Oouoogboooboooobooboooooboogogooon

Visual C++ Programming
Workshop

Dr. Richard R. Eckert

Binghamton University

Feb. 8, 15, 22, 29
Mar. 7, 14, 2000

Oouoogboooboooobooboooooboogogooon

Workshop Information

m Office: EB-N6
m Phone: 777-4365
m Office Hours:
¢ Tue 1-3 p.m., Thur 10-11:30 am.
+ By appointment
m Email: reckert@binghamton.edu
m http://www.cs.binghamton.edu/~reckert/

& “VC++ Programming Workshop” link for
syllabus, notes, programs, assignments, etc.

ooUooooioooooooooooooooooood

User Interfaces

m Connection between the computer and
the user
m Two types:
o Command Line
+ GUI--Graphical (Visual)

ooUooooioooooooooooooooooood

Command Line Interfaces

+ User types commands ==> must
remember

Results Scroll by

+ Text-based

+“Interactive’ but hard to use

o Flow of info: keyboard --> program-->
Display

+ No direct interaction between user and
screen

ooUooooiooooooooooooooooouod

Visual (Graphical) Interfaces

+ Show Graphical Objects (images, icons,
buttons, scroll bars) on screen
« User interacts using pointing device
+ Direct, intuitive, intimate interaction

« Objects can be dragged, buttons pushed, etc....

« Better way of using screen space
+ Panes can overlap
+ Underlying panes can be brought to forefront

+ Desktop metaphor (like papers on a desk)
* Well, not exactly!

ooUooooiooooooooooooooooouod

Graphical Interfaces, Continued

+ Use graphics to organize user workspace
« Present user intuitive ways of accomplishing
tasks
+e.g., copy files by dragging
 Environment allows many tasks to be
performed simultaneously
+ Different tasks share screen space
« Visually rich way of conveying information
* WYSIWY G display of documents

Oouoogboooboooobooboooooboogogooon

Main Feature of GUIs:

mTHE WINDOW

+ Rectangular area of screen onto which a
program draws text and graphics.

« User interacts with program using pointer
device to select objectsinside.

¢ Some window components:

+ border, title bar, client area, menu bar, scroll bars,
max/min/close buttons, tool bars, etc.

Oouoogboooboooobooboooooboogogooon

Brief History of GUIs

m 1968, ARPA-funded Stanford Research
Center (Doug Englebart)

m first windows (screen dliced up into
overlapping panes)
m only textual info

m underlying windows can be popped to the
top

m selection done with light pen
m invented the mouse

ooUooooioooooooooooooooooood

Xerox PARC--Alto Computer

+1970

oFirst GUI

¢ Cursor tracked position of mouse
*WYSIWYG

+Windows with precise text

¢ Displayed more than just text

e First interactive painting program

ooUooooioooooooooooooooooood

Recent History (PCs)

m 1983, AppleLisa(failure)
m 1984 Apple Macintosh--standard for GUIs
m 1985 Microsoft rel eases Windows 1.0

< Difficult to program

« Prone to crashing

& Needed hardware not yet available

m 1987 Windows 2.0 (till real mode only)

m 1988 Windows/386 (Virtual 86 mode on
386==>multiple DOS sessions in windows)

ooUooooiooooooooooooooooouod

Recent History (Microsoft)

m 1990 Windows 3.0
+ 80x86 protected mode, up to 16Meg memory,
cooperative multitasking
m 1992 Windows 3.1, Windows for
Workgroups 3.11
& TrueType fonts, multimedia, protected mode
only; Networking
m 1993 Windows NT

+ 32-hit flat memory space, 16 MB, thread-based
pre-emptive multitasking, separate from DOS,
multi-platform, networking, secure)

ooUooooiooooooooooooooooouod

Recent History (Microsoft)

m 1995 Windows 95

+ Runs on 4 Meg, long file names, plug and play,
new controls, new desktop/window style

« Hybrid 16/32 bit OS, depends on DOS, lacks
security of NT, no portability to RISC

m 1998 Windows 98
& Web-like interface, legal issues

Oouoogboooboooobooboooooboogogooon

Other GUI-Windowing Systems

m |BM OS/2: Presentation Manager
m Commodore Amiga: Intuition

m Atari: GEM

m Sun Microsystems: NeWS

m The X Window System

¢ Developed at MIT, networked graphics
programming interface, independent of machine
architecture/OS (but most used under UNIX)

