
Secure Abstraction Views for Scientific
Workflow Provenance Querying

Artem Chebotko, Member, IEEE, Shiyong Lu, Senior Member, IEEE, Seunghan Chang,

Farshad Fotouhi, Member, IEEE, and Ping Yang, Member, IEEE

Abstract—Provenance has become increasingly important in scientific workflows and services computing to capture the derivation

history of a data product, including the original data sources, intermediate data products, and the steps that were applied to produce

the data product. In many cases, both scientific results and the used protocol are sensitive and effective access control mechanisms

are essential to protect their confidentiality. In this paper, we propose: 1) a formal scientific workflow provenance model as the basis for

querying and access control for workflow provenance; 2) a security model for fine-grained access control for multilevel provenance and

an algorithm for the derivation of a full security specification based on inheritance, overriding, and conflict resolution; 3) a formalization

of the notion of security views and an algorithm for security view derivation; and 4) a formalization of the notion of secure abstraction

views and an algorithm for its computation. A prototype called SECPROV has been developed, and experiments show the effectiveness

and efficiency of our approach.

Index Terms—Scientific workflows, provenance, access control, security, abstraction, secure querying.

Ç

1 INTRODUCTION

PROVENANCE management has become increasingly im-

portant in the areas of services computing [1], [2], [3]

and scientific workflows [4], [5], [6]. Provenance data

capture the derivation history of a data product, including

the original data sources, intermediate data products, and

the steps that were applied to produce the data product.

Therefore, provenance captures the detailed protocol of a

scientific experiment. In many cases, both scientific results

and the used protocol are sensitive and effective access

control mechanisms are essential to equip scientists with a

fine-grained tool to release only partial provenance in-

formation (data products, dependencies, and parameters)

to stakeholders or to the public. In a typical scenario,

scientific workflows are often the intellectual property of a

scientist, since the composition of various computational

services into a workflow is crucial to obtaining interesting

scientific results. Thus, a scientist might be willing to

publish the scientific results as well as the source data used

to obtain such results, but not the scientific workflow itself.

In another scenario, a scientist might publish both the

scientific results and source data, as well as the scientific

workflow used to obtain the results, but might keep the

parameter setting used for the workflow run as a secret. In

a more general scenario, a scientist might release partial

provenance information concerning scientific results,

source data, scientific workflows, and parameter settings

that are just enough to convince stakeholders, but hide

certain provenance information to protect intellectual

property. The above scenarios illustrate that a flexible and

expressive fine-grained access control mechanism is neces-

sary for scientific workflow provenance.

The importance and requirements of security have been

well understood in business workflows [7], [8], [9]. However,

while a traditional workflow access control protects the

access to workflow tasks and data, a provenance access

control protects the access to data products (source, inter-

mediate, and final) as well as the dependencies among them.

Another dimension of complexity for scientific workflow

provenance is its multilevel semantics. Since scientific work-

flows may consist of composite tasks or subworkflows,

provenance can be accessed at different abstraction levels

(with composite tasks “folded” or “unfolded”). A user may be

interested in viewing only provenance that is related to

a composite task as a black box rather than viewing

more detailed provenance of all the constituent tasks. These

different abstraction views can hide or reveal provenance

information based on a particular user requirements and

preferences; thus, providing a convenient abstraction me-

chanism that enables a user to view only relevant informa-

tion. We further illustrate how security and abstraction

mechanisms interact with each other using a real-life example

from the bacterial genome Intragenomic Gene Conversions

(IGCs) project [10] in the following.

The crux of the IGC project is the intragenomic

recombination analysis scientific workflow shown in

Fig. 1; the workflow is simplified from our original

322 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 3, NO. 4, OCTOBER-DECEMBER 2010

. A. Chebotko is with the Department of Computer Science, University of
Texas—Pan American, 1201 West University Dr., Edinburg, TX 78539.
E-mail: artem@cs.panam.edu.

. S. Lu, S. Chang, and F. Fotouhi are with the Department of Computer
Science, Wayne State University, 5057 Woodward Ave., Detroit, MI
48202. E-mail: {shiyong, chang, fotouhi}@wayne.edu.

. P. Yang is with the Department of Computer Science, State University of
New York at Binghamton, T-6, Engineering Building, Binghamton, NY
13902. E-mail: pyang@cs.binghamton.edu.

Manuscript received 5 May 2009; revised 2 Sept. 2009; accepted 27 May 2010;
published online 25 Aug. 2010.
For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org, and reference IEEECS Log Number TSC-2009-05-0116.
Digital Object Identifier no. 10.1109/TSC.2010.38.

1939-1374/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

workflow that consists of over 50 workflow tasks [10] and

serves as a running example in this work. For a given

genome, this workflow takes its protein sequences and

identifies all its multigene families (T1). A particular

multigene family is then selected by the user and its

associated DNA sequences are retrieved (T2). Then, a

recombination analysis is performed on the retrieved

sequences (T3), which consists of two steps: a multiple

DNA sequence alignment step (T4) and a gene conversion

detection step (T5); the latter is implemented by an off-the-

shelf program GENECONV with an input data file

preparation step (T6). As shown in the figure, a scientific

workflow consists of a set of workflow tasks, workflow

inputs, workflow outputs, and data channels that connect

them. Each task represents a computational or analytical

step of a scientific process. A task has input ports and

output ports that provide the communication interface to

other tasks. Tasks are linked together into a workflow as a

graph via data channels. During workflow execution, tasks

communicate with each other by passing data via their

ports through data channels. Finally, a task can have an

arbitrary number of input parameters (special kind of input

ports), which are used by a scientist to configure its

dynamic execution behavior. In the workflow, p1; . . . ; p8 are

input parameters whose meanings are described in the

figure. The workflow is hierarchical: composite task T3

consists of atomic task T4 and composite task T5, which, in

turn, consists of atomic tasks T6 and T7.
This workflow can be executed many times for different

genomes or for the same genome but with different

CHEBOTKO ET AL.: SECURE ABSTRACTION VIEWS FOR SCIENTIFIC WORKFLOW PROVENANCE QUERYING 323

Fig. 1. An intragenomic recombination analysis scientific workflow.

Fig. 2. Security view and secure abstraction view of a scientific workflow run provenance. (a) A workflow run provenance. (b) Postdoc’s security view

of the workflow run provenance. (c) Postdoc’s one secure abstraction view of the workflow run provenance.

parameter settings, resulting in vast amounts of data

products and provenance information. Fig. 2a shows a

sample scientific workflow run of the workflow in Fig. 1.

There are two kinds of nodes: circles represent data

products (labeled with data product identifiers) and

rectangles represent workflow task runs (labeled with task

run and corresponding task identifiers). An edge from a

data product to a task run represents a consume relationship,

while an edge from a workflow task to a data product

represents a produce relationship. Fig. 2a shows the most

detailed workflow run provenance information that will be

recorded by a scientific workflow provenance system.

There are several cases related to provenance security

that we collected from a domain scientist involved in the

project. First, the scientist might publish both the source

data used for recombination analysis as well as discovered

recombination patterns to the public, but not the recombi-

nation analysis workflow itself in order to maintain

competitiveness among peers. Second, the scientist might

release most parts of the workflow, but protect a critical

workflow step, say parameter settings of GENECONV.

Therefore, the public will not know which parameter values

to use to derive a particular recombination pattern with the

GENECONV analysis tool. In this way, the scientist can

show the workflow to a stakeholder to establish collabora-

tion relationship, but not release the GENECONV step

parameters to ensure intellectual property. Finally, the

scientist can choose to protect the wasDerivedFrom depen-

dency relationship of “pattern X was derived from bacterial

genome data Y”; as a result, even though both the source

data and recombination pattern X are released, the public

cannot infer from which (among over 400) bacterial genome

data a particular discovery X was derived.

Following our example, suppose both data products and

their provenance information are sensitive and there is a

role called Postdoc that can access everything except p2, p4,

p6, p8, o4, i5, and the dependency induced by data channel

from o4 to i5; this is specified by a “�” annotation on them.

The “�” annotations on ports imply that data products

consumed or produced by them should not be visible to a

user. On the other hand, the “�” annotation on the data

channel does not allow a user to see that data product d12

was derived from data product d8 (see Fig. 2a). Therefore,

Postdoc can only see a security view of the provenance—a

reduced view of the provenance based on the security

restrictions imposed on this role. The security view of the

provenance Postdoc can access, as shown in Fig. 2b in which

data products d3, d7, d10, d14, d11, and d11’s incoming and

outgoing edges are eliminated. Finally, since a user

typically browses a workflow run provenance at a

particular abstraction level at a time, she will see a secure

abstraction view—a reduced view of the provenance where

composite tasks can be seen as black boxes and security

restrictions are enforced. A secure abstraction view of the

above provenance is shown in Fig. 2c for Postdoc, in which

TR5 : T5 is viewed as a black box but TR3 : T3 is viewed as a

composition of TR4 : T4 and TR5 : T5.

The main contributions of this paper are

1. a formal scientific workflow provenance model as

the basis for querying and access control for work-

flow provenance;
2. a security model for fine-grained access control for

multilevel provenance and an algorithm for the

derivation of a full security specification based on

inheritance, overriding, and conflict resolution;
3. a formalization of the notion of security views and

an algorithm for security view derivation; and
4. a formalization of the notion of secure abstraction

views and an algorithm for its computation.

A prototype called SECPROV has been developed, and

experiments show the effectiveness and efficiency of our

approach.

