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ABSTRACT
Administrative RBAC (ARBAC) policies specify how Role-Based
Access Control (RBAC) policies may be changed by each admin-
istrator. It is often difficult to fully understand the effect of an AR-
BAC policy by simple inspection, because sequences of changes by
different administrators may interact in unexpected ways. ARBAC
policy analysis algorithms can help by answering questions, such
as user-role reachability, which asks whether a given user can be
assigned to given roles by given administrators. This problem is
intractable in general. This paper identifies classes of policies of
practical interest, develops analysis algorithms for them, and ana-
lyzes their parameterized complexity, showing that the algorithms
may have high complexity with respect to some parameter k char-
acterizing the hardness of the input (such that k is often small in
practice) but have polynomial complexity in terms of the overall
input size when the value of k is fixed.
Categories and Subject Descriptors: K.6.5 [Management of Com-
puting and Information Systems]: Security; D.4.6 [Operating
Systems]: Security and Protection—Access Controls
General Terms: Security

1. INTRODUCTION
Role Based Access Control (RBAC) is a widely used framework

for access control [26]. RBAC simplifies access control by de-
composing the association of permissions with users into two re-
lations: the user-role assignment specifies the roles of each user,
and the role-permission assignment specifies the permissions asso-
ciated with each role. Inheritance relationships may also be speci-
fied, in the form of a role hierarchy.
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Administrative RBAC (ARBAC) policies specify how RBAC poli-
cies may be changed by each administrator. ARBAC policies are
important for security in organizations with multiple administra-
tors. Several ARBAC models have been proposed [25, 23, 5, 18].
In this paper, we focus on the classic ARBAC97 model [25], al-
though many of our results can be adapted to other ARBAC mod-
els, as discussed in Section 2.2. ARBAC97 decomposes the ad-
ministration problem into three simpler sub-problems, for control-
ling changes to the user-role assignment, role-permission assign-
ment, and role hierarchy. Administrative operations on the user-
role assignment include adding users to roles, and removing users
from roles. Permission to perform these administrative operations
is specified by the can_assign and can_revoke relations, respec-
tively. A can_assign rule has the form “administrators in role ra
can add users satisfying precondition c to role r”. The precondition
may contain positive preconditions (roles the user must already be
in) and negative preconditions (roles the user must not be in). For
example, assignment of the Dean role may require that the user is
in the Faculty role and not in the DepartmentChair role. In short, an
ARBAC policy defines a transition relation that describes allowed
(possible) changes to the RBAC policy.

Correct understanding of a system’s current RBAC policy and
the implications of its ARBAC policy are critical to assure system
security. Although ARBAC policies are specified using relatively
simple rule languages, it is often difficult to understand the effect of
an ARBAC policy by simple inspection, largely because (without
help) people often fail to see the full effects of multiple-step (tran-
sitive) relations and their interactions. The transitive relations here
are the RBAC policy reachability relation (i.e., the transitive clo-
sure of the ARBAC policy’s transition relation) and the inheritance
relation (i.e., the role hierarchy). Policy analysis helps system de-
signers and administrators understand RBAC and ARBAC policies
by answering questions (queries) about them. For example, user-
role reachability analysis answers questions of the form: given an
initial RBAC policy state, an ARBAC policy, a set of administra-
tors, a target user, and a set of roles (called the “goal”), is it possible
for those administrators to modify the RBAC state so that the target
user is a member of those roles? Unfortunately, many policy anal-
ysis problems, including user-role reachability, are intractable even
under various restrictions on the ARBAC policy [20, 27]. Those
papers give polynomial algorithms for some special cases, but the
restrictions significantly limit the practical applicability of the al-
gorithms.

Can practical algorithms be devised to analyze useful classes of
ARBAC policies, despite the intractability results? We tackle this
question by identifying classes of policies of practical interest, de-
veloping analysis algorithms for them, and analyzing their param-
eterized complexity [6]. The key idea of parameterized complexity
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is to identify an aspect of the input that make the problem compu-
tationally difficult, introduce a parameter k to measure that aspect
of the input, and develop a solution algorithm that may have high
complexity in terms of k, but has polynomial complexity in terms
of the overall input size when the value of k is fixed. If such an al-
gorithm exists, the problem is said to be fixed parameter tractable
(FPT) with respect to k. Even if the problem is NP-hard or worse,
the FPT algorithm is efficient for problem instances with relatively
small values of k.

Main Contributions. We consider a variant of ARBAC97 called
miniARBAC.

1. We give a general algorithm for user-role reachability analy-
sis of general miniARBAC policies (see Section 3), and show
that it is fixed-parameter tractable with respect to the number
of mixed roles (roles that appear both negatively and posi-
tively in the policy). The algorithm uses forward search op-
timized using a reduction that exploits left-commutativity of
transitions. We describe how to slice a policy with respect to
a goal, to help avoid exploration of irrelevant states.

