
1

Visual C++ Programming
Workshop

Dr. Richard R. Eckert
Binghamton University

Feb. 8, 15, 22, 29
Mar. 7, 14, 2000

Workshop Information

n Office: EB-N6

n Phone: 777-4365

n Office Hours:
u Tue 1-3 p.m., Thur 10-11:30 a.m.

u By appointment

n Email: reckert@binghamton.edu

n http://www.cs.binghamton.edu/~reckert/
u “VC++ Programming Workshop” link for

syllabus, notes, programs, assignments, etc.

User Interfaces

n Connection between the computer and
the user

n Two types:
u Command Line

u GUI--Graphical (Visual)

Command Line Interfaces

u User types commands ==> must
remember

u Results Scroll by

u Text-based

u “Interactive” but hard to use

u Flow of info: keyboard --> program-->
Display

u No direct interaction between user and
screen

Visual (Graphical) Interfaces

u Show Graphical Objects (images, icons,
buttons, scroll bars) on screen

u User interacts using pointing device
F Direct, intuitive, intimate interaction

u Objects can be dragged, buttons pushed, etc....

u Better way of using screen space
F Panes can overlap

F Underlying panes can be brought to forefront

F Desktop metaphor (like papers on a desk)
• Well, not exactly!

Graphical Interfaces, Continued

u Use graphics to organize user workspace

u Present user intuitive ways of accomplishing
tasks

F e.g., copy files by dragging

u Environment allows many tasks to be
performed simultaneously

F Different tasks share screen space

u Visually rich way of conveying information

u WYSIWYG display of documents

2

Main Feature of GUIs:

nTHE WINDOW
u Rectangular area of screen onto which a

program draws text and graphics.

u User interacts with program using pointer
device to select objects inside.

u Some window components:
F border, title bar, client area, menu bar, scroll bars,

max/min/close buttons, tool bars, etc.

Brief History of GUIs

n 1968, ARPA-funded Stanford Research
Center (Doug Englebart)

n first windows (screen sliced up into
overlapping panes)

n only textual info

n underlying windows can be popped to the
top

n selection done with light pen

n invented the mouse

Xerox PARC--Alto Computer

u1970

uFirst GUI

uCursor tracked position of mouse

uWYSIWYG

uWindows with precise text

uDisplayed more than just text

uFirst interactive painting program

Recent History (PCs)

n 1983, Apple Lisa (failure)

n 1984 Apple Macintosh--standard for GUIs

n 1985 Microsoft releases Windows 1.0
u Difficult to program

u Prone to crashing

u Needed hardware not yet available

n 1987 Windows 2.0 (still real mode only)

n 1988 Windows/386 (Virtual 86 mode on
386==>multiple DOS sessions in windows)

Recent History (Microsoft)

n 1990 Windows 3.0
u 80x86 protected mode, up to 16Meg memory,

cooperative multitasking

n 1992 Windows 3.1, Windows for
Workgroups 3.11
u TrueType fonts, multimedia, protected mode

only; Networking

n 1993 Windows NT
u 32-bit flat memory space, 16 MB, thread-based

pre-emptive multitasking, separate from DOS,
multi-platform, networking, secure)

Recent History (Microsoft)

n 1995 Windows 95
u Runs on 4 Meg, long file names, plug and play,

new controls, new desktop/window style

u Hybrid 16/32 bit OS, depends on DOS, lacks
security of NT, no portability to RISC

n 1998 Windows 98
u Web-like interface, legal issues

3

Other GUI-Windowing Systems

n IBM OS/2: Presentation Manager

n Commodore Amiga: Intuition

n Atari: GEM

n Sun Microsystems: NeWS

n The X Window System
u Developed at MIT, networked graphics

programming interface, independent of machine
architecture/OS (but most used under UNIX)

Workshop Content

n Microsoft Windows Visual C++
u Using Microsoft Developer Studio (Visual C++

Development Environment)

u Win32 API Programming

u MFC Programming

u Syllabus, Example programs and notes online at:
F http://www.cs.binghamton.edu/~reckert/

F “Visual C++ Programming Workshop” link

Win32 API Programming

u Event-Driven Programming (Messages)

u Menus and other Resources

u Text and Graphics

u Mouse and Keyboard

u Bitmaps, Animation, Timers

u Child Window Controls

u Child and Popup Windows

u Dialog Boxes

u The Clipboard

Microsoft Foundation Class
(MFC) Programming

n The MFC Class Hierarchy

n The Application/Window Approach

n The Document/View Approach

n Using “AppWizard” & “ClassWizard”

n Drawing, Menus, & Dialog Boxes with MFC

n File Handling and Printing

n Dialog-Based MFC Applications and Common Dialog Boxes

n Windows Multimedia

n Network Programming (TCP/IP) with MFC

n HTML-based Applications with MFC

Features of Windowing
Systems

nConsistent user interface
n Display within a window

n Menus to initiate program functions

n Make use of controls:
u predefined windows used with main program

window

u examples: buttons, scroll bars, edit controls, list
boxes, drop-down list boxes