Organization. The rest of the paper is organized as

follows: Section 2 discusses related work. Section 3 presents

a formal model for scientific workflow provenance. In

Section 4, we present an access control mechanism for

scientific workflow provenance. Sections 5 and 6 present the

notions of security view and secure abstraction view of

provenance, respectively. The implementation details,

performance study, and concluding remarks appear in

Sections 7, 8, and 9, respectively.

2 RELATED WORK

The importance and requirements of security have been

well understood in business workflows [7], [8], [9]. Much

work has been done in authentication [11], authorization

[12], [13], [14], data privacy, and secure workflow models

[15], [16], [17]. While process integrity is ensured by

constrained planning [18], [19], [20], data confidentiality is

often supported by integrating Role-Based Access Control

[21] in the enactment system [22], [23], [15]. Security

requirements can be either managed by the workflow

system itself [24], [25], or enforced outside of the workflow

engine [26], [27].
While execution logs are maintained in business work-

flows, a richer set of provenance information is collected and

maintained in a scientific workflow management system

[28], [29], [30], [31], [32] for the purpose of supporting

scientific discovery reproducibility, result interpretation,

and problem diagnosis [4], [5]. Provenance in scientific

workflows has become increasingly important as evidenced

by the recent provenance challenge workshops [33].
Although security issues for provenance have been

recognized by a few researchers [34], [35], [36], these issues

are still open problems. While several access control

mechanisms have been proposed for business workflows

[7], they are insufficient for scientific workflow provenance

for the following reasons:

1. they do not support the restriction of access to the

dependency relationships between data products in

scientific workflow provenance;
2. they have not considered different levels of

granularity for workflow provenance, including

324 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 3, NO. 4, OCTOBER-DECEMBER 2010

workflows, tasks, ports, data channels, and their
containment and inheritance relationships;

3. they have not considered the interaction of access
control and abstraction; the latter is used for viewing

provenance at different abstraction levels as scien-

tific workflows can be hierarchical; and
4. they have not considered the so-called data channel

constraint introduced by a scientific workflow speci-

fication, which requires that the two ports connected

by a data channel must have the same accessibility

mode, i.e., either a role can access both ports of a

data channel or neither.

Our work uses inheritance to derive security specifica-

tion for provenance at various levels, which is different

from the projection inheritance used in business workflows

[37]: 1) they enforce access control using private workflows,

but provenance access control is not part of their frame-

work; 2) their projection inheritance is used for the

detection of anomalies (deadlocks and livelocks), while

our inheritance is used for the derivation of security

specification; and 3) their projection inheritance is defined

between an interorganizational workflow and its private

workflows, but our inheritance is defined between tasks

and subtasks for the provenance produced by a hierarchical

scientific workflow.

Provenance management is closely related to SOA. First,

web services are one major category of building blocks for

scientific workflows [38], and therefore, scientific workflow

provenance must subsume provenance information that is

captured at the service level, called service provenance [39],

[40], [41]. Second, provenance management should become

a major functionality of SOA, leading to the notion of

provenance-aware service-oriented architecture [42], [43], [44].

Provenance captures the origins and routes of data via

service invocation, interaction, and collaboration in an SOA

system. Hence, provenance tracking is critical to ensure the

security, reliability, and integrity of an SOA system [3], [43].

Finally, a provenance system can be SOA-based, leading to

highly interoperable and discoverable provenance subsys-

tems that can be reused in various SOA-based systems,

including SOA-based scientific workflow management

systems, such as VIEW [45]. Three representative SOA-

based provenance systems are Karma [2], PReServ [46], [47],

and RDFPROV [48]. RDFPROV is used as the provenance

subsystem for the SOA-based VIEW system. The importance

of provenance security in SOA is discussed in [3], [34]. In

[3], a multilevel data provenance security framework for

SOA is proposed; the security model that we propose in this

work can serve as one of the building blocks for that higher

level framework.
Our scientific workflow provenance model is closely

related to the Open Provenance Model (OPM) [49], a

general-purpose provenance model that is currently under

active development. However, a security model for

provenance is not part of OPM, and our security model

can be easily adapted to OPM once it is standardized. Our

notion of abstraction views is closely related to the notion

of user views introduced in [50], [51]. However, user views

do not support security annotation and enforcement at the

task, port, and data channel level, and do not support

security views and secure abstraction views that are

introduced in this paper.

Finally, the notion of view is well known in databases

[52], [53]. While both database view and provenance view

provide a restricted access to underlying data, they

significantly differ in two aspects. First, in databases, a

view is defined based on a set of flat tables and consists of a

stored query accessible as a virtual table composed of the

result set of a query; for provenance, a view is defined

based on a hierarchical provenance graph and consists of

the specification of level of details for each provenance

node. Therefore, we need to consider inheritance and

conflict resolution for security specification for the prove-

nance security model, while such concerns are not raised

for database views. Second, security specification for

database views is typically course-grained, either the whole

view is accessible to a group of users or it is not. On the

other hand, security specification for provenance views is

fine-grained, it is possible that one part of an abstraction

view is accessible while another part is not, and thus,

leading to the notion of secure abstraction view. The notion

of secure abstraction view has not been proposed in the

database literature.

This work extends our conference paper [54] with the

improved security model, algorithms for full security

specification, security view, abstraction view derivation,

algorithm time complexity analysis, and performance study.

3 SCIENTIFIC WORKFLOW PROVENANCE MODEL

To define a security model for scientific workflow prove-

nance, we need to formalize basic components of a scientific

workflow, such as atomic task and composite task, that are

used for security constraints specification. In addition, we

need to have precise notions of task run and workflow run

provenance to enforce a security specification. Even though

OPM [49] is emerging as a community standard for

modeling scientific workflow provenance, it is not sufficient

for our purpose. In particular, OPM provides no definitions

for a workflow or task, which are important to our security

model as security annotations are specified on a workflow

rather than on a provenance graph. Besides that, OPM is

very dynamic and its notions may evolve. Therefore, we

formalize a model for scientific workflow provenance by

defining the notions of atomic task, composite task, task

run, and workflow run provenance, which is sufficient for

our security model, and discuss how it can accommodate

OPM at the end of this section.

Definition 3.1 (Atomic task). An atomic task T is a tuple (tid,
IP, OP), where tid is T ’s unique identifier, IP ¼ fi1,
i2; . . . ; img is the set of input ports of T , and OP ¼ fo1,
o2; . . . ; ong is the set of output ports of T .

We use T:ij and T:ok (or simply ij and ok when it is clear

from the context) to denote the input port ij and the output

port ok of T , respectively. Given a set of tasks T , we use

CHEBOTKO ET AL.: SECURE ABSTRACTION VIEWS FOR SCIENTIFIC WORKFLOW PROVENANCE QUERYING 325

T :IP and T :OP to represent the union of sets of input and

output ports of tasks in T , respectively. An example of an

atomic task is T1 in Fig. 1.

Definition 3.2 (Composite task). A composite task (or
subworkflow) T is a tuple (tid, IP, OP, T , DCin, DCout,
DCmid), where tid is T ’s unique identifier, IP ¼ fi1,
i2; . . . ; img is the set of input ports of T , OP ¼ fo1,
o2; . . . ; ong is the set of output ports of T , T is the set of
connected constituent tasks of T , each of which is either
atomic or composite, DCin : IP ! T :IP is an inverse-
functional one-to-many mapping of T with each ðT:ij; t2:ikÞ 2
DCin representing the data channel from input port ij of T to
input port ik of some task t2 2 T , DCout : T :OP ! OP is an
inverse-functional one-to-many mapping of T with each
ðt1:oj; T :okÞ 2 DCout representing the data channel from
output port oj of some task t1 2 T to output port ok of T ,
and DCmid : T :OP ! T :IP is an inverse-functional one-to-
many mapping of T with each ðt1:oj; t2:ikÞ 2 DCmid repre-
senting the data channel from output port oj of some task
t1 2 T to input port ik of some task t2 2 T . We denote
DC ¼ DCin [DCout [DCmid.

For any t 2 T , we have T � t, representing that T

immediately contains t. For a given workflow W , a list of

tasks T1; T2; . . . ; Tn is called a full containment path of W iff

T1; . . . ; Tn�1 are composite and Tn is atomic, and we have

W ¼ T1 � T2 � � � � � Tn. Our definition requires that all

constituent tasks to be connected, but does not require each

input or output port be an endpoint of a data channel.

Such ports are used as input or output parameters that

interact with users directly. An example of a composite

task is T3 in Fig. 1.

Each execution of a scientific workflow produces a

workflow run provenance, which archives the derivation

history of data products. A task might be used in several

parts of a scientific workflow. Such a task might get

executed multiple times in a particular workflow execution.

Each execution of a task T is called a task run and is

assigned with a unique task run identifier in the form of

TRi : T ; see Fig. 2 for examples. We formalize the notion of

workflow run provenance as follows:

Definition 3.3 (Workflow run provenance). A workflow
run provenance is a tuple (WR, W , D, T R, Consume,
Produce), where WR is the unique identifier of the workflow
run provenance corresponding to a particular execution of
workflow W , D is the set of all the data products consumed
or produced during the execution of the workflow, T R is
the set of all the task runs occurring in the execution and
each tr 2 T R corresponds to a unique task T contained in
W , Consume is the relationship set with each ðd; tr:pÞ 2
Consume representing that port p of task run tr consumed
data product d, and Produce is the relationship set with each
ðtr:q; dÞ 2 Produce representing that port q of task run tr

produced data product d. Given two task runs, tr1 of task
T1 and tr2 of task T2, we can have ðtr1:q; dÞ 2 Produce and
ðd; tr2:pÞ 2 Consume only if ðT1:q; T2:pÞ 2W:DC.

