
Analysis of Scientific Workflow Provenance Access Control Policies

Ruiqi Luo∗, Ping Yang∗, Shiyong Lu† and Mikhail Gofman∗
∗Computer Science, State University of New York at Binghamton, Binghamton, NY, USA

Email: {rluo1,pyang,mgofman1}@binghamton.edu
†Department of Computer Science, Wayne State University, Detroit, Michigan, USA

Email: shiyong@cs.wayne.edu

Abstract—Provenance has become an important concept for
services computing in general, and for scientific workflows in
particular. Provenance often contains confidential data and
dependencies whose access needs to be protected. Provenance
access control policies control who can access which provenance
information. Correct specification of provenance access control
policies is critical to ensure system security. However, due to
the sheer size of provenance, it is often difficult to compre-
hend the full effects of an access control policy by manual
inspection alone due to complex multi-step dependencies and
their interactions. In this paper, we present automated analysis
algorithms and complexity results for three provenance analysis
problems. We have also developed incremental strategies for
these algorithms for evolving provenance and access control
policies.

I. INTRODUCTION

Provenance, which captures the derivation history of a
data product, has become an important concept for ser-
vices computing [1], [2], [3] in general, and for scientific
workflows [4], [5], [6], [7] in particular. Provenance is
essential for scientific workflows to support reproducibility
of scientific discovery, result interpretation, and problem
diagnosis [8], [9]. However, provenance collected from
scientific workflows may contain confidential information.
Due to the highly competitive nature of scientific research, it
is important to ensure that sensitive provenance information
can be accessed by and propagated to only authorized parties
before the scientific results are ready for public release.

Access control is a security mechanism that restricts
access to system resources to only authorized users. Ex-
isting access control mechanisms for business and scientific
workflows (e.g. [10], [11], [12]) support secure execution of
workflow tasks, but not secure access of their dependencies.
Dependencies are confidential data in projects in which the
protection of the derivation history of a scientific result is
critical.

While we have previously developed a role-based access
control mechanisms for scientific workflow provenance [5],
how to ensure the correctness and understand the full
effects of a provenance access control policy is still an
open problem. This is challenging since in large scientific
workflows, the size of the access control policies could also
be large and it is often difficult to comprehend the full
effects of a provenance access control policy by manual

inspection alone due to complex multi-step dependencies
and their interactions. In this paper, we present automated
algorithms for analyzing provenance access control poli-
cies, which help administrators detect potential flaws in
the policies. We define and solve three analysis problems:
(1) the provenance access control policy existence prob-
lem, which checks whether there exists an access control
policy that conforms to desirable dependency constraints;
(2) the dependency satisfiability problem, which checks
whether a given provenance access control policy conforms
to desirable dependency constraints; and (3) the provenance
completion problem, which checks whether a set of users
together will be able to access all the dependencies in the
provenance.

Our contributions are summarized below.
• We have developed algorithms for solving the above

three analysis problems.
• We have shown that the three analysis problems are

NP-complete and developed polynomial algorithms for
solving special cases of these problems.

• We have developed incremental analysis algorithms for
evolving provenance and access control policies. These
algorithms incrementally update the analysis results
by reusing the information obtained from the previous
analysis, and hence are expected to be faster than the
original algorithms.

II. PRELIMINARIES

A. Scientific Workflow Provenance

Figure 1 shows a scientific workflow w, which models
the scientific process of performing intragenomic gene con-
version analysis in bacterial genomes. Each workflow task
represents a computational or analytical step of a scientific
process. This workflow takes as input the protein sequences
of a given genome and identifies all its multi-gene families
(task t1). A particular multi-gene family is then selected
by the user and its associated DNA sequences are retrieved
(task t2). Next, a recombination analysis is performed on the
retrieved sequences (task t3), which consists of two steps: a
multiple DNA sequence alignment step (task t4) and a gene
conversion detection step (task t5); the latter is implemented
by the off-the-shelf program GENECONV (task t7) with

Protein
Sequence

DNA
Sequence

t1: Identify
multi-gene

families

t2: Select
DNA sequence

t4: Multiple
DNA Sequence

alignment

t3: Recombination
analysis

t5: Gene
conversion
detection

t6: Prepare
Input files t7: GENECONV

o3

p6 p8p5 p7

o2 i4

o4 i5

o5 i6

p8p7

p8p7p6p5

o1 i2i1

i3

p1: percentage for comparison detection
p2: percentage for being identical
p3: multi-gene family identifier
p4: flank length
p5: word size
p6: window size
p7: p value
p8: gscale value

p2 p4p1 p3

o3

o3i5

i4

Figure 1. A hierarchical scientific workflow w.

an input data file preparation step (task t6). Each task in
this workflow has input ports (i1 − i6) and output ports
(o1 − o3) that provide the communication interface to other
tasks. Tasks are linked together via data channels. There
are 8 parameters p1 − p8 in this workflow, which are used
to configure its dynamic execution behavior. This workflow
can be executed many times for different genomes or for
the same genome using different parameter settings; Every
execution produces a workflow run provenance.

Figure 2 gives a sample workflow run provenance of w,
which is represented in a notation similar to the one used in
the Open Provenance Model (OPM) [13]. Circles represent
parameter values and data products, rectangles represent
task runs that are labeled with task run identifier rk and
task identifier ti, octagons represent users performing the
tasks, and edges represent dependency relationships. Edge
di(pi) ←− r1 : tj represents the Used dependency, which
specifies that data product di (pi) is the input to task tj
in workflow run r1 and edge r1 : tj ←− di represents
the WasGeneratedBy dependency, which specifies that data
product di is the output of task tj in workflow run r1. Edge
u

WasControlledBy←− r1 : tj specifies that task tj was executed
by user u in workflow run r1.

