
1

Introduction to Microsoft
Windows MFC Programming:

the Application/Window
Approach

MFC Windows Programming
(App/Window Approach)

? The Microsoft Foundation Class (MFC)
Library

?A Hierarchy of C++ classes designed
to facilitate Windows programming

?An alternative to using Win32
API functions

?A Visual C++ Windows application can use
either Win32 API, MFC, or both

Microsoft Foundation Classes

?About 200 MFC classes (versus 2000+ API
functions)

? Provide a framework upon which to build
Windows applications

? Encapsulate most of the Win32 API in a set
of logically organized classes

Some characteristics of MFC:
? 1. Convenience of reusable code:

– Many tasks common to all Windows apps are
provided by MFC

– Our programs can inherit and modify this
functionality as needed

– We don't need to recreate these tasks
– MFC handles many clerical details in Windows

programs

MFC Characteristics, continued
? 2. Produce smaller executables:

– Typically 1/3 the size of their API counterparts

? 3. Can lead to faster program development:
– But there's a steep learning curve--
– Especially for newcomers to object -oriented

programming

2

MFC Characteristics, continued

? 4. MFC Programs must be written in C++
and require the use of classes

? Programmer must have good grasp of:
– How classes are declared, instantiated, and used
– Encapsulation
– Inheritance
– Polymorphism--virtual functions

MFC Class Hierarchy

? (See online help on "Hierarchy Chart")--

Some Important MFC Classes
? CObject: At top of hierarchy ("Mother of all

classes")
? Provides features like:

– Serialization
• Streaming object’s persistent data to or from a

storage medium (disk reading/writing)

– Diagnostic & Debugging support

?All its functionality is inherited by any
classes derived from it

Important Derived Classes--

? CFile: Support for file operations
? CArchive: Works with CFile to facilitate

serialization and file I/O
? CDC: Encapsulates the device context

(Graphical Drawing)
? CGdiObject: Base class for various drawing

objects (brushes, pens, fonts, etc.)
? CMenu: Encapsulates menu management

? CCmdTarget: Encapsulates message passing
process & is parent of:
– CWnd: Encapsulates many important windows

functions and data members
– Example: m_hWnd stores the window’s handle
– Base class all windows are derived from
– Most common:

• CFrameWindow: Can contain other windows
– ("normal" kind of window we've used)

• CView: Encapsulates process of displaying and
interacting with data

• CDialog: Encapsulates dialog boxes

?CCmdTarget also parent of:
– CWinThread: Defines a thread of execution and

is the parent of:
• CWinApp: Most important class dealt with in MFC

applications:
• Encapsulates an MFC application

• Controls following aspects of Windows programs:

– Startup, initialization, execution, shutdown
– An application should have one CWinApp object

– When instantiated, application begins to run

– CDocument
• Encapsulates the data associated with a program

3

? Primary task in writing MFC program--to create
classes

? Most will be derived from MFC library classes
? MFC Class Member Functions--

– Most functions called by an application will be
members of an MFC class

? Examples:
– ShowWindow()--a member of CWnd class
– TextOut()--a member of CDC

– LoadBitmap()--a member of CBitmap

MFC Classes and Functions ?Apps can also call API functions directly
– Use Global Scope Resolution Operator, for

example:
– ::UpdateWindow(hWnd);

?Usually more convenient to use MFC
member functions

MFC Global Functions--
?Not members of any MFC class
? Begin with Afx prefix (Application

FrameworKS)
? Independent of or span MFC class hierarchy
? Example:

– AfxMessageBox()
– Message boxes are predefined windows
– Can be activated independently from the rest of

an application

Some Important Global Functions
? AfxAbort () -- uconditionally terminate an app
? AfxBeginThread() -- Create & run a new thread
? AfxGetApp() -- Returns a pointer to the

application object
? AfxGetMainWnd() -- Returns a pointer to

application’s main window
? AfxGetInstanceHandle() -- Returns handle to

applications’s current instance
? AfxRegisterWndClass() -- Register a custom

WNDCLASS for an MFC app

A Minimal MFC Program
(App/Window Approach)

? Simplest MFC programs must contain two classes
derived from hierarchy:
– 1. An application class derived from CWinApp

• Defines the application
• provides the message loop

– 2. A window class usually derived from
CFrameWnd

• Defines the application's main window

? These & other MFC classes brought in by using
#include <Afxwin.h>

Message Processing under MFC
? Like API programs, MFC programs must handle

messages from Windows
? API mechanism: big switch/case statement
? MFC mechanism: "message maps" (lookup

tables)
? Table entries:

– Message number
– Pointer to a derived class member message-processing

function
• These are members of CWnd
• You override the ones you want your app to respond to

4

Message Mapping
? Programs must:

– Declare message-processing functions
• e.g., OnWhatever() for WM_WHATEVER message

– Map them to messages app is going to respond to
• Mapping done by "message-mapping macros”
• Bind a message to a handler function
• e.g., ON_WM_WHATEVER()

? Most MFC application windows use a window procedure,
WndProc(), supplied by the library

? Message maps enable library window procedure to find the
function corresponding to the current msg.