A workflow run provenance graph is acyclic. While data

channels in DCin and DCout pass existing data products

without changing them, the graph has distinguished nodes

for such data products. For example, in Fig. 2a, two nodes

with labels d8 denote that both data products have the same

value which can be stored only once. While the first d8 is

passed between TR2 : T2:o2 and TR3 : T3:i4, the second d8

is passed between TR3 : T3:i4 and TR4 : T4:i4, which is

explicitly shown in the figure.

Definition 3.4 (Data dependency). Given two data products
d1 and d2 (d1 6¼ d2), we say that d2 directly depends on d1 iff
there exists a task run tr such that ðd1; tr:pÞ 2 Consume, and
ðtr:q; d2Þ 2 Produce. We say that d2 depends on d1 iff d2

directly or transitively depends on d1.

Since provenance captures the history of a scientific

experiment and records workflow execution trails that

happened in the past, all input, intermediate, and final

data products, parameters interactively supplied by a

scientist, and data dependencies are precisely defined in a

provenance graph. While some dependencies may be

known only at workflow runtime, they appear to be static

and immutable in recorded provenance. The presented

workflow run provenance model captures provenance at

various levels of abstraction and granularity: Consume and

Produce dependency information are collected for all levels

of a composite task or workflow, and provenance is

collected for task runs, ports, and data channels (by

Consume and Produce). Such a scientific workflow prove-

nance model provides the basis for querying and access

control of provenance at different levels of abstraction and

granularity.

Finally, we show that the presented model has counter-

parts in OPM, such as a task run corresponds to a process, a

data product corresponds to an artifact, an abstraction level

corresponds to an account, and consume, produce, and

depends relationships correspond to used, wasGeneratedBy,

and wasDerivedFrom relationships, respectively. If the

appropriate terminology is used, the provenance graph in

Fig. 2a can be a valid provenance representation in OPM.

Therefore, our workflow run provenance model can

straightforwardly adapt to OPM. However, since OPM

provides no means to model the scientific workflow in

Fig. 1, which is required in our work for security

specification, we introduce the corresponding definitions

of atomic and composite tasks.

4 SECURITY MODEL

In this section, we propose a Role-Based Access Control

(RBAC) for scientific workflow run provenance. Using our

access control, one can not only impose restriction on access

to data products consumed and produced during a work-

flow execution, but also impose restriction on access to the

dependency relationships among the data products. When

a workflow is designed, a system security administrator

provides a security specification for each role of users in the

system, in which a role is typically a job function or a

326 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 3, NO. 4, OCTOBER-DECEMBER 2010

position in an organization (e.g., PI, CoPI, Postdoc, etc.). We

propose three levels of security specification, namely, task

level, port level, and data channel level.

4.1 Task-Level Security Specification

A task can be annotated with þ or �. An annotation of þ for

task T specifies that all tasks, ports, and data channels

contained in T are accessible unless a � annotation is

further specified or derived for them. An annotation of �
for task T specifies that all tasks, ports, and data channels

contained in T are inaccessible under all circumstances (no

overriding is allowed). The administrator specifies security

annotations for all or some of the tasks in the following way:

<Task t, Role r, and security annotation a>, where a can be

either þ or �. We call a set of such security annotations as a

task-level security specification and denote it as TL. Any task

that has no security annotation in TL inherits the annota-

tion of the nearest containing ancestor that has a security

annotation. At the top level, the annotation of a whole

workflow can be set to a default annotation, either þ or �;

we use þ as the default annotation for a workflow in this

paper. The annotation of a task can be calculated using

function getTaskSecAnnot as outlined in Algorithm 1.

Algorithm 1. Algorithm for calculating task sec. annotations

1: function getTaskSecAnnot

2: input: Task t, Role r, workflow specification W ,

security specification TL

3: output: Task security annotation <t; r; a>

4: if there exists <t; r; a> in TL /*annotation is

explicit*/ then

5: if a ¼ þ and there exists task T that contains t and

<T; r;�> is in TL /*þ for t conflicts with � for T */

6: then return inconsistency report end if

7: return <t; r; a>

8: end if

9: if t is workflow W then return <t; r;þ> end if

/*default annotation*/

10: Let tp be a composite task that immediately contains

t (tp � t)
11: <tp; r; ap> ¼ getTaskSecAnnot(tp, r, W , TL)

12: return <t; r; ap> /* inheritance from a parent in a task
hierarchy */

13: end function

4.2 Port-Level Security Specification

A port can be annotated with þ or �. An annotation of þ or

� for port p of task T specifies that all the data products

consumed or produced by T:p from all workflow runs of

the workflow are accessible or inaccessible, respectively.

The administrator specifies security annotations for all or

some of the ports in the following way: <Port p, Role r, and

security annotation a>, where a can be either þ or �. We call

a set of such security annotations as a port-level security

specification and denote it as PL. Any port that has no

security annotation in PL inherits the annotation of its

owning task. The annotation of a port can be calculated

using function getPortSecAnnot outlined in Algorithm 2.

Algorithm 2. Algorithm for calculating port sec.
annotations

1: function getPortSecAnnot

2: input: Port p, Role r, workflow specification W , sec.

specifications TL and PL

3: output: Port security annotation <p; r; a>

4: let t be the owning task of p

5: <t; r; at> ¼ getTaskSecAnnot(t, r, W , TL)

6: if there exists <p; r; a> in PL /*annotation is
explicit*/ then

7: if a ¼ þ and at ¼ � then return inconsistency report

/*þ for p conflicts with � for t*/ end if

8: return <p; r; a>

9: end if

10: return <p; r; at> /*inheritance from a task that

p belongs to*/

11: end function

4.3 Data-Channel-Level Security Specification

A data channel can be annotated withþ or�. An annotation

of þ or � for data channel dc ¼ ðT1:q; T2:pÞ specifies that the

dependency between a data product produced by T1:q and a

data product consumed by T2:p from an execution of the

workflow is accessible or inaccessible, respectively. In our

security model, we require that both ports of a data channel

need to have the same accessibility. When both ports are

accessible, the data channel must also be accessible. When

both ports are inaccessible, the data channel (dependency)

can be specified as either accessible or inaccessible. The

administrator may specify security annotations for all or

some of the data channels in the following way: <Data

channel ðp1; p2Þ, Role r, and security annotation a> , where a

can be either þ or �. We call a set of such security

annotations as a data-channel-level security specification and

denote it as DL. The annotation of a data channel dc that has

no security specification inDL can be derived as follows: 1) if

both ports are accessible or inaccessible, then dc is accessible

or inaccessible, respectively; and 2) if one port is accessible

while the other is not, then the specification is not consistent.

Other derivation rules can be used in practice to produce

variants of our security model. In summary, the annotation

of a data channel can be calculated using function

getDataChannelSecAnnot outlined in Algorithm 3.

Algorithm 3. Algorithm for calculating data channel
security annotations

1: function getDataChannelSecAnnot

2: input: Data channel ðp1; p2Þ, Role r, workflow W , spec.

TL, PL, and DL

3: output: Data channel security annotation

<ðp1; p2Þ; r; a>
4: <p1; r; a1> ¼ getPortSecAnnot (p1, r, W , TL, PL)

5: <p2; r; a2> ¼ getPortSecAnnot(p2, r, W , TL, PL)
6: if a1 6¼ a2 then return inconsistency report /*two ports

of a data channel should have the same annotations*/

end if

7: if there exists <ðp1; p2Þ; r; a> in DL /*ann. is

explicit*/ then

CHEBOTKO ET AL.: SECURE ABSTRACTION VIEWS FOR SCIENTIFIC WORKFLOW PROVENANCE QUERYING 327

8: let t1 (t2) be the owning task of p1 (p2)

9: let t be the nearest containing ancestor of both t1
and t2

10: <t; r; at> ¼ getTaskSecAnnot(t, r, W , TL)

11: if (a ¼ þ and at ¼ �) or (a ¼ � and a1 ¼ þ) then

12: return inconsistency report /*þ for ðp1; p2Þ
conflicts with � for t; � for ðp1; p2Þ conflicts with

þ for p1 or p2*/

13: end if

14: return <ðp1; p2Þ; r; a>
15: end if

16: return <ðp1; p2Þ; r; a1> /* inheritance from ports */

17: end function

4.4 Full Security Specification

The three defined functions, getTaskSecAnnot, getPortSecAn-

not, and getDataChannelSecAnnot, have quadratic theoretical

worst-case time complexity when sets are implemented

using hash tables; however, in practice, the algorithms are

very efficient as the set lookup operation takes constant

time on average. These functions answer the question of

how full security specifications for a workflow W can be

derived from partial security specifications TL, PL, and DL

for W . In the following, we refer a tuple (W , TL, PL, and

DL) as a security specification S. Furthermore, we denote full

security specification that contains explicit security annota-

tions for all tasks, ports, and data channels in a given

workflow as SF , and SF can be easily derived from S in

Oðn3Þ time as outlined in Algorithm 4. A slight modification

of this algorithm to process a task hierarchy in level-order

and “remember” task annotations, rather than recalculating

them, can achieve quadratic performance.