B. Role Based Access Control

Role based access control [14] has been widely used
for restricting access to resources. In role based access
control, users are assigned to roles and roles are assigned
to permissions. Formally, an RBAC policy is defined as a
tuple (U,R, P, UA, PA) where
• U , R, and P are finite sets of users, roles, and permis-

sions, respectively.
• UA ⊆ U×R is a set of user-role assignments. (u, r) ∈
UA specifies that user u is a member of role r. For
example, (alice, student) ∈ UA specifies that alice is
a member of the student role.

• PA ⊆ R × P is the permission-role relation. (r, p) ∈
PA specifies that role r has granted permission to
access p. For example, (student, dp) ∈ PA specifies
that every member of the student role has permission
to access dependency dp.

This paper is based on the role based access control for
scientific workflow provenance proposed in [5] that controls
which role can access which provenance component.

III. DEPENDENCY ANALYSIS

Correct understanding of a provenance access control
policy and its associated dependency constraints is critical
for assuring provenance security. However, due to the sheer
size of provenance, it is often hard to comprehend the full
effects of a provenance access control policy by simple
manual inspection alone. Dependency analysis help admin-
istrators understand a policy and its associated dependency
constraints better. In this section, we consider two types
of dependency analysis problems: (1) provenance access
control policy existence analysis, which checks whether
there exists an RBAC policy that satisfies a dependency
constraint; and (2) dependency satisfiability analysis, which
checks whether a given RBAC policy satisfies a dependency
constraint. Below, we first define dependency and depen-
dency constraint.

Definition 1 (Dependency): We say that a data product d2
is derived from a data product d1 in provenance P in one
step (one-step dependency), denoted as d1 → d2, if there
exists a task t such that d1

Used← t ∈ P and t
wasGeneratedBy←

d2 ∈ P . We use d1 →∗ dn to denote that dn is derived from
d1 by one or more steps.

Definition 2 (Provenance Dependency Graph): A prove-
nance dependency graph GP for provenance P is a directed
acyclic graph < V,E >, where each node in V represents a
data product in P and each edge in E represents a one-step
dependency. A role provenance dependency graph GP (r) is
a subgraph < V ′, E′ > of GP where (r, d) ∈ PA for all
d ∈ E′.

Definition 3 (Dependency Constraint): A dependency
constraint C is of the form (c11 ∨ . . . ∨ c1n) ∧ . . . ∧ (cm1 ∨
. . . ∨ cmk), where cij is either allow(r, d1 →∗ d2), which
specifies that role r must be allowed to access dependency
d1 →∗ d2, or disallow(r, d1 →∗ d2), which specifies that
role r must not be allowed to access dependency d1 →∗ d2.

Definition 4 (Dependency Satisfiability): We say
that an RBAC policy satisfies dependency constraint
allow(r, d1 →∗ d2) if d2 is derivable from d1 in GP (r) in
one or more steps. We say that an RBAC policy satisfies
dependency constraint disallow(r, d1 →∗ d2) if d2 is not
derivable from d1 in GP (r).

In this paper, we consider RBAC with cardinality con-
straint of the form cardinality(r, dset, k) (n > k), which
specifies that a user who is a member of role r can access at
most k one-step dependencies in set dset. This means that,
if a user of role r has accessed k dependencies in dset, then
the user cannot access the rest of dependencies in dset. This
constraint prevents a user who is a member of role r from
accessing more than k dependencies in dset even if the user

r1:t1

WasControlledBy

d1 r1:t2

WasControlledBy

d2 r1:t4

WasControlledBy

d3 r1:t6

WasControlledBy

d4 r1:t7d5 d6
WasControlledBy

r1:t3
r1:t5p1 p2 p4 p6 p8

Joe Mike Joe Jane June

p3 p5
p7

Figure 2. A sample provenance generated from the workflow in Figure 1.

is also a member of another role that does not have such a
constraint.

A. Provenance Access Control Policy Existence Analysis

The provenance access control policy existence analysis
(PE) asks, given provenance P and a dependency constraint
C, does there exist an RBAC policy for P that satisfies C?
If there does not exist an RBAC policy that satisfies C, then
adding cardinality constraints to the policy will not help the
policy satisfy C. As a result, we need to consider only RBAC
without the cardinality constraint for PE.

Solving PE is non-trivial, because allow/disallow con-
straints may interact with each other in unintended
ways and trying to satisfy one allow/disallow con-
straint may result in the violation of another constraint.

d5 d1

d2 d3

d4

Figure 3. Example:
PE analysis.

As an example, consider dependences
between data products d1, . . . , d5
shown in Figure 3 and the depen-
dency constraint that is the conjunc-
tion of the following allow/disallow
constraints: (1) disallow(r, d5 →∗
d4); (2) disallow(r, d3 →∗ d4); and
(3) allow(r, d1 →∗ d4). To satisfy
(1), r should not be allowed to access
either d5 → d2 or d2 → d4. To
satisfy (2), r should not be allowed
to access d3 → d4. Assume that we
do not allow r to access d2 → d4

and d3 → d4, then (3) cannot be satisfied. However, if we
do not allow r to access d5 → d2 at the first place, all
constraints can be satisfied. Clearly, it is inefficient to try all
combinations of dependencies that should not be granted to
r in order to satisfy the constraint.

Below, we show that PE for RBAC without cardinality
constraint is NP-complete. First, we prove that the satisfiabil-
ity problem for a 3-CNF formula, where each clause contains
either all positive or negative literals, is NP-complete; we
call such a formula 3-CNF-SAME formula.

Lemma 1: The satisfiability problem for a 3-CNF-SAME
formula is NP-complete.
Proof: Given a 3-CNF-SAME formula F and an assignment
A, we can check whether A satisfies F in polynomial time.
Thus the problem is in NP.

