaint ()

« ‘this’: points to the object from which the
member function is called

« Hereit'sapointer to this window
L