Algorithm 4. Algorithm for calculating full sec.
specifications

1: function calculateFullSecuritySpecification

2: input: Role r, workflow spec. W , sec. specs TL, PL,

and DL

3: output: Full security specification SF

4: let SF be an empty set

5: for each task t in W do

6: <t; r; a> ¼ getTaskSecAnnot (t, r, W , TL)
7: add <t; r; a> to SF end for

8: for each port p in W do

9: <p; r; a> ¼ getPortSecAnnot (p, r, W , TL, PL)

10: add <p; r; a> to SF end for

11: for each data channel ðp1; p2Þ in W do

12: <ðp1; p2Þ; r; a> ¼ getDataChannelSecAnnot

((p1, p2), r, W , TL, PL, DL)

13: add <ðp1; p2Þ; r; a> to SF end for

14: return S F

15: end function

In Fig. 3, we show security specification S and full
security specification SF for our sample scientific workflow
W (see Fig. 1) and role Postdoc. SF is represented as a graph
and is computed by calling the corresponding functions on
each task, port, and data channel of W .

4.5 Consistent Security Specification and Inference
Problems

To check the consistency of a security specification, we
define it formally below.

Definition 4.1 (Consistent security specification). A secur-
ity specification (W , TL, PL, DL) is consistent if and only if

1. there is no task, port, and data channel in W , such

that it has an annotation or derived annotation of both

þ and �;
2. for any task T , if T is annotated with �, then there

does not exist any task T 0 contained in T , such that T 0,

or some port or data channel of T 0 is annotated with þ;
3. the two ports associated with each data channel
ðT1:q; T2:pÞ must have the same accessibility; and

4. for each data channel ðT1:q; T2:pÞ, if both end ports are

accessible, then the data channel must also be

accessible.

The first constraint ensures that no ambiguity for

accessibility will rise in our security model. The second

328 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 3, NO. 4, OCTOBER-DECEMBER 2010

Fig. 3. Security specification S and full security specification SF for intragenomic recombination analysis scientific workflow and role Postdoc.

constraint enforces the semantics of a � annotation for a

task T : all tasks contained in T and their ports and data

channels are inaccessible under all circumstances. The

third constraint, called data channel constraint, restricts that

the two ports connected by any data channel must have

the same security annotations. The rationale for this

constraint is to avoid unintentional permission of accessing

a sensitive data product in the situation in which the data

product is accessible via one port (with þ annotation) and

inaccessible via another port (with � annotation) of some

data channel. The fourth constraint ensures that if one

needs to enforce the inaccessibility of a data channel, then

the inaccessibility of both ports needs to be enforced to

prevent an inference of the dependency by comparing data

products accessible from the two ports.

While we define these four constraints in our security

model as default constraints, sometimes, it may be

interesting to relax some of them or add new ones. For

example, eliminating the data channel constraint will allow

annotating one port of a data channel as accessible and

another port as inaccessible. In this situation, the data

product that is passed via the channel is visible through the

accessible port, and therefore, not protected. However, the

corresponding produce or consume relationship is hidden

from a user due to the inaccessible port, and thus,

provenance information regarding which task run pro-

duced or consumed the data product is inaccessible. On the

other hand, it may be desirable to add a new constraint,

such as this one: if output of task T1 is inaccessible, then

output of task T2 must also be inaccessible, because, for

example, it is known that T2 takes the output of T1 and

simply converts it into another format without the content

modification, and therefore, revealing T2’s output is

equivalent to revealing T1’s output. Overall, in the context

of our work, adding or removing a constraint can only

result in minor changes of Algorithms 1-3 that are related

to security specification consistency checking. In the

following, we always use the four constraints stated in

Definition 4.1.

Our algorithms (Algorithms 1-4) are correct in the sense

that only consistent security specifications will be allowed.

First, for a task, either it is explicitly annotated with þ or

�, or it will inherit the annotation of its nearest ancestor

which has an explicit annotation. Moreover, constraint 2 is

checked. As a result, the annotation of a task is always

consistent. Second, for a port of a task T , either it is

explicitly annotated with þ or �, or it will inherit the

annotation of T . Therefore, the guarantee of the consistency

of a task annotation, as well as the constraint 2 check,

ensures the consistency of port annotation. Finally, for a

data channel ðT1:q; T2:pÞ, either it is explicitly annotated

with þ or �, or it will inherit the accessibility of its end

ports. In both cases, constraints 2-4 are checked to ensure

the consistency of the specification.

Our sample security specification (see Fig. 3) for the

intragenomic recombination analysis scientific workflow is

consistent, since all the constraints hold for the derived

full security specification. When our algorithms encounter

an inconsistent security specification that violates one or

more of the consistency constraints, the administrator is

notified about the problem and is required to change the

security specification.

To complete our security analysis, we discuss the

following seven possible inference issues:

1. an output (input) of a task is inaccessible, but can be

inferred if the same output (input) of its subtask is

accessible;
2. an output (input) of a task is inaccessible, but can be

inferred if the same output (input) of its parent task

is accessible;
3. a data product is inaccessible, but can be inferred if it

is inaccessible through one port of a data channel but
accessible through the other port;

4. a data channel and its related data dependencies are

inaccessible, but can be inferred if both ports of the

data channel are accessible as they produce and

consume the same data product;
5. an output of a task is inaccessible, but can be

inferred by executing the task if the task is available

and all its inputs are accessible;
6. an input of a task is inaccessible, but can be

inferred by executing the inverse function of the

task if such a function is available and all outputs

are accessible; and
7. the functionality of a task is inaccessible, but can be

inferred if all or some inputs and outputs of the task
are accessible.

The first two inferences are only possible if the same data

product is passed between a task and its subtask via a data

channel with different security annotations on their ports,

which is a special case of inference 3. Therefore, in a

consistent security specification, inferences 1-3 are pre-

vented by constraint 3 in Definition 4.1. Case 1 is

impossible because of constraint 2. The condition for

inference 4 cannot be true due to constraint 4. While the

first four inferences are solely based on provenance

information, inferences 5 and 6 involve execution of a task

or its inverse, which is beyond the capability of a

provenance system. Such inferences can be addressed with

an additional access control for workflows and tasks.

Finally, inference 7 is about task functionality rather than

provenance, and hence, cannot be solved in our security

model for provenance. In summary, our model can

effectively prevent inferences 1-4. It is also straightforward

to check conditions for inferences 5-7 to prompt an

administrator to examine these issues.

4.6 RBAC Administration

Administration in the proposed RBAC can rely on existing

and well-understood approaches, such as Administrative

RBAC (ARBAC) [55], [56] and Scoped Administration of

RBAC (SARBAC) [57]. Both administration models support

administrative and normal roles, as well as role hierarchies.

They specify which administrators can assign which roles

to which users, which administrators can assign which

permissions to which users, and which administrators can

CHEBOTKO ET AL.: SECURE ABSTRACTION VIEWS FOR SCIENTIFIC WORKFLOW PROVENANCE QUERYING 329

specify access control policies for which parts of a work-

flow. With a role hierarchy in place, a role, such as Postdoc,

can be an implicit member of its junior role, say

Investigator, and hence, has all permissions of the junior

role. Security specifications can first be assigned to roles

that do not have any junior roles. Afterward, the admin-

istrators can provide specifications for roles whose junior

roles have already been considered. Such roles automati-

cally inherit the permissions of their junior roles and such

permissions cannot be removed unless the permissions are

removed from their junior roles. The administrators can

provide more permissions for such roles. While ARBAC

and SARBAC are responsible for managing access control

policies and granting access to subjects in the system, our

RBAC is enforced with security views of provenance (and

corresponding algorithms) that are discussed next.

5 SECURITY VIEWS OF PROVENANCE

Our approach for enforcing security specification for
scientific workflow run provenance is based on the
innovative notion of security views. A security view of
provenance is a restricted view of a workflow run
provenance consisting of all and only the information that
users are authorized to access.

Before we formalize and incorporate the security view

notion into our provenance model, consider the implication

of security annotations of data channels and their asso-

ciated ports on the accessibility of provenance. A consistent

specification has three cases of security annotations for a

data channel and its associated ports, as shown in Fig. 4;

other cases lead to inconsistent specifications due to the

mandatory data channel constraint. In the first case, both

ports and the data channel are annotated with þ, and

therefore, corresponding data product and produce-con-

sume relationships should be accessible. In the second case,

both ports are inaccessible, while the data channel is

accessible, which implies that the data product is not

accessible but the produce-consume relationships are. As

our model does not permit a task run to be connected

directly to another task run, we replace the data product

with a dummy data product dd with a new unique ID to

maintain the relationships without authorizing the access

to the data product itself. Finally, in the third case, both the

data channel and its associated ports are inaccessible,

which implies that both the data product and produce-

consume relationships are inaccessible. Therefore, the data

product and its associated edges are deleted in the

provenance that is returned to a user.

The security view of a workflow run provenance (WR,

W , D, T R, Consume, and Produce) only includes a subset

of data products in D, as well as some dummy data

products. Similarly, subsets of Consume and Produce are

preserved and augmented with relationships for newly

introduced dummy data products. In the following, we

outline the security view definition.