Oouoogboooboooobooboooooboogogooon

Workshop Content

m Microsoft Windows Visual C++

+ Using Microsoft Developer Studio (Visual C++
Development Environment)

¢ Win32 API Programming
& MFC Programming
+ Syllabus, Example programs and notes online at:

+ http://www.cs.binghamton.edu/~reckert/
+ “Visual C++ Programming Workshop” link

ooUooooioooooooooooooooooood

Win32 APl Programming

+ Event-Driven Programming (M essages)
¢ Menusand other Resour ces

¢ Text and Graphics

¢ Mouse and Keyboard

« Bitmaps, Animation, Timers

« Child Window Controls

« Child and Popup Windows

« Dialog Boxes

¢ TheClipboard

ooUooooioooooooooooooooooood

Microsoft Foundation Class
(MFC) Programming

The MFC Class Hierarchy

The Application/Window Approach

The Document/View Approach

Using “AppWizard” & “ClassWizard”
Drawing, Menus, & Dialog Boxes with MFC
FileHandling and Printing

Dialog-Based MFC Applications and Common Dialog Boxes|
Windows Multimedia

Network Programming (TCP/IP) with MFC
HTML-based Applicationswith MFC

ooUooooiooooooooooooooooouod

Features of Windowing
Systems

mConsistent user interface
m Display within a window

m Menus to initiate program functions
m Make use of controls:

« predefined windows used with main program
window

& examples: buttons, scroll bars, edit contrals, list
boxes, drop-down list boxes

+ Dialog box--popup window containing several
controls

ooUooooiooooooooooooooooouod

Consistent User Interface

m Programs have same look and feel
m Same built-in logic to:
o draw text/graphics
o display menus
e receive user input
econtrols, dialog boxes, use of mouse

Oouoogboooboooobooboooooboogogooon

Multitasking

m Every program acts like a RAM-resident
popup
m Programs run “simultaneously”

m Each program’ s output occupies its own
window

m Windows can be moved and sized
m User can switch between programs

Oouoogboooboooobooboooooboogogooon

Windows Multitasking Features

m Cooperative (Windows 3.xx)

+ Programs must give up control so others can
run

& Programs coexist with other programs
m Preemptive (Windows NT, 95, 98)
« Thread-based--System timer allocates time
slices to running program threads
m Under both systems, code is moved or
swapped into and out of memory as needed

ooUooooioooooooooooooooooood

Windows Object Orientation

m A window is handled like a C++ object
+ Has a user-defined type (Windows class)
« Instances of class created at run time
& Messages sent to windows affect their behavior

ooUooooioooooooooooooooooood

Windows Memory Management

m Older versions. 16-bit, segmented memory
« Dictated by processor architecture
« Hard to program

m Newer versions: 32-bit, flat memory model
« Easier to program

m Asold programs terminate, new ones start;
code swapped into and out of memory

m Fragmentation can occur

m Windows must consolidate memory space

m Moves blocks of code/data continually

ooUooooiooooooooooooooooouod

Memory Management, continued

m Several instances of a program
« code only loaded into memory once
« program instances share same code
m Programs can share code located in other
files (Dynamic linking)

ooUooooiooooooooooooooooouod

Static vs. Dynamic Linking

m Static Linking
+ code incorporated into executable at link time
m Dynamic Linking
« Linker generates relocation info
+ Put into executable

¢ DLL loaded when needed

« Relocation info used to get DLL function code
as needed

J00

[

Fuat ima Libwacy Fila

Conprilod, ob] Fllo

e i

Finisked Executabla Progeam
Imclwdas two Libeary fumectlons

[T P——
Funcitlons

Statin Linking

o
8

compiled.obj File

Import Library contains
DLL ftn. relocation info.

Linker

Dynamic Link Library

|Executable Pgm. |

Relocation
Infa.