Next, we show that the problem is NP-hard by providing
a polynomial-time reduction from the 3-CNF satisfiability
problem to the problem. Let F = F1∧ . . .∧Fn be a 3-CNF
formula. First, we replace every negative literal l̄i in F with
l′i and append (li∨l′i∨false)∧(l̄i∨ l̄′i∨true) to the formula.
After the reduction, every clause contains either all positive
literals or all negative literals. The worst-case complexity of
the reduction is O(|F |).

Let F ′ be the transformed formula. Below, we show that
F is satisfiable iff F ′ is satisfiable. First, we prove “only
if”. Assume that F is true under a set of assignments A =
{(l1, v1), . . . , (lm, vm)}. For every (li, true) ∈ A, we add
(li, true) and (l′i, false) to A′. For every (li, false) ∈ A,
we add (li, false) and (l′i, true) to A′. It is easy to see that
F ′ is true under A′. Next, we prove “if”. Assume that F ′ is
true under a set of assignments A′. Then from the reduction,
F is true under A′. Thus the problem is NP-hard. 2

Theorem 2: PE for RBAC that does not contain the
cardinality constraint is NP-Complete.

Proof: When the RBAC policy ψ does not contain the car-
dinality constraint, it takes polynomial time to check whether
the policy satisfies the dependency constraint. Therefore, the
problem is in NP.

Next, we show that PE is NP-hard by reducing the
satisfiability problem for 3-CNF-SAME formula, to this
problem. Let F = F1 ∧ F2 ∧ . . . ∧ Fn be a 3-CNF-SAME
formula. For every literal l in F , we create two nodes sn(l)
and dn(l), and add edge sn(l) → dn(l) to GP . We then
construct the dependency constraint C = C1 ∧ . . . ∧ Cn

as follows. For every clause Fi = li1 ∨ li2 ∨ li3, we
construct Ci =

∨
1≤j≤3 allow(r, sn(lij) →∗ dn(lij)). For

every clause Fi = l̄i1 ∨ l̄i2 ∨ l̄i3, we construct Ci =∨
1≤j≤3 disallow(r, sn(lij) →∗ dn(lij)). The correspond-

ing PE problem pe is: does there exist an RBAC policy for
P that satisfies C.

Finally, we show that F is satisfiable iff pe has a solution.
Proof for “only if”: Assume that F is true under as-

signments A = {(l1, v1), . . . , (lm, vm)}. Then dependencies
{sn(l1) → dn(l1), . . . , sn(lm) → dn(lm)} are added to
GP . Next, we show that ψ = {(r, sn(li)→ dn(ji)) ∈ PA |
vi = true} satisfies C. Suppose that ψ does not satisfy
C. Then ψ does not satisfy Ci for some 1 ≤ i ≤ n.
If Ci =

∨
1≤j≤3 allow(r, sn(lij) → ∗dn(lij)), then r

does not have permission to access sn(lij) → dn(lij) for
all 1 ≤ j ≤ 3. This means that all lij are false and
hence Fi is false. Thus F is not true under A, which is
a contradiction. The case where Ci contains disallow can
be proven similarly.

Proof for “if”: Assume that ψ satisfies C. li is assigned
true if (r, sn(li)→ dn(li)) ∈ PA; otherwise, li is assigned
false. We now show that F is true under the above
assignments. Suppose that this is not the case, then there
exists an Fi that is false under the above assignments. If
Fi = li1 ∨ li2 ∨ li3, then all lijs are false. This means that
r does not have permission to access all sn(lij)→ dn(lij)
and hence Ci is false. Thus C is not satisfied, which is
a contradiction. The case where Fi contains only negative
literals can be proven similarly.

As an example, consider F = (l1∨ l2∨ l3)∧ (l̄1∨ l̄2∨ l̄4).
After the reduction, four dependencies sn(l1) → dn(l1),
sn(l2) → dn(l2), sn(l3) → dn(l3), sn(l4) → dn(l4) are
added to GP . The first conjunct in F is reduced to constraint∨

1≤i≤3 allow(r, sn(li) →∗ dn(li)). The second conjunct
is reduced to constraint disallow(r, sn(l1) →∗ dn(l1)) ∨
disallow(r, sn(l2) →∗ dn(l2)) ∨ disallow(r, sn(l4) →∗
dn(l4)). F is true under assignments {(l1, true), (l2, false),
(l3, true), (l4, false)}. The corresponding RBAC policy
that satisfies the above constraint is (r, sn(l1)→ sn(l1)) ∈
PA, (r, sn(l3)→ dn(l3)) ∈ PA. 2

Below, we present an algorithm for solving PE. The
algorithm reduces PE to the satisfiability problem of propo-
sitional formulas; PE has a solution iff the corresponding
formula is satisfiable. The pseudocode of the algorithm
is given in Algorithm 1. Function comp paths(r, d1, d2)
computes a set of all paths from d1 to d2 in GP (r) and
lit(r, e) returns the literal corresponding to edge e in GP (r).

Below, we use the example in Figure 3 to illustrate our
algorithm. Let lit(d1 → d2) = lr,1, lit(d1 → d3) = lr,2,
lit(d5 → d2) = lr,3, lit(d2 → d4) = lr,4, and lit(d3 →
d4) = lr,5. First, the algorithm processes disallow(r, d5 →∗
d4). It computes the set of all paths {{d5 → d2, d2 →
d4}} from d5 to d4 and constructs formula l̄r,3 ∨ l̄r,4.
Next, the algorithm processes disallow(r, d3 →∗ d4) and
constructs formula l̄r,5. Finally, the algorithm processes
allow(r, d1 →∗ d4) and constructs formula (lr,1 ∧ lr,4) ∨
(lr,2∧lr,5). The conjunction of the above formula is true un-
der the assignments: {(lr,5, false), (lr,3, false), (lr,1, true),
(lr,4, true), (lr,2, false)}. The corresponding RBAC policy
is: (r, d1 → d2) ∈ PA, (r, d2 → d4) ∈ PA.