Definition 5.1 (Security view). A security view of a workflow

run provenance is a tuple (WR, W , D0, T R, Consume0,

Produce0) that is derived from a workflow run provenance

(WR, W , D, T R, Consume, Produce) and a consistent full

security specification SF for a user role r, where

. D0 ¼ Da [Dd is the set consisting of 1) all the data

products Da � D consumed or produced by the

workflow run and each d 2 Da is accessible to r via

an accessible port p, i.e., it is true that <p; r;þ> 2
SF and ðd; tr:pÞ 2 Consume or ðtr:p; dÞ 2 Produce
for some tr 2 ðT R [fWRgÞ, and 2) data products

Dd, where each d 2 Dd is a dummy data product

with a unique data product ID and each d

corresponds to data product d0 2 D that is consumed

and produced by inaccessible ports connected by an

accessible channel (see Case 2 in Fig. 4), i.e.,

ðd0; tri:pÞ 2 Consume, ðtrj:q; d0Þ 2 Produce, ðq; pÞ
is a data channel, <p; r;�> 2 SF , <q; r;�> 2 SF ,

and <ðp; qÞ; r;þ> 2 SF .
. Consume0 ¼ Consumea [Consumed is the relation-

ship set consisting of 1) set Consumea which is the

projection of Consume over Da and 2) set Consumed

which is the projection of Consume over all the data

products that have corresponding dummy data pro-

ducts in Dd and data products in Consumed are

substituted with their dummy versions.
. Produce0 ¼ Producea [Produced is the relationship

set consisting of 1) set Producea which is the

projection of Produce over Da and 2) set Produced

which is the projection of Produce over all the data

products that have corresponding dummy data pro-

ducts in Dd and data products in Produced are

substituted with their dummy versions.

The security view of a workflow run provenance can be

calculated using function deriveSecurityView outlined in

Algorithm 5. The algorithm iterates over relationship sets

Consume and Produce to construct new sets D0, Consume0,
and Produce0 for the security view. Intuitively, the

algorithm checks security annotations on ports and data

channels to identify the cases described in Fig. 4 and

construct the three new sets accordingly. Handling of

Cases 1-3 are marked in the algorithm comments, where no

information is added to the security view for Case 3.

Situations in which a data product is produced (con-

sumed), but never consumed (produced), are handled in

330 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 3, NO. 4, OCTOBER-DECEMBER 2010

Fig. 4. Implication of security annotations of a data channel and its

associated ports on provenance accessibility.

lines 8 and 25, respectively. The algorithm takes Oðn3Þ time

when the SF set is implemented via a hash table.

Algorithm 5. Algorithm for deriving security views

1: function deriveSecurityView

2: input: Role r, consistent full sec. specification SF ,

workflow run provenance (WR, W , D, T R, Consume,

Produce)

3: output: Security view (WR, W , D0, T R, Consume0,

Produce0)

4: let D0, Consume0, and Produce0 be empty sets

5: for each ðtr:q; dÞ in Produce do

6: if <q; r;þ> is in SF /*Case 1*/ then

7: add d to D0
8: add ðtr:q; dÞ to Produce0

9: else

10: let dd be a dummy data product to represent d

11: for each ðd; tr0:pÞ in Consume do

12: if <ðq; pÞ; r;þ> is in SF /*Case 2*/ then

13: add dd to D0
14: add ðtr:q; ddÞ to Produce0

15: add ðdd; tr0:pÞ to Consume0

16: else

17: /*Do nothing; data product and relationships

are not part of the view*/ /*Case 3*/

18: end if

19: end for

20: end if

21: end for

22: for each ðd; tr:pÞ in Consume do

23: if <p; r;þ> is in SF /*Case 1*/ then

24: add d to D0
25: add ðd; tr:pÞ to Consume0

26: end if

27: end for

28: return (WR, W , D0, T R, Consume0, Produce0)

29: end function

A sample security view derived using deriveSecurity-

View for the intragenomic recombination analysis scientific

workflow run provenance and Postdoc’s security specifica-

tion (see Fig. 3) is shown in Fig. 2b. For example, data

product d11 and its corresponding produce and consume

relationships are not part of the security view because

the test conditions in lines 6, 12, and 23 fail, such as

<o4; Postdoc;þ> 62 SF , <ðo4; i5Þ; Postdoc;þ> 62 SF , a n d

<i5; Postdoc;þ> 62 SF . Similarly, data products d3, d7, d10,

and d14, along with their relationships, are eliminated from

the view because they are produced (line 6) or consumed

(line 23) by inaccessible ports p2, p4, p6, and p8, respectively.

On the other hand, data products and their relationships

recorded via accessible ports are retained in the security

view, as shown in Fig. 2b.

6 SECURE ABSTRACTION VIEWS OF PROVENANCE

Hierarchical structure of scientific workflows, expressed

via composite tasks or subworkflows, can serve as an

important mechanism for abstraction. While exploring a

workflow run provenance, a user may be interested in data

products that have been produced or consumed by only

certain composite task runs instead of looking into a more

detailed view where provenance of their constituent task

runs is revealed. Therefore, an abstraction mechanism is

important to enable a user to focus on only relevant

provenance information. In this section, we outline the

notion of abstraction views and introduce a framework

that integrates abstraction views and security views into

secure abstraction views, such that a user can examine

provenance at different abstraction levels while respecting

the security specification prescribed for her.

We define an abstraction view specification for a scientific

workflow and an abstraction view of a workflow run

provenance in the following:

Definition 6.1 (Abstraction view specification). Given a
workflow W , let �ðWÞ be the set of constituent tasks of W at
all levels, including W itself. An abstraction view
specification is a Boolean function A : �ðW Þ ! fF; Tg
such that for each full containment path T1; T2; . . . ; Tn of W ,
AðTnÞ ¼ F and if for some i ð1 � i � n� 1Þ, AðTiÞ ¼ T ,
and AðTiþ1Þ ¼ F , then AðT1Þ ¼ AðT2Þ ¼ � � � ¼ AðTiÞ ¼ T
and AðTiþ1Þ ¼ � � � ¼ AðTnÞ ¼ F .

Intuitively, AðtÞ ¼ F indicates that task t is abstracted

as if it was an atomic task with its internal composition

details hidden from a user. AðtÞ ¼ T indicates that task t

is viewed as a composition of its constituent tasks. An

abstraction view specification identifies a particular level

of composition details of a workflow that a user can see;

AðtÞ is always assigned F when t is an atomic task since it

has no internal composition details to be seen. Provenance

of a task run is relevant (visible) in an abstraction view iff

one of the following two conditions for the corresponding

task t in W holds: 1) AðtÞ ¼ F and t ¼W (t is the whole

workflow) or 2) AðtÞ ¼ F , t has immediately containing

(parent) composite task tp � t, and AðtpÞ ¼ T .

For example, an abstraction view specification for the

workflow W in Fig. 1 that views T3 as an atomic task and W

as the composition of T1, T2, and T3 can be formalized as

A1 ¼ fW ! T; T1 ! F; T2 ! F; T3 ! F; T4 ! F;

T5 ! F; T6 ! F; T7 ! Fg:

In the meanwhile, an abstraction view specification that

views T5 as an atomic task and W as the composition of T1,

T2, T4, and T5 can be formalized as

A2 ¼ fW ! T; T1 ! F; T2 ! F; T3 ! T; T4 ! F;

T5 ! F; T6 ! F; T7 ! Fg:

The implications of abstraction view specification on the

provenance information are elaborated in the following

definition:

Definition 6.2 (Abstraction view). An abstraction view of a
workflow run provenance is a tuple (WR, W , D0, T R0,
Consume0, Produce0) that is derived from a workflow run

CHEBOTKO ET AL.: SECURE ABSTRACTION VIEWS FOR SCIENTIFIC WORKFLOW PROVENANCE QUERYING 331

provenance (WR, W , D, T R, Consume, Produce) and an
abstraction view specification A for workflow W , where

. T R0 � T R, such that tr 2 T R0 iff tr 2 T R, tr
executes a task t in W , AðtÞ ¼ F , and (t ¼W or
(tp � t and AðtpÞ ¼ T)).

. D0 � D, such that d 2 D0 iff d 2 D, d is produced or
consumed by a task run tr 2 T R0.

. Consume0 and Produce0 are the projections of
Consume and Produce, respectively, over D0 and
T R0, such that ðd; tr:pÞ 2 Consume (ðtr:q; dÞ 2
Produce) iff d 2 D0, tr 2 T R0, and p 2 tr:IP
(q 2 tr:OP).

The abstraction view of a workflow run provenance can

be calculated using function deriveAbstractionView out-

lined in Algorithm 6. The algorithm iterates over sets T R,

Consume, and Produce to construct new sets T R0, D0,
Consume0, and Produce0 for the abstraction view, such that

irrelevant provenance information is filtered out according

to a given abstraction view specification A. Conditions in

lines 11 and 15 ensure that a task run is viewed as atomic.

The algorithm can be implemented to have quadratic time

complexity.

Algorithm 6. Algorithm for deriving abstraction views

1: function deriveAbstractionView

2: input: Abstraction view specification A, workflow run

provenance (WR, W , D, T R, Consume, Produce)

3: output: Abstraction view (WR, W , D0, T R0, Consume0,
Produce0)

4: let T R0, D0, Consume0, and Produce0 be empty sets

5: for each tr in T R do

6: let t be a task in W that tr executes

7: if AðtÞ ¼ F and ((t ¼W) or (for t’s parent tp,

AðtpÞ ¼ T)) then

8: add tr to T R0 /*task runs preserved in the view*/

9: end if

10: end for

11: for each ðtr:q; dÞ in Produce, such that tr is in T R0 and

q is in tr:OP do

12: add d to D0 /*preserved data products*/

13: add ðtr:q; dÞ to Produce0 /*preserved produce

relationships*/

14: end for

15: for each ðd; tr:pÞ in Consume, such that tr is in T R0 and

p is in tr:IP do

16: add d to D0 /*preserved data products*/

17: add ðd; tr:pÞ to Consume0/*preserved consume

relationships*/

18: end for

19: return (WR, W , D0, T R0, Consume0, Produce0)
20: end function

Thus, both security and abstraction views are restricted

views (aka filters) of a workflow run provenance that

include restricted sets of data products, consume relation-

ships, produce relationships, and so forth. To integrate

these two kinds of views into our framework, we introduce

a novel notion of secure abstraction view as follows:

Definition 6.3 (Secure abstraction view). Let svSr ðWRÞ and
avAðWRÞ denote operations that compute a security view of
workflow run provenance WR for role r and an abstraction
view of workflow run provenance WR for user u of role r,
respectively, where a security specification S for r and an
abstraction view specification A for u are given. A secure
abstraction view of workflow run provenance WR for user u
with role r is defined as avAðsvSr ðWRÞÞ or svSr ðavAðWRÞÞ.