STEPS IN WRITING A
SIMPLE MFC PROGRAM

(App/Window Approach)

DECLARATIONS (.h)
1. Declare a window class derived from

CFrameWnd (e.g., CMainWin)--
? Class Members:

– The constructor
– Message-processing function declarations for messages

the application will respond to
• e.g., void OnChar()

– DECLARE_MESSAGE_MAP() macro:
• Allows windows based on this class to respond to messages
• Declares that a message map will be used to map messages to

overriding functions in the application
• Should be last class member declared

2. Declare an application class derived from
CWinApp (e.g., CApp)--

?Must override CWinApp's InitInstance()
virtual function:
– Called each time a new instance of application

is started
– i.e., when an object of this class is instantiated
– Purpose is for application to initialize itself
– Good place to put code that does stuff that has

to be done each time program starts

IMPLEMENTATION (.CPP)
1. Define constructor for class derived from

CFrameWnd (CMainWin)
? Should call member function Create() to create the

window
? Does what CreateWindow() does in API

2. Define message map for class derived from
CFrameWnd (CMainWin)--
BEGIN_MESSAGE_MAP(owner, base)

List of "message macros" [e.g., ON_WM_CHAR()]

END_MESSAGE_MAP()

5

3. Define (implement) message-processing
functions declared in declarations (1) above

4. Define (implement) InitInstance() overriding
function--

? Done in class derived from CWinApp (CApp):
– Should have initialization code for each new app instance:

• Create a CMainWin object ? pointer to program's main window
– (Used to refer to the window, like hWnd in API programs)

• Invoke object's ShowWindow() member function
• Invoke object'sUpdateWindow() member function
• Must return non-zero to indicate success

– [MFC's implementation of WinMain() calls this function]

?Now nature & form of simple window &
application have been defined

? But neither exists --
?Must instantiate an application object

derived fromCWinApp (CApp)

5. Create an instance of the app class (CApp)
? Causes AfxWinMain() to execute

– It's now part of MFC [WINMAIN.CPP]

? AfxWinMain() does the following:
– Calls AfxWinInit()--

• which calls AfxRegisterClass() to register window class

– Calls CApp::InitInstance() [virtual function
overridden in 4 above]--

• which creates, shows, and updates the window

– Calls CWinApp::Run() [In THRDCORE.CPP]--
• which calls CWinThread::PumpMessage()--
• which contains the GetMessage() loop

?After WinApp::Run() returns:
– (i.e., when the WM_QUIT message is received)

? AfxWinTerm() is called--
– which cleans up and exits

PROG1 Example MFC
Application:

? Just creates a skeleton frame window

Steps in Creating and Building an MFC
Application like PROG1 “manually”

1. “File | New”
– Specify an empty Win32 project as in previous examples

2. “Project | New | C++” or “Project | Add to existing | C++”
– Enter or copy/paste .cpp file text (e.g., PROG1.CPP)--see

IMPLEMENTATION above
3. “File | New | C++ header” or “Project | Add to existing | header”

– Enter or copy/paste .h file text (e.g., PROG1.H)--see
DECLARATION above

4. “Project | Properties | General” (with prog1 highlighted in
Solution Explorer window):
– From “Use of MFC”, choose:
– "Use MFC in a Shared DLL"

5. Build the project as usual

6

How It Works
CApp object is created ?
MFC's WinMain() executes ?

Registers class (default)
Calls our CApp::InitInstance()?

Our override creates a CMainWin object

Our CMainWin constructor calls Create()?window created
Our CApp::InitInstance() override calls window's
ShowWindow()?window is displayed

Our override calls UpdateWindow()? client area painted
WinMain() continues by calling its Run() function?

Call to PumpMessage()
Which starts the message loop

MSG1 Example MFC
Application: Mouse/Character

Message Processing

?User presses mouse button?
– Left/Right Button down string displayed at

current mouse cursor position

?Keyboard key pressed?
– Character displayed at upper left hand corner of

client area

?Global integers to keep track of where text
is to appear

?Global string to hold text to be displayed
?Getting a DC:

– CPaintDC dc(this)
• Constructor performs CWnd::BeginPaint ()

• Destructor performs CWnd::EndPaint ()
• ‘this’: points to the object from which the

member function is called

• Here it’s a pointer to this window

• So we construct a DC for this window

MSG1