Let |Od| be the maximum outgoing degree of nodes in GP

and |Depth| be the maximum depth of GP . The maximum
number of paths in GP is |Od||Depth|. Thus, the worst-case
complexity of Algorithm 1 is O(|C|(|Od||Depth|).

We have also identified the following cases under which
PE can be solved in polynomial time. Due to space con-
straints, the proofs are not given in the paper.

Theorem 3: PE for dependency constraint that contains

Algorithm 1 Provenance access control policy existence
analysis algorithm.

1: Procedure dep analysis(C,P)
2: formula = ∅
3: if C = allow(r, d1 →∗ d2) then
4: path set = comp paths(r, d1, d2)
5: for all p ∈ path set do
6: clause = ∅
7: for all e ∈ p do
8: clause = clause ∧ lit(r, e)
9: end for

10: formula = formula ∨ clause
11: end for
12: return formula
13: end if
14: if C = disllow(r, d1 →∗ d2) then
15: path set = comp paths(r, d1, d2)
16: for all p ∈ path set do
17: clause = ∅
18: for all e ∈ p do
19: clause = clause ∨ lit(r, e)
20: end for
21: formula = formula ∧ clause
22: end for
23: return formula
24: end if
25: if C = C1 ∨ C2 then
26: return dep analysis(C1, P) ∨ dep analysis(C2, P)
27: end if
28: if C = C1 ∧ C2 then
29: return dep analysis(C1, P) ∧ dep analysis(C2, P)

30: end if

only allow or disallow can be solved in polynomial time.
Theorem 4: PE for dependency constraint that does not

contain ∧ can be solved in polynomial time.

B. Dependency Satisfiability Analysis

Dependency satisfiability analysis (DS) asks, given prove-
nance P , an RBAC policy ψ for P , and a dependency
constraint C, does ψ satisfy C? If ψ does not contain the
cardinality constraint, DS can be easily solved by reducing
it to the reachability analysis problem of dependency graphs
for roles in C. The worst-case time complexity of the
algorithm is O(|C||GP |).

With cardinality constraints, the problem becomes NP-
complete, as shown below.

Theorem 5: DS is NP-Complete.
Proof: Given a set of role-dependency assignments Rd that
conforms to RBAC policy ψ, it takes polynomial time to
check if Rd satisfies the dependency constraint C. There-
fore, the problem is in NP.

Next, we show that DS is NP-hard by providing a poly-
nomial time reduction from the satisfiability problem of 3-
CNF-SAME to the problem. Without loss of generality, we
assume that three literals in the same clause are pairwise
different. Let F = F1 ∧ . . . ∧ Fn be a 3-CNF-SAME
formula where Fi = li1 ∧ li2 ∧ li3 or l̄i1 ∧ l̄i2 ∧ l̄i3.

For every clause Fi that contains all positive literals, we
append allow(r, S →∗ Ti) to dependency constraint C
as a conjunct, and for every lij in Fi, we add (r, S →
node(lij)) ∈ PA and (r, node(lij) → Ti) ∈ PA to
ψ. For every clause Fi that contains all negative literals,
we add cardinality(r, {S → node(li1), S → node(li2),
S → node(li3)}, 2) to ψ. The corresponding DS problem
ds is: does policy ψ satisfy the dependency constraint C?
The worst-case complexity of the reduction is O(|F |).

Finally, we show that F is satisfiable iff ds has a solution.
Proof for “only if”: Assume that F is true under assign-

ments {(l1, v1), . . . , (lm, vm)}. For every Fi containing all
positive literals, if lij is true, then (r, S → node(lij)) ∈ PA
and (r, node(lij) → Ti) ∈ PA satisfy allow(r, S →∗ Ti).
For every clause Fi that contains all negative literals, at
least one of lij is false. Correspondingly, r does not have
permission to access one of the following dependencies:
S → node(li1), S → node(li2), and S → node(li3).
Therefore, the cardinality constraint is satisfied. Thus ds has
a solution.

Proof for “if”: If ds has a solution, then ψ satisfies the
dependency constraint C. This means that, for every Fi that
contains only positive literals, r can access at least one
of the dependencies S → node(li1), S → node(li2), and
S → node(li3). In this case, the corresponding literal in Fi

is assigned true and hence Fi is true. Since all cardinality
constraints are satisfied, for every Fi containing only nega-
tive literals, r cannot access at least one of the dependencies
S → node(li1), S → node(li2), and S → node(ll3). In this
case, the corresponding literal is assigned false and hence
Fi is true. Note that a literal cannot be assigned both true
and false. Otherwise, assume that lij is assigned both true
and false. Then S → node(lij) is both accessible and not
accessible by r, which is a contradiction. Therefore, F is
true and hence DS is NP-hard.