Operations svSr ðWRÞ and avAðWRÞ can be implemented

with our proposed functions deriveSecurityView and

deriveAbstractionView. The commutativity of these opera-

tions, i.e., svSr ðavAðWRÞÞ � avAðsvSr ðWRÞÞ, should be evi-

dent, as briefly explained in the following. On the one

hand, avAðWRÞ returns a subgraph of a provenance graph

WR without altering existing dataflows, such that if a data

product in WR is consumed or produced, then the

relationships can be only preserved or hidden in

avAðWRÞ. Therefore, svSr ðWRÞ and svSr ðavAðWRÞÞ must

have the same effect on dataflow-associated provenance

relationships (see Fig. 4) that are common in WR and

avAðWRÞ, and all the relationships in avAðWRÞ are also in

WR. On the other hand, svSr ðWRÞ does not affect task runs

in WR, such that svSr ðWRÞ and WR have the same sets of

task runs. Therefore, avAðWRÞ and avAðsvSr ðWRÞÞ must

filter out the same task runs, along with their consume

and produce relationships.

A sample secure abstraction view of the intragenomic

recombination analysis scientific workflow run prove-

nance for Postdoc’s security specification (see Fig. 3) and

the abstraction view specification A2 (see definition

above) is shown in Fig. 2c. It can be computed by first

applying deriveSecurityView (see Fig. 2b), and then,

applying deriveAbstractionView, or vice versa. For exam-

ple, to compute the provenance graph in Fig. 2c from the

graph in Fig. 2b based on the abstraction view specifica-

tion fW ! T , T1 ! F , T2 ! F , T3 ! T , T4 ! F , T5 ! F ,

T6 ! F , T7 ! Fg, the deriveAbstractionView function

first filters out (line 7) task runs TR3 : T3, TR6 : T6, and

TR7 : T7 that are not visible in the abstraction view. The

rest, filtering out the corresponding produce and

consume relationships, is straightforward such that only

relationships that involve ports of the retained task runs

are added to the view along with the data products

(lines 12-13 and 16-17).

Finally, we outline three approaches to provenance

querying with security views and abstraction views (see

Fig. 5). In the first, the most natural one, a provenance query

q is evaluated over a secure abstraction view avAðsvSr ðWRÞÞ
or svSr ðavAðWRÞÞ of provenance. In the second approach, q

is evaluated over a workflow run provenance WR and the

result is filtered out based on security and abstraction view

specifications S and A. In the last approach, q is rewritten

into a “security and abstraction view aware” query q0, and q0

is evaluated over WR. For example, consider the following

query q issued by a Postdoc user: return task runs that

produced data product d15 (see Fig. 2). Using the first

approach, we can retrieve TR5 : T5 (see Fig. 2c) directly as

332 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 3, NO. 4, OCTOBER-DECEMBER 2010

the result of the query. Using the second approach, we can

retrieve TR5 : T5, TR7 : T7, and TR3 : T3 (see Fig. 2a) and

filter out TR7 : T7 and TR3 : T3, since the tasks T7 and T3 are

not part of the Postdoc’s abstraction view specification.

Finally, using the third approach, we can rewrite q to return

task run tr that produced data product d15, such that tr does

not execute T7 or T3 and tr’s output port is accessible with

respect to the security specification. While the first

approach will be more efficient if a user is authorized to

access only a small portion of the provenance, the second

approach can take advantage of indexing techniques to

speed up query processing, and the third approach will be

the best choice if the security policy for a user will not

change frequently as query rewriting can be reused for

future access.

7 SECPROV PROTOTYPE AND SERVICES

COMPUTING APPLICATIONS

We developed the SECPROV [58] prototype to validate the

effectiveness of our approach to secure provenance

querying with integrated security views and abstraction

views. We used XSB Prolog to implement algorithms for

security and abstraction views derivation and Java with

the JGraph library to implement a GUI for assigning

security and abstraction specifications. In Fig. 6, two

screenshots of SECPROV are presented. In the upper one,

an abstraction view specification is selected (on the left)

based on the task hierarchy of a workflow, such that a

task can be “folded” or “unfolded.” A workflow (on the

right) is annotated at the task, port, and data channel

levels to create a security specification. The lower screen-

shot shows a secure abstraction view of a workflow run

provenance (on the right). A user can select different

abstraction levels from the left panel to examine different

abstraction views of the same workflow run provenance.

Each abstraction view is secure (aka secure abstraction

view) in the sense that only accessible provenance

information is returned to the user according to the

security policy specified for her at that abstraction level.

Note that the returned view does not have to be a

connected graph; in this case, the dependencies between

the subgraphs are hidden from the user.

Our proposed security and abstraction mechanisms are

applicable to provenance of any computing system that is

composed of loosely coupled components. The most

natural examples include workflows, SOA-based systems,

and composite web services. While we present our

solution in the context of scientific workflows, it applies

to provenance-aware SOAs [42], [43] and composite web

services [59] as well. In both SOAs and composite web

services, constituent services can be composite, and thus,

impose multilevel provenance semantics. Abstraction

views provide a mechanism for a user to examine service

provenance at a simplified abstraction level and secure

abstraction views further restrict to expose only author-

ized provenance information. Our implementation of the

secure abstraction views is currently used in VIEW [45], an

SOA-based scientific workflow management system. VIEW

consists of six loosely coupled autonomous distributed

service subsystems, where the Provenance Manager is the

key subsystem to manage and query scientific workflow

provenance. In VIEW, a scientific workflow is composed

from tasks, which are abstracted from task components,

such as local executables, remote web services, and Grid

services [38]. During workflow execution, provenance

(including service provenance) is automatically collected

and stored in the Provenance Manager. Secure abstraction

views are used in VIEW to examine service provenance at

different abstraction levels in a secure manner.

CHEBOTKO ET AL.: SECURE ABSTRACTION VIEWS FOR SCIENTIFIC WORKFLOW PROVENANCE QUERYING 333

Fig. 6. Screenshots of SECPROV. (a) Abstraction view specification (on

the left) and security specification (on the right). (b) Sample secure

abstraction view of provenance.

Fig. 5. Secure querying architecture. (a) Preprocessing. (b) Postproces-

sing. (c) Query rewriting.

8 PERFORMANCE STUDY

The performance study reported in this section was

conducted on a PC with 3.00 GHz Intel Core 2 CPU,

4 GB RAM, and 750 GB disk space running MS Windows

XP Professional. While functions deriveSecurityView and

deriveAbstractionView were used to either preprocess

(materialized secure abstraction views) or postprocess

(dynamically computed secure abstraction views) prove-

nance data, sample provenance queries were evaluated

with our RDFPROV system [48] that stored workflow run

provenance in a MySQL 5.0 CE RDBMS. Provenance was

generated by our in-house VIEW workflow engine [45] in

the Resource Description Framework (RDF) format accord-

ing to our provenance model. The VIEW system provides a

user-friendly GUI for the design and execution of scientific

workflows, as well as the collection and management of

scientific workflow provenance; more details on VIEW can

be found in [45].

The performance of functions deriveSecurityView and

deriveAbstractionView is presented in Fig. 7. We used a

workflow with 12 tasks and two loops, which allowed us

to generate workflow run provenance documents of

different sizes. The provenance size was measured as the

number of statements in a document (e.g., the total

number of task runs, data products, and consume and

produce relationships). Our abstraction and security view

specifications were fixed for a user and user’s role,

respectively. The security view filtered out �20 percent

of its input by restricting access to some relationships in

one of the loops. The abstraction view filtered out

�50 percent of its input by hiding provenance of the other

loop. Overall, the functions showed good performance,

while the abstraction view derivation showed to be faster

than the security view derivation. As a result, the

derivation of a secure abstraction view as svSr ðavAðWRÞÞ
showed to be more efficient than the derivation of the

same view as avAðsvSr ðWRÞÞ, since, in the first case, svSr
was applied to a smaller data set.

To evaluate the performance of provenance queries, we
stored our provenance data set with 100 workflow runs of
size 10,000 statements (triples) in each into the RDFPROV

system using the SchemaMapping-T and DataMapping-T

algorithms presented in [48], which resulted in a database

instance with one million triples. Similarly, we stored the

secure abstraction view of each workflow run provenance

in this data set as a new database instance with �400;000

triples. In Fig. 8, we report evaluation times for four queries,

where each query was evaluated over the database with:

1) the original data set with one million triples, returning

nonsecure results, 2) the secure abstraction view data set,

returning secure results, and 3) the original data set with

postprocessing to filter out (similar to deriveSecurityView

and deriveAbstractionView) nonsecure and nonrelevant

results based on security and abstraction view specifica-

tions, returning secure results. For a particular workflow

run, the queries returned:

Q1. complete provenance of the workflow run,
Q2. provenance of task runs that executed an iterative

workflow task (task involved in a loop),
Q3. provenance of a task run that executed a noniterative

workflow task, and
Q4. provenance of a task run that executed a workflow

task, whose provenance is not visible in the abstrac-

tion view.