Calls ftns. in DLL when needed

Ojects loaded into memory

[

Dynamic Linking

ooUooooioooooooooooooooooood

Pros/Cons of Dynamic Linking

m Smaller programs (code is not there)

m DLL can be used by many programs with
no memory penalty
+ Only loaded once!

m Updatesto DLLs don’t require
recompilation of programs using them

m Disadvantage--DLL must be present at run
time==>no standalone programs

ooUooooioooooooooooooooooood

Device Independent Graphics

Interface

m Windows programs don’t access hardware devices
directly

m Make calls to generic functions within the
Windows ‘ Graphics Device Interface’ (GDI)

m The GDI translates these into HW commands

Program [t GDI [~ Hardware

ooUooooiooooooooooooooooouod

Device Independent Graphics I nterfac

m May use device drivers (HW control
programs)

Program bGDl bDriver@ Hardware

m Thus graphics 1/0 done in a“standard” way

m Programs will run unaltered on other HW
platforms

ooUooooiooooooooooooooooouod

Windows API

m The interface between an application and
Windows

m A library of functions Windows programs
can call

m Severa versions
& Win16 (16 bit apps for Windows 3.xx)
& Win32 (32 bit apps for Windows NT/95)

& Win32s (patches Win16 to create 32 bit apps
that run under Windows 3.xx)

Oouoogboooboooobooboooooboogogooon

Classical Windows programming

m Use C to access raw API functions directly
m No C++ class library wrappers to hide API
m Hard way to go, but most basic & flexible

m Provides understanding of how Windows
and application program interact

m Establishes a firm foundation for MFC
programming

m We will try to do both

Oouoogboooboooobooboooooboogogooon

Class-based Windows programming

m Microsoft’s MFC Library
m Borland’s OWL Library
m Encapsulate the API functions into classes

m Provide alogical framework for building
windows applications

ooUooooioooooooooooooooooood

MFC Library

m Microsoft’s C++ Interface to Windows AP
m O-O Approach to Windows Programming
m Some 200 classes

m API functions encapsulated in the MFC

m Classes derived from MFC do grunt work
m Just add data/functions to customize app

m Provides a uniform application framework

ooUooooioooooooooooooooooood

Microsoft Visual C++

m 2 Windows app development systems
« C programs using Win32 API
& C++ programs using MFC
m Some Developer Studio IDE Components
« Text/Resource Editors
& C/C++, Resource Compilers
o Linker
& Debugger
& Wizards
¢ On-line Help

1og

oot

e Windows apol ioat iom

MFC Libeary

Windr ART

Compater BT duares

The Belationskdp betwesn Windows
WrC and Wind@ API Prograsmming

ooUooooiooooooooooooooooouod

Some MFC Characteristics

m Reusable code
m Smaller executables
m Faster program devel opment
& But a steep learning curveis required
& And there isless flexibility
m Programs must be written in C++
m Require the use of classes==>
& Programmer must know OOP

Oouoogboooboooobooboooooboogogooon

Sequential Programming
m Standard programming--program solicits
input (polling loop)
m Approach follows a structured segquence of
events
m Example--averaging grades:
< [nput name
< Input first grade
< Input second grade
< Input third grade
+ Calculate average
+ Output average

Oouoogboooboooobooboooooboogogooon

Event-Driven Programming

m Designed to avoid limitations of sequential,
procedure-driven methodologies

m Process events as they happen--
non-sequential

m Program doesn’t solicit input

m OS detects an event has happened (e.g..,
there’ s input) and sends a message to the
program

m Program then acts on the message

m Messages can occur in any order

J0d

Applical Los

Ummr Pt Loma
[Evants)

dparatlisg Sy lan

Evenl Inlrrprelce L Toiel m ok

s b
—— Typa = mmber

I have & baee

I hsve = grads

4 G110K " GospuLE
Coampue ©ha Ear s -

hrecwgs ' bucton

Lo 8 1T P
BOJ S

A rExange

oo

The Bvmnt-Driven Programming Paradiom

ooUooooioooooooooooooooooood

Sequentia vs. Event-Driven Programming

m Standard Sequential programming:

« Program does something & user responds

« Program controls user (the tail wags the dog)
m Event-Driven Programming:

& Used by Windows

& User can act at any time

& User controls program (the dog wags the tail)

¢ OSredly isin control (coordinates message
flow to different applications)

+ Good for apps with lots of user intervention