As an example, consider the 3-CNF-SAME formula
F = (l1 ∨ l2 ∨ l3) ∧ (l̄1 ∨ l̄2 ∨ l̄3). First, we process
the first clause, add allow(r, S →∗ T1) to C, and add
(r, S → node(l1j)) ∈ PA and (r, node(l1j) → T1) ∈ PA
for 1 ≤ j ≤ 3 to ψ. We then process the second
clause and add cardinality(r, {S → node(l11), S →
node(l12), S → node(l13)}, 2) to ψ. F is true under as-
signments {(l1, true), (l2, true), (l3, false)}. Correspond-
ingly, ψ grants role r permission to access dependencies
S → node(l1), node(l1) → T1, S → node(l2), and
node(l1)→ T1, which satisfies C. 2

A naive algorithm for solving DS is given below. First, for
every disallow(r, d1 →∗ d2) in Ci, if there does not exist
a path from d1 to d2 in GP (r), then Ci is replaced with
true; otherwise, disallow(r, d1 →∗ d2) is replaced with
false. For every allow(r, d1 →∗ d2) in Ci, if there does
not exist a path from d1 to d2 in GP (r), Ci is replaced with
false. Let C ′ be the resulting constraint. Next, we compute
all possible combinations of paths that need to present in

order to satisfy C ′. If one combination of paths satisfies
the cardinality constraint, then the algorithm returns true;
otherwise false. The worst-case complexity of the algorithm
is O(|C|(|Od||Depth|) where |Od| is the maximum outgoing
degree of nodes in GP and |Depth| is the maximum depth
of GP .

As an example, consider the dependency graph in Fig-
ure 3, dependency constraint (allow(r, d1 →∗ d4) ∨
allow(r, d5 →∗ d4)) ∧ allow(r, d1 →∗ d2), and cardinality
constraint cardinality(r, {d1 → d3, d3 → d4, d1 → d2}, 2).
Assume that (r, d) ∈ PA for every dependency d in the
graph. The following combinations of paths satisfy the
dependency constraint: (a) {d1 → d3, d3 → d4, d1 → d2},
(b) {d1 → d2, d2 → d4}, (c) {d1 → d2, d5 → d2, d2 → d4},
but only (b) and (c) satisfy the cardinality constraint. There-
fore the algorithm returns true.

IV. PROVENANCE COMPLETION PROBLEM

Provenance completion problem (PC) asks, given an
RBAC policy ψ and provenance metadata P , does there
exist a set of users U ′ ⊆ U that together can access all
dependencies D = {dp1, · · · , dpm} in P under ψ? The
problem is true iff there exists a set of user-dependency
assignments {(u1, dp1), . . . , (un, dpm)} such that ui ∈ U ′

and the assignments conforms to ψ.
A naive algorithm for solving the problem is given below,

which is a brute-force approach that consists of two phases.
In the first phase, for every dependency dp ∈ D, if there ex-
ists a user u ∈ U ′ such that (u, r) ∈ UA and (r, dp) ∈ PA,
and there does not exist cardinality(r, dset, k) ∈ ψ where
dp ∈ dset, then the algorithm assigns u to dp. Otherwise,
dp is added to a working set S. In the second phase, we try
all possible combinations of assignments of users in U ′ to
S to search for a solution in which each dependency in S
is assigned to some user in U ′ and no cardinality constraint
is violated. The procedure terminates when such a solution
is found or all combinations are exhausted. The worst-case
time complexity of the algorithm is O(|U ′||S|).

Theorem 6: PC is NP-complete.
Proof: Given a set of user-dependency assignments A ⊆
U ′ × D, we can verify whether every dependency in D
has been assigned to a user in U ′ and if the assignment
conforms to the RBAC policy in polynomial time. Therefore,
the problem is in NP.

Next, we show that PC is NP-hard by providing a polyno-
mial time reduction from the 3-CNF satisfiability problem
to the problem. Let F = F1 ∧ F2 ∧ . . . ∧ Fn be a 3-CNF
formula. The reduction is given below. Each clause Fj is
mapped to a dependency dpj . Each literal li is mapped to
a user-role assignment (ui, ri) ∈ UA. If li appears (either
positively or negatively) in Fj , (ri, dpj) ∈ PA is added
to ψ. If li appears positively in Fj1 and negatively in Fj2,
a cardinality constraint cardinality(ri, {dpj1, dpj2}, 1) is
added to ψ. Let k be the number of literals in F . The

corresponding provenance completion problem pc is: does
there exist a set of users U ′ ⊆ {u1, . . . , uk} that together
can access all dependencies {dp1, . . . , dpn} under the RBAC
policy ψ.

Below, we show that F is satisfiable iff pc has a solution.
Proof for “only if”: Assume that F is true under the

set of assignments {(l1, v1), . . . , (lk, vk)}. If vi = true, li
appears positively in Fj , and dpj has not been assigned to
any user, then assign dpj to ui. if vi = false, li appears
negatively in Fj , and dpj has not been assigned to any user,
then assign dpj to ui. Since F is true, all Fis are true and
hence all dpis are assigned to some user. Next, we prove
that the above assignment does not violate the cardinality
constraint. Assume that cardinality(r, {dpj1, dpj2}, 1) is
violated. Then there exists u ∈ U ′ such that (u, r) ∈ UA
and u is assigned to both dpj1 and dpj2. From the reduction,
one of the following holds: (1) li appears positively in Fj1

and negatively in Fj2; or (2) li appears negatively in Fj1 and
positively in Fj2. In both cases, li is assigned both values
true and false, which is a contradiction. Therefore, pc has
a solution.

Proof for “if”: Assume that pc has a solution
{(u1, dp1), . . . , (um, dpn)}. We iterate from dp1 to dpn
and apply one of the following rules to compute a set of
assignments under which F is true: (1) If ui is assigned dpj ,
li appears positively in Fj , and li has not been assigned any
value, then li is assigned true. (2) If ui is assigned dpj , pi
appears negatively in Fj , and li has not been assigned any
value, then li is assigned false. Since every dependency is
assigned to some user, the above rules guarantee that all Fis
are true. The cardinality constraint ensures that no literals
can be assigned to both true and false. Therefore F is true
under the above assignments.