The queries were expressed in SPARQL as follows: The first

query returned all accessible provenance for a workflow

run with identifier wr50 or, in other words, all accessible

RDF triples (subject, predicate, object) from graph wr50:

SELECT ?sub ?pre ?obj

FROM <wr50>

WHERE {?sub ?pre ?obj .}

The second query returned provenance of task runs that

executed an iterative task with identifier t5 for the same

workflow run wr50 or, in other words, all accessible RDF

triple from graph wr50 whose subjects were task runs

(particular bindings of variable ?tr) that executed task t5:

SELECT ?tr ?pre ?obj

FROM <wr50>

WHERE {?tr :executes :t5 .

?tr ?pre ?obj .}

334 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 3, NO. 4, OCTOBER-DECEMBER 2010

Fig. 8. Performance of provenance queries over original provenance

(nonsecure results), its secure abstraction view (secure results), and

original provenance with postprocessing to filter out results based on

security and abstraction view specifications (secure results).

Fig. 7. Performance of algorithms deriveSecurityView and deriveAb-

stractionView to derive svSr ðWRÞ, avAðWRÞ, avAðsvSr ðWRÞÞ, and

svSr ðavAðWRÞÞ.

The other two queries were similar to Q2, except for that

task identifiers were different to correspond to a nonitera-

tive workflow task and a task that did not belong to user’s

abstraction view.

As reported in Fig. 8, while both approaches to secure

provenance querying showed good performance, the

approach which relied on materialized secure abstraction

views showed to be faster than the one which relied on

dynamic view calculation. Depending on the disk space

constraint, the change frequency of security and abstraction

view specifications, and the number of such specifications,

one approach or the other can be given a preference.

9 CONCLUSIONS AND FUTURE WORK

In this work, we studied the problem of protecting

scientific workflow provenance, including both data

products and their dependencies. First, we formalized

scientific workflow provenance model that builds the basis

for querying and access control. Second, we proposed a

security model for fine-grained access control for multi-

level provenance and an algorithm for the derivation of a

full security specification based on inheritance, overriding,

and conflict resolution. Third, we formalized the notion of

security views of provenance to serve as the security

enforcement mechanism and proposed an algorithm for

security view derivation. Fourth, we formalized the notions

of abstraction views and secure abstraction views, and

outlined algorithms for their computation. Finally, we

developed the SECPROV prototype to validate the effec-

tiveness of our approach and conducted a performance

study. In the future, we will consider

1. conducting security case studies using scientific
workflows with more complex data patterns [60],

2. developing a context-aware access control for
workflow provenance where access to the output
of a task depends on the access to the input of
the task,

3. integrating our access control with an access
control for data products (e.g., XML documents
[61]) to deal with the granularity of data, and

4. studying usability of the system.

REFERENCES

[1] L. Zhang, J. Zhang, and H. Cai, Services Computing. Springer-
Verlag, 2007.

[2] Y. Simmhan, B. Plale, and D. Gannon, “Karma2: Provenance
Management for Data-Driven Workflows,” Int’l J. Web Services
Research, vol. 5, no. 2, pp. 1-22, 2008.

[3] W.T. Tsai, X. Wei, Y. Chen, R.A. Paul, J.Y. Chung, and D. Zhang,
“Data Provenance in SOA: Security, Reliability, and Integrity,”
Service Oriented Computing and Applications, vol. 1, no. 4, pp. 223-
247, 2007.

[4] Y. Simmhan, B. Plale, and D. Gannon, “A Survey of Data
Provenance in E-Science,” SIGMOD Record, vol. 34, no. 3, pp. 31-
36, 2005.

[5] R. Bose and J. Frew, “Lineage Retrieval for Scientific Data
Processing: A Survey,” ACM Computer Surveys, vol. 37, no. 1,
pp. 1-28, 2005.

[6] S. Miles, P.T. Groth, M. Branco, and L. Moreau, “The Require-
ments of Using Provenance in E-Science Experiments,” J. Grid
Computing, vol. 5, no. 1, pp. 1-25, 2007.

[7] V. Atluri and J. Warner, “Security for Workflow Systems,”
Handbook of Database Security Applications and Trends, pp. 213-230,
Springer, 2007.

[8] R.A. Botha and J.H.P. Eloff, “Separation of Duties for Access
Control Enforcement in Workflow Environments,” End-to-End
Security, vol. 40, no. 3, pp. 666-682, 2001.

[9] “Workflow Security Considerations,” White Paper wFMC-TC-
1019, Workflow Management Coalition, Feb. 1998.

[10] J. Alhiyafi, C. Sabesan, S. Lu, and J.L. Ram, “RECOMBFLOW: A
Scientific Workflow Environment for Intragenomic Gene Conver-
sion Analysis in Bacterial Genomes, Including the Pathogen
Streptococcus Pyogenes,” Int’l J. Bioinformatics Research and
Applications, vol. 5, no. 1, pp. 1-19, 2009.

[11] R. Martinho, D. Domingos, and A. Rito-Silvas, “Supporting
Authentication Requirements in Workflows,” Proc. Eighth Int’l
Conf. Enterprise Information Systems: Databases and Information
Systems Integration, pp. 181-188, 2006.

[12] J. Warner and V. Atluri, “Inter-Instance Authorization Constraints
for Secure Workflow Management,” Proc. 11th ACM Symp. Access
Control Models and Technologies, pp. 190-199, 2006.

[13] W. Huang and V. Atluri, “Analysing the Safety of Workflow
Authorization Models,” Proc. IFIP TC11 WG 11.3 12th Int’l Working
Conf. Database Security XII, pp. 43-57, 1999.

[14] S. Wu, A. Sheth, J. Miller, and Z. Luo, “Authorization and Access
Control of Application Data in Workflow Systems,” J. Intelligent
Information Systems, vol. 18, no. 1, pp. 71-94, 2002.

[15] P. Hung and K. Karlapalem, “A Secure Workflow Model,” Proc.
Australasian Information Security Workshop Conf. ACSW Frontiers,
2003.

[16] S. Kandala and R. Sandhu, “Secure Role-Based Workflow
Models,” Proc. 15th Ann. Working Conf. Database and Application
Security, pp. 45-58, 2001.

[17] V. Atluri, W. Huang, and E. Bertino, “A Semantic-Based Execution
Model for Multilevel Secure Workflows,” J. Computer Security,
vol. 8, no. 1, pp. 3-41, 2000.

[18] E. Bertino, E. Ferrari, and V. Atluri, “The Specification and
Enforcement of Authorization Constraints in Workflow Manage-
ment Systems,” ACM Trans. Information and System Security, vol. 2,
no. 1, pp. 65-104, 1999.

[19] J. Wainer, P. Barthelmess, and A. Kumar, “W_RBAC—A Work-
flow Security Model Incorporating Controlled Overriding of
Constraints,” Int’l J. Cooperative Information Systems, vol. 12,
no. 4, pp. 455-485, 2003.

[20] H. Davulcu, M. Kifer, L. Pokorny, C. Ramakrishnan, I. Ramak-
rishnan, and S. Dawson, “Modeling and Analysis of Interactions
in Virtual Enterprises,” Proc. Ninth Int’l Workshop Research Issues on
Data Eng., 1999.

[21] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-Based
Access Control Models,” Computer, vol. 29, no. 2, pp. 38-47, Feb.
1996.

[22] M. Kang, J. Park, and J. Froscher, “Access Control Mechanisms for
Inter-Organizational Workflow,” Proc. Sixth ACM Symp. Access
Control Models and Technologies, pp. 66-74, 2001.

[23] E. Gudes, M. Olivier, and R. Riet, “Modelling, Specifying and
Implementing Workflow Security in Cyberspace,” J. Computer
Security, vol. 7, no. 4, pp. 287-315, 1999.

[24] W. Huang and V. Atluri, “SecureFlow: A Secure Web-Enabled
Workflow Management System,” Proc. Fourth ACM Workshop Role-
Based Access Control, pp. 83-94, 1999.

[25] D. Long, J. Baker, and F. Fung, “A Prototype Secure Workflow
Server,” Proc. 15th Ann. Computer Security Applications Conf.,
pp. 129-133, 1999.

[26] M. zur Muehlen and M. Rosemann, “Workflow-Based Process
Monitoring and Controlling—Technical and Organizational Is-
sues,” Proc. 33rd Ann. Hawaii Int’l Conf. System Sciences, 2000.

[27] H. Chivers and J. McDermid, “Refactoring Service-Based Systems:
How to Avoid Trusting a Workflow Service,” Concurrency and
Computation: Practice and Experience, vol. 18, no. 10, pp. 1255-1275,
2006.

[28] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M.
Jones, E.A. Lee, J. Tao, and Y. Zhao, “Scientific Workflow
Management and the Kepler System,” Concurrency and Computa-
tion: Practice and Experience, vol. 18, no. 10, pp. 1039-1065, 2006.

[29] T.M. Oinn et al., “Taverna: Lessons in Creating a Workflow
Environment for the Life Sciences,” Concurrency and Computation:
Practice and Experience, vol. 18, no. 10, pp. 1067-1100, 2006.