u Dialog box--popup window containing several
controls

n Programs have same look and feel

n Same built-in logic to:

u draw text/graphics

u display menus

u receive user input

ucontrols, dialog boxes, use of mouse

Consistent User Interface

4

Multitasking

n Every program acts like a RAM-resident
popup

n Programs run “simultaneously”

n Each program’s output occupies its own
window

n Windows can be moved and sized

n User can switch between programs

Windows Multitasking Features

n Cooperative (Windows 3.xx)
u Programs must give up control so others can

run

u Programs coexist with other programs

n Preemptive (Windows NT, 95, 98)
u Thread-based--System timer allocates time

slices to running program threads

n Under both systems, code is moved or
swapped into and out of memory as needed

Windows Object Orientation

n A window is handled like a C++ object
u Has a user-defined type (Windows class)

u Instances of class created at run time

u Messages sent to windows affect their behavior

Windows Memory Management
n Older versions: 16-bit, segmented memory

u Dictated by processor architecture

u Hard to program

n Newer versions: 32-bit, flat memory model
u Easier to program

n As old programs terminate, new ones start;
code swapped into and out of memory

n Fragmentation can occur

n Windows must consolidate memory space

n Moves blocks of code/data continually

Memory Management, continued

n Several instances of a program
u code only loaded into memory once

u program instances share same code

n Programs can share code located in other
files (Dynamic linking)

Static vs. Dynamic Linking

n Static Linking
F code incorporated into executable at link time

n Dynamic Linking
u Linker generates relocation info

F Put into executable

u DLL loaded when needed

u Relocation info used to get DLL function code
as needed

5

Pros/Cons of Dynamic Linking

n Smaller programs (code is not there)

n DLL can be used by many programs with
no memory penalty
u Only loaded once!

n Updates to DLLs don’t require
recompilation of programs using them

n Disadvantage--DLL must be present at run
time==>no standalone programs

Device Independent Graphics
Interface
n Windows programs don’t access hardware devices

directly

n Make calls to generic functions within the
Windows ‘Graphics Device Interface’ (GDI)

n The GDI translates these into HW commands

Program GDI Hardware

n May use device drivers (HW control
programs)

n Thus graphics I/O done in a “standard” way

n Programs will run unaltered on other HW
platforms

Program GDI Driver Hardware

Device Independent Graphics Interface Windows API

n The interface between an application and
Windows

n A library of functions Windows programs
can call

n Several versions
u Win16 (16 bit apps for Windows 3.xx)

u Win32 (32 bit apps for Windows NT/95)

u Win32s (patches Win16 to create 32 bit apps
that run under Windows 3.xx)

6

Classical Windows programming

n Use C to access raw API functions directly

n No C++ class library wrappers to hide API

n Hard way to go, but most basic & flexible

n Provides understanding of how Windows
and application program interact

n Establishes a firm foundation for MFC
programming

n We will try to do both

Class-based Windows programming

n Microsoft’s MFC Library

n Borland’s OWL Library

n Encapsulate the API functions into classes

n Provide a logical framework for building
windows applications

MFC Library

n Microsoft’s C++ Interface to Windows API

n O-O Approach to Windows Programming

n Some 200 classes

n API functions encapsulated in the MFC

n Classes derived from MFC do grunt work

n Just add data/functions to customize app

n Provides a uniform application framework

Microsoft Visual C++

n 2 Windows app development systems
u C programs using Win32 API

u C++ programs using MFC

n Some Developer Studio IDE Components
u Text/Resource Editors

u C/C++, Resource Compilers

u Linker

u Debugger

u Wizards

u On-line Help

Some MFC Characteristics

n Reusable code

n Smaller executables

n Faster program development
u But a steep learning curve is required

u And there is less flexibility

n Programs must be written in C++

n Require the use of classes==>
u Programmer must know OOP

7

Sequential Programming
n Standard programming--program solicits

input (polling loop)

n Approach follows a structured sequence of
events

n Example--averaging grades:
u Input name

u Input first grade

u Input second grade

u Input third grade

u Calculate average

u Output average

Event-Driven Programming

n Designed to avoid limitations of sequential,
procedure-driven methodologies

n Process events as they happen--
non-sequential

n Program doesn’t solicit input

n OS detects an event has happened (e.g..,
there’s input) and sends a message to the
program

n Program then acts on the message

n Messages can occur in any order

Sequential vs. Event-Driven Programming

n Standard Sequential programming:
u Program does something & user responds

u Program controls user (the tail wags the dog)

n Event-Driven Programming:
u Used by Windows

u User can act at any time

u User controls program (the dog wags the tail)

u OS really is in control (coordinates message
flow to different applications)

u Good for apps with lots of user intervention