As an example, consider the 3-CNF formula (l1∨ l̄2∨l3)∧
(l2 ∨ l3 ∨ l4)∧ (l2 ∨ l3 ∨ l5). The following RBAC policy is
generated: (u1, r1) ∈ UA, (u2, r2) ∈ UA, (u3, r3) ∈ UA,
(u4, r4) ∈ UA, (u5, r5) ∈ UA (r1, dp1) ∈ PA, (r2, dp1) ∈
PA, (r3, dp1) ∈ PA, (r2, dp2) ∈ PA, (r3, dp2) ∈
PA, (r4, dp2) ∈ PA, (r2, dp3) ∈ PA, (r3, dp3) ∈
PA, (r5, dp3) ∈ PA, cardinality(r2, {dp1, dp2}, 1),
cardinality(r2, {dp1, dp3}, 1). The corresponding PC is:
does there exist a set of users U ′ ⊆ {u1, u2, u3, u4, u5} that
together can access all dependencies {dp1, dp2, dp3} under
the RBAC policy ψ? The formula is satisfied under assign-
ment {(l2, false), (l3, true), (l5, true)}. The solution for
the corresponding PC is {(u2, dp1), (u3, dp2), (u5, dp3)}.

Below, we provide a polynomial-time algorithm for
solving the following two special cases: (1) each user
is constrained at most once, i.e., for every user u ∈ U ′,
there do not exist cardinality(r1, dset1, k1) ∈ ψ
and cardinality(r2, dset2, k2) ∈ ψ, such that
(u, r1) ∈ UA and (u, r2) ∈ UA; or (2) if a user
u ∈ U ′ is a member of roles in the set of constraints
cardinality(r1, dset1, k1), . . . , cardinality(rn, dset2, kn),

then dseti ∩ dsetj = ∅ for all 1 ≤ i, j ≤ n.
Let Con be a set of all cardinality constraints in

ψ. The algorithm is given below. First, we perform
the first stage of the naive algorithm. Next, for every
cardinality(r, dset, k) ∈ Con, if the constraint satisfies
|{s | s ∈ S ∧ s ∈ dset}| ≤ k, we assign a user
who is a member of role r to all dependencies in dset,
remove such dependencies from S, and remove the con-
straint from Con. We then construct a bipartite graph G
from U ′ and S as follows. Each vertice in G corresponds
to one dependency in S or one user in U ′ that is a
member of a role in the cardinality constraint in Con.
Let Vu represent the vertice corresponding to user u and
Vdp represent the vertice corresponding to dependency dp.
For every cardinality(r, pdet, k) ∈ Con and every u who
is a member of role r, we duplicate Vu k − 1 times,
which results in nodes V 1

u , . . . , V
(k−1)
u . Next, we add edges

from Vu, V
1
u , . . . , V

(k−1)
u to all vertices corresponding to

dependencies in dset that can be accessed by r. Finally, we
apply the maximum bipartite matching algorithm to compute
the maximum matching between vertices representing users
and vertices representing dependencies. The problem is true
if the size of the maximum matching is equal to |S|, which
means that all dependencies in S can be assigned to some
users in U ′. The number of times a user vertice is duplicated
ensures that the maximum matching also does not violate the
cardinality constraint. Note that this algorithm can also be
applied to the case where all constraints in Con updated
after the first stage satisfy one of the two conditions.

The worst-case complexity for the first stage is
O(|Con||U ′||R||D|). The worst-case complexity of max-
imum matching algorithm for a graph G =< V,E >
is O(|V |(1/2)|E|). In our algorithm, the maximum num-
ber of vertices and edges are |U ′||S| + |S| and |U ′||S|2,
respectively. Therefore the worst-case complexity of the
above algorithm is O((|Con||U ′||R||D| + (|U ′||S| +
|S|)(1/2)(|U ′||S|2)).

As an example, consider the following RBAC policy:
(u1, r1) ∈ UA, (u2, r2) ∈ UA, (u3, r3) ∈ UA,
(u3, r4) ∈ UA, (u4, r4) ∈ UA, (u5, r5) ∈ UA
(r1, dp1) ∈ PA, (r1, dp2) ∈ PA, (r1, dp3) ∈ PA,
(r2, dp3) ∈ PA, (r2, dp4) ∈ PA, (r3, dp4) ∈ PA,
(r3, dp5) ∈ PA (r3, dp6) ∈ PA, (r4, dp7) ∈ PA,
(r4, dp8) ∈ PA, (r4, dp9) ∈ PA, (r5, dp9) ∈ PA,
(r5, dp10) ∈ PA, cardinality(r1, {dp1, dp2, dp3}, 2),
cardinality(r3, {dp4, dp5, dp6}, 2),
cardinality(r4, {dp7, dp8, dp9}, 2).
cardinality(r5, {dp9, dp10}, 1).

Our algorithm works as follows. First, u2 is assigned to
dp3 and dp4, because u2 is not a member of roles in any car-
dinality constraint. Other dependencies are added to S. We
then remove dp3 from cardinality(r1, {dp1, dp2, dp3}, 2)
and remove dp4 from cardinality(r3, {dp4, dp5, dp6}, 2).
As a result, the number of dependencies in these

Figure 4. Example: al-
gorithm for two special
cases of PC

two constraints is
2 and hence these
two constraints are
satisfied. We then
assign u1 to dp1
and dp2, assign
u3 to dp5 and
dp6, remove these
dependencies from
S, and remove the
two constraints from
Con. Next, we

process cardinality(r4, {dp7, dp8, dp9}, 2) and
cardinality(r5, {dp9, dp10}, 1), and construct a bipartite
graph as shown in Figure 4. Since u3 and u4 are members
of role r4, u3 and u4 are duplicated once, which results in
two new vertices u13 and u14. We then add edges from these
vertices to Vdp7

, Vdp8
and Vdp9

. Since u5 is a member of
r5, we add edges from Vu5

to Vdp9
and Vdp10

. Finally,
the maximum matching algorithm is applied to compute a
solution for the problem. In Figure 4, edges are represented
using dotted/solid lines, and edges represented using solid
lines are the maximum matching computed. The algorithm
returns true as the size of maximum matching is equal
to |S|. The solution is {(u1, dp1), (u1, dp2), (u2, dp3),
(u2, dp4), (u3, dp5), (u3, dp6), (u3, dp7), (u4, dp8),
(u4, dp9), (u5, dp10)}.