CHEBOTKO ET AL.: SECURE ABSTRACTION VIEWS FOR SCIENTIFIC WORKFLOW PROVENANCE QUERYING 335

[30] J. Freire, C.T. Silva, S.P. Callahan, E. Santos, C.E. Scheidegger, and
H.T. Vo, “Managing Rapidly-Evolving Scientific Workflows,”
Proc. Int’l Provenance and Annotation Workshop (IPAW), 2006.

[31] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G.
Mehta, K. Vahi, G.B. Berriman, J. Good, A. Laity, J.C. Jacob, and
D.S. Katz, “Pegasus: A Framework for Mapping Complex
Scientific Workflows onto Distributed Systems,” Scientific Pro-
gramming J., vol. 13, no. 3, pp. 219-237, 2005.

[32] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski, I.
Raicu, T. Stef-Praun, and M. Wilde, “Swift: Fast, Reliable, Loosely
Coupled Parallel Computation,” Proc. Int’l Workshop Scientific
Workflows (SWF) in conjunction with Int’l Conf. Services Computing
(SCC), 2007.

[33] “The Provenance Challenge Series,” http://twiki.ipaw.info/bin/
view/Challenge, 2010.

[34] V. Tan, P. Groth, S. Miles, S. Jiang, S. Munroe, S. Tsasakou, and L.
Moreau, “Security Issues in a SOA-Based Provenance System,”
Proc. Third Int’l Provenance and Annotation Workshop, 2006.

[35] U. Braun and A. Shinna, “A Security Model for Provenance,”
Technical Report TR-04-06, Harvard Univ., Jan. 2006.

[36] S.B. Davidson and J. Freire, “Provenance and Scientific Work-
flows: Challenges and Opportunities,” Proc. SIGMOD, pp. 1345-
1350, 2008.

[37] W. van der Aalst, “Inheritance of Interorganizational Workflows:
How to Agree or Disagree without Loosing Control?” Information
Technology and Management J., vol. 2, no. 3, pp. 195-231, 2002.

[38] C. Lin, S. Lu, X. Fei, D. Pai, and J. Hua, “A Task Abstraction and
Mapping Approach to the Shimming Problem in Scientific
Workflows,” Proc. Int’l Conf. Services Computing (SCC), pp. 284-
291, 2009.

[39] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, “Service
Provenance in QoS-Aware Web Service Runtimes,” Proc. Int’l
Conf. Web Services (ICWS), pp. 115-122, 2009.

[40] K. Xu, Y. Wang, and C. Wu, “Service Provenance Based
Abstraction of Grid Application Knowledge,” Proc. Second Int’l
Conf. Semantics, Knowledge, and Grid, pp. 50-53, 2006.

[41] P.T. Groth, S. Miles, and L. Moreau, “A Model of Process
Documentation to Determine Provenance in Mash-Ups,” ACM
Trans. Internet Technology, vol. 9, no. 1, 2009.

[42] Provenance Aware Service Oriented Architecture (PASOA)
Project, http://www.pasoa.org, 2010.

[43] W.T. Tsai, X. Wei, D. Zhang, R. Paul, Y. Chen, and J.Y. Chung, “A
New SOA Data-Provenance Framework,” Proc. Eighth Int’l Symp.
Autonomous Decentralized Systems, pp. 105-112, 2007.

[44] S.M.S. Cruz, P.M. Barros, P.M. Bisch, M.L.M. Campos, and M.
Mattoso, “Provenance Services for Distributed Workflows,” Proc.
Int’l Symp. Cluster Computing and the Grid (CCGRID), pp. 526-533,
2008.

[45] C. Lin, S. Lu, X. Fei, A. Chebotko, D. Pai, Z. Lai, F. Fotouhi, and J.
Hua, “A Reference Architecture for Scientific Workflow Manage-
ment Systems and the VIEW SOA Solution,” IEEE Trans. Services
Computing, vol. 2, no. 1, pp. 79-92, Jan.-Mar. 2009.

[46] P. Groth, S. Miles, W. Fang, S.C. Wong, K.-P. Zauner, and L.
Moreau, “Recording and Using Provenance in a Protein Com-
pressibility Experiment,” Proc. Int’l Symp. High Performance
Distributed Computing (HPDC), 2005.

[47] P. Groth, S. Jiang, S. Miles, S. Munroe, V. Tan, S. Tsasakou, and L.
Moreau, “An Architecture for Provenance Systems Executive
Summary,” technical report, Univ. of Southampton, Feb. 2006.

[48] A. Chebotko, S. Lu, X. Fei, and F. Fotouhi, “RDFProv: A Relational
RDF Store for Querying and Managing Scientific Workflow
Provenance,” to be published in Data and Knowledge Eng.,
vol. 69, no. 8, pp. 836-865, 2010.

[49] Open Provenance Model, http://openprovenance.org, 2010.

[50] O. Biton, S. Cohen-Boulakia, S. Davidson, and C. Hara, “Querying
and Managing Provenance through User Views in Scientific
Workflows,” Proc. 24th IEEE Int’l Conf. Data Eng. (ICDE), pp. 1072-
1081, 2008.

[51] O. Biton, S.B. Davidson, S. Khanna, and S. Roy, “Optimizing User
Views for Workflows,” Proc. 12th Int’l Conf. Database Theory
(ICDT), pp. 310-323, 2009.

[52] M. Kifer, A. Bernstein, and P.M. Lewis, Database Systems: An
Application Oriented Approach. Addison-Wesley, 2006.

[53] R. Elmasri and S.B. Navathe, Fundamentals of Database Systems.
Addison-Wesley, 2004.

[54] A. Chebotko, S. Chang, S. Lu, F. Fotouhi, and P. Yang, “Scientific
Workflow Provenance Querying with Security Views,” Proc. Int’l
Conf. Web-Age Information Management, pp. 349-356, 2008.

[55] R.S. Sandhu and Q. Munawer, “The ARBAC99 Model for
Administration of Roles,” Proc. 15th Ann. Computer Security
Applications Conference (ACSAC), pp. 229-238, 1999.

[56] S. Oh and R.S. Sandhu, “A Model for Role Administration Using
Organization Structure,” Proc. Seventh ACM Symp. Access Control
Models and Technologies, pp. 155-162, 2002.

[57] J. Crampton and G. Loizou, “Administrative Scope: A Foundation
for Role-Based Administrative Models,” ACM Trans. Information
and System Security, vol. 6, no. 2, pp. 201-231, 2003.

[58] SecProv, http://www.cs.panam.edu/~artem/SecProv.zip, 2010.
[59] J. Wei, L. Singaravelu, and C. Pu, “Guarding Sensitive Information

Streams through the Jungle of Composite Web Services,” Proc.
Int’l Conf. Web Services (ICWS), pp. 455-462, 2007.

[60] N. Russell, A. ter Hofstede, D. Edmond, and W. van der Aalst,
“Workflow Data Patterns,” Technical Report FIT-TR-2004-01,
Queensland Univ. of Technology, 2004.

[61] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P.
Samarati, “A Fine-Grained Access Control System for XML
Documents,” ACM Trans. Information and System Security, vol. 5,
no. 2, pp. 169-202, 2002.

Artem Chebotko received the PhD degree in
computer science from Wayne State University
in 2008. He is currently an assistant professor in
the Department of Computer Science, University
of Texas—Pan American. His research interests
include scientific workflows, services computing,
and semantic web data management. He has
published more than 30 refereed research
papers and currently serves as a program
committee member of several international

conferences and workshops on scientific workflows, services comput-
ing, and semantic web. He is a member of the IEEE.

Shiyong Lu received the PhD degree from the
State University of New York at Stony Brook in
2002. He is currently an associate professor in
the Department of Computer Science, Wayne
State University, and the director of the Scien-
tific Workflow Research Laboratory. His re-
search interests include scientific workflows
and databases. He has more than 90 refereed
publications in the above areas. He is the
founder and currently a cochair of the IEEE

International Workshop on Scientific Workflows and an editorial board
member for the International Journal of Healthcare Information
Systems and Informatics and the International Journal of Semantic
Web and Information Systems. He serves as a program committee
member for several top-tier IEEE conferences including SCC and
ICWS. He is a senior member of the IEEE.

Seunghan Chang received the PhD degree in
computer science from Wayne State University
in 2008. His research interests include workflow
and XML data security. He is currently an active
officer of the Republic of Korea Armed Forces.

336 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 3, NO. 4, OCTOBER-DECEMBER 2010

Farshad Fotouhi received the PhD degree in
computer science from Michigan State Univer-
sity in 1988. In August 1988, he joined the
faculty of computer science at Wayne State
University, where he is currently a professor and
the chair of the department. His research
interests include databases, query optimization,
and multimedia systems. He has published more
than 100 papers in refereed journals and
conference proceedings and served as a pro-

gram committee member of various database-related conferences. He
is on the editorial boards of IEEE Multimedia and the International
Journal on Semantic Web and Information Systems. He is a member of
the IEEE.

Ping Yang received the BS degree from Sun
Yat-Sen University, the ME degree from the
Chinese Academy of Sciences, and the PhD
degree from Stony Brook University. She is an
assistant professor in the Computer Science
Department at the State University of New York
at Binghamton. Her research areas are informa-
tion and systems security, privacy, and formal
methods. She received the Most Practical Paper
Award from the Seventh International Sympo-

sium on Practical Aspects of Declarative Languages in 2005. She is a
member of the IEEE.

CHEBOTKO ET AL.: SECURE ABSTRACTION VIEWS FOR SCIENTIFIC WORKFLOW PROVENANCE QUERYING 337