V. INCREMENTAL ANALYSIS ALGORITHMS

The provenance access control policy and dependency
constraints may evolve over time in order to fix flaws and
cope with changing requirements of organizations. Changes
to the policy or the provenance may invalidate the analysis
result. It would be inefficient to perform reanalysis from
scratch every time a change occurs. To address this issue, we
present efficient algorithms that reuse the previous analysis
result to incrementally perform reanalysis. Due to space
constraints, we present only algorithms for the provenance
completion problem (PC) and consider only operations for
adding user-role relation, permission role relation, and the
cardinality constraint. Other operations and incremental al-
gorithms for DS and PE can be handled similarly.

To enable incremental analysis, we store the set of user-
dependency assignments A1 and the workset S computed in
the first phase. If the previous result is true, we also store
the set of user-dependency assignments A2 computed in the
second phase.

Add cardinality(r, dset, k) to ψ:: If (u, r) 6∈ UA
for all u ∈ U ′, the algorithm simply returns the pre-
vious result. If the previous result is false, then adding
cardinality(r, dset, k) does not change the result, but may
invalidate some assignments in A1. Our algorithm updates
A1 as follows: for every dp ∈ dset, if (u, dp) ∈ A1 and
(u, r) ∈ UA, then the algorithm tries to find another user

u′ ∈ U ′ such that (u′, r′) ∈ UA and (r′, dp) ∈ PA, and
there does not exist cardinality(r′, dset′, k) ∈ ψ where
dp ∈ dset′. If such a user exists, the algorithm replaces
(u, dp) with (u′, dp). In other cases, the algorithm removes
(u, dp) from A1 and adds dp to the workset S. If the
previous result is true, then adding cardinality(r, dset, k)
may change the result. In this case, the algorithm updates
A1 and S as given above, and performs the second phase
using the updated A1 and S.

Add (r, dp) ∈ PA: If (1) (u, r) 6∈ UA for all u ∈ U ′
or (2) the previous result is true, then adding (r, dp) ∈ PA
does not change the result. In case (2), the assignments in
A1 may change. The algorithm updates A1 as follows: if
dp ∈ S, there exists a user u ∈ U ′ such that (u, r) ∈ UA,
and there does not exist cardinality(r, dset, k) ∈ ψ where
dp ∈ dset, then the algorithm adds (u, dp) to A1, removes
dp from S, and removes the assignment for dp from A2. If
the previous result is false, the algorithm updates A1 and S
as given above, and performs the second phase.

Add (u, r) ∈ UA: If (1) u 6= u′ for all u′ ∈ U ′ or
(2) the previous result is true, then adding (u, r) ∈ UA
does not change the result. In case (2), if there does not
exist (u′, r) ∈ UA such that u′ ∈ U ′, then the algorithm
updates A1 as follows. For every dp ∈ S, if (r, dp) ∈ PA
and there does not exist cardinality(r, dset, k) ∈ ψ where
dp ∈ dset, then the algorithm adds (u, dp) to A1, removes
dp from S, and performs the second phase. If the previous
result is false, then adding (u, r) may change the result.
In this case, the algorithm updates A1 as given above and
performs the second phase.

VI. RELATED WORK

Provenance access control:: Recently, security issues
for provenance have been identified by several researchers.
Braun et al. argued that a new security model is needed
for protecting provenance [15] and presented a security
model for provenance, in which security requirements are
modeled as a multi-level system [16]. Tan et al. [17] and
Tsai et al. [18] discussed security issues in SOA-based
provenance systems. Artem et al. [5] proposed a role-
based access control mechanism for scientific workflow
provenance. However, none of these work considered formal
security analysis of provenance access control policies.

Provenance dependency analysis:: Analysis of access
control policies has been long recognized as an important
problem (e.g. [19], [20], [21], [22], [23]), which checks
whether an access control policy conforms to given secu-
rity properties (e.g. reachability, availability, containment).
Cheney et al. [24] proposed a semantic characterization of
dependency provenance, showed that minimal dependency
provenance is not computable, and presented provenance
analysis techniques. Sun et al. [25] proved that the problem
of identifying and correcting unsound workflow views with
minimal changes is NP-hard. They have also developed

polynomial time algorithms for correcting unsound views to
meet two local optimality conditions. However, to the best
of our knowledge, PE and DS have not been considered by
other researchers.

Provenance completion problem:: When the cardinality
constraint is not considered, the provenance completion
problem can be solved using algorithms for workflow sat-
isfiability analysis [26], [27], [28]. However, none of them
considered the cardinality constraint defined in this paper.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented algorithms and com-
plexity results for three provenance analysis problems and
developed incremental algorithms for analyzing evolving
provenance and RBAC policies.

In the future, we will explore the possibility of develop-
ing fixed-parameter tractable algorithms for solving these
problems, i.e., algorithms that are exponential in the size of
small factors but are polynomial in the size of large factors.
In addition, we will consider several subclasses of problem
instances by imposing structural restrictions on dependency
constraints. For example, when the dependency constraints
do not contain ∨, it is not clear if PE is still NP-complete.

Acknowledgements This work was supported in part by
NSF Grant CNS-0855204.

REFERENCES

[1] W. Ding, J. Wang, and Y. Han, “Vipen: A model supporting
knowledge provenance for exploratory service composition,”
in Proc. of the IEEE International Conference on Services
Computing (SCC 2010), 2010, pp. 265–272.

[2] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar,
“Service provenance in QoS-aware web service runtimes,” in
IEEE International Conference on Web Services, 2009.

[3] Y. L. Simmhan, B. Plale, and D. Gannon, “A framework for
collecting provenance in data-centric scientific workflows,” in
Proc. of the IEEE International Conference on Web Services
(ICWS 2006), 2006, pp. 427–436.

[4] J. Zhang, D. Kuc, and S. Lu, “Confucius: A tool supporting
collaborative scientific workflow composition,” IEEE Trans-
actions on Services Computing (TSC), 2012, in press.

[5] A. Chebotko, S. Lu, S. Chang, F. Fotouhi, and P. Yang,
“Secure abstraction views for scientific workflow provenance
querying,” IEEE T. Services Computing, vol. 3, no. 4, pp.
322–337, 2010.

[6] J. Abraham, P. Brazier, A. Chebotko, J. Navarro, and A. Pi-
azza, “Distributed storage and querying techniques for a
semantic web of scientific workflow provenance,” in Proc.
of the IEEE International Conference on Services Computing
(SCC), 2010, pp. 178–185.

[7] C. Lim, S. Lu, A. Chebotko, and F. Fotouhi, “Prospective
and retrospective provenance collection in scientific workflow
environments,” in Proc. of the IEEE International Conference
on Services Computing (SCC), 2010, pp. 449–456.

[8] Y. Simmhan, B. Plale, and D. Gannon, “A survey of data
provenance in e-Science,” SIGMOD Record, vol. 34, no. 3,
pp. 31–36, Sept. 2005.

[9] R. Bose and J. Frew, “Lineage retrieval for scientific data
processing: a survey,” ACM Computing Surveys, vol. 37, no. 1,
pp. 1–28, 2005.

[10] E. Bertino, E. Ferrari, and V. Atluri, “A flexible model
supporting the specification and enforcement of role-based
authorization in workflow management systems.” in ACM
Workshop on Role-Based Access Control, 1997, pp. 1–12.

[11] M. H. Kang, J. S. Park, and J. N. Froscher, “Access control
mechanisms for inter-organizational workflow,” in ACM sym-
posium on Access control models and technologies, 2001, pp.
66–74.

[12] S. Kandala and R. Sandhu, “Secure role-based workflow
models,” in Annual Working Conference on Database and
Ap plication Security, 2001, pp. 45–58.

[13] Open Provenance Model, http://www.openprovenance.org/.
[14] R. Sandhu, D. Ferraiolo, and R. K. D, “The NIST model for

role based access control: Towards a unified standard,” in 5th
ACM Workshop on Role Based Access Control, 2000.

[15] U. Braun, A. Shinnar, and M. Seltzer, “Securing provenance,”
in Proceedings of the 3rd conference on Hot topics in secuity,
2008, pp. 1–5.

[16] U. Braun and A. Shinna, “A security model for provenance,”
Harvard University, Tech. Rep. TR-04-06, 2006.

[17] V. Tan, P. Groth, S. Miles, S. Jiang, S. Munroe, S. Tsasakou,
and L. Moreau, “Security issues in a SOA-based provenance
system,” in Proc. of the third International Provenance and
Annotation Workshop, 2006.

[18] W. Tsai, X. Wei, Y. Chen, R. Paul, J. Chung, and D. Zhang,
“Data provenance in soa: security, reliability, and integrity,”
Service Oriented Computing and Applications, vol. 1, no. 4,
pp. 223–247, December 2007.

[19] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman, “Protection
in operating systems,” Communications of the ACM, vol. 19,
no. 8, pp. 461–471, 1976.

[20] R. Sandhu, “Transaction control expressions for separation of
duties,” in Proc. of the Fourth Computer Security Applications
Conference, 1988, pp. 282–286.

[21] S. Stoller, P. Yang, C. R. Ramakrishnan, and M. Gofman,
“Efficient policy analysis for administrative role based access
control,” in ACM Conference on Computer and Communica-
tion Security (CCS). ACM Press, 2007, pp. 445–455.

[22] M. Gofman, R. Luo, and P. Yang, “User-role reachability
analysis of evolving administrative role based access control,”
in 15th European Symposium on Research in Computer
Security (ESORICS), 2010.

[23] A. Sasturkar, P. Yang, S. D. Stoller, and C. Ramakrishnan,
“Policy analysis for administrative role based access control,”
Theoretical Computer Science, vol. 412(44), pp. 6208–6234,
2011.

[24] J. Cheney, A. Ahmed, and U. Acar, “Provenance as depen-
dency analysis,” in Proceedings of the 11th International
Conference on Database Programming Languages, 2007.

[25] P. Sun, Z. Liu, S. Davidson, and Y. Chen, “Detecting and
resolving unsound workflow views for correct provenance
analysis,” in Proceedings of the 35th SIGMOD International
Conference on Management of Data, 2009.

[26] Q. Wang and N. Li, “Satisfiability and resiliency in workflow
authorization systems,” ACM Trans. Inf. Syst. Secur., vol. 13,
pp. 40:1–40:35, December 2010.

[27] J. Crampton and H. Khambhammettu, “Delegation and satis-
fiability in workflow systems,” in ACM symposium on Access
control models and technologies, 2008, pp. 31–40.

[28] J. Crampton, “A reference monitor for workflow systems with
constrained task execution,” in ACM symposium on Access
control models and technologies, 2005, pp. 38–47.