2. We give an efficient backward-search algorithm for user-role
reachability analysis for miniARBAC policies with at most
one positive precondition per rule. The algorithm is fixed-
parameter tractable with respect to the number of irrevocable
roles and has a similar tractability property with respect to
the size of the goal (see Section 4). We also present a partial-
order reduction to optimize the backward search.

3. The above algorithms rely on an aspect of ARBAC97 that
we call separate administration, which requires that admin-
istrative roles and regular roles are disjoint. Prior work on
ARBAC policy analysis [29, 20, 27] generally makes this as-
sumption, but it is unrealistic in many cases. We lift this re-
striction and explore two approaches to policy analysis in this
more general setting, by identifying conditions under which
the general problem can be reduced to policy analysis with
separate administration, and by extending our forward anal-
ysis algorithm to handle the general problem (see Section 5).

4. We describe two case studies: ARBAC policies for a univer-
sity and a health-care institution (see Section 7). We observe
several structural properties of them, and relate them to the
assumptions and complexity parameters of our algorithms.

5. We measure the performance of our analysis algorithms on
families of synthetic (randomly generated) policies, in order
to validate our parameterized complexity results, determine
whether the worst-case complexity manifests itself, and com-
pare the performance of the forward and backward analysis
algorithms when both apply (see Section 8).

6. We also consider other analysis problems, including role con-
tainment (is every member of role r1 also a member of a role
r2 in all reachable policy states?) [20] and weakest precon-
ditions (what are minimal sets of initial roles for a user, in
order for that user to get added to roles in the goal?) (see
Section 6).

2. PRELIMINARIES

2.1 Role Based Access Control (RBAC)
The central notion of RBAC is that users are assigned to appro-

priate roles, and roles are assigned appropriate permissions. In this

paper, we study policy analysis for models of RBAC based on [1].
Following Sasturkar et al. [27], we adopt a simplified model, called
miniRBAC, that does not support sessions, because the policy anal-
ysis queries we consider are independent of sessions.

miniRBAC. A miniRBAC policy γ is a tuple 〈U,R, P,UA,PA〉
where

• U , R and P are finite sets of users, roles, and permissions,
respectively. A permission represents authorization to invoke
a particular operation on a particular resource.

• UA ⊆ U × R is the user-role assignment relation. 〈u, r〉 ∈
UA means that user u is a member of role r.

• PA ⊆ P × R is the permission-role assignment relation.
〈p, r〉 ∈ PA means that members of role r are granted the
permission p.

The miniHRBAC model based on Hierarchical RBAC [1] ex-
tends the miniRBAC model with role hierarchies, which are a nat-
ural means for structuring roles to reflect an organization’s lines of
authority and responsibility.

miniHRBAC. A miniHRBAC policy γh is a tuple 〈U,R, P,UA,
PA,�〉 where U , R, P , UA and PA are as in miniRBAC, and
� ⊆ R×R is a partial order on the set R of roles.
r1 � r2 means r1 is senior to r2, i.e., every member of r1 is

also a member of r2, and every permission assigned to r2 is also
available to members of r1. Thus, r2 inherits all the users of r1 and
r1 inherits all the permissions of r2. A user u is an explicit member
of a role r if 〈u, r〉 ∈ UA. A user u is an implicit member of a role
r if 〈u, r′〉 ∈ UA for some r′ such that r′ � r and r′ 6= r.

2.2 Administrative Role Based Access Control
(ARBAC)

ARBAC97 is a classic model for decentralized administration
of RBAC policies [25]. ARBAC97 has three components: (1)
user-role administration (URA), (2) permission-role administration
(PRA), and (3) role-role administration (RRA) for administration
of the role hierarchy. We consider a modified version of ARBAC97
called miniARBAC similar to [27]. miniARBAC includes only the
URA component; the permission assignment and role hierarchy
are considered fixed. Extending our analysis techniques to han-
dle changes to them is discussed at the end of this section. Since
we do not consider changes to the role hierarchy, we adopt a sim-
ple ARBAC model without authority ranges [25], scopes [17, 5],
or administrative domains [18]; policies using those features can
be expressed without them when the role hierarchy is fixed.

The URA policy controls changes to the user-role assignment
UA. Permission to assign users to roles is specified by the relation
can_assign ⊆ R×C ×R, where C is the set of all preconditions
(called prerequisite conditions in [25]) over R. The precondition
is a conjunction of literals, where each literal is either r or ¬r for
some role r in R. Given a miniRBAC policy γ and a user u, u
satisfies a precondition ∧ili, denoted u |=γ ∧ili, iff for all i, ei-
ther li is a role r and u is a member of r in γ, or li is a negated
role ¬r and u is not a member of r in γ. A UserAssign(ra, u, r)
action specifies that an administrator who is a member of the ad-
ministrative role ra adds user u to role r. This action is enabled in
state γ = 〈U,P,R,UA,PA〉 iff there exists a precondition c such
that 〈ra, c, r〉 ∈ can_assign and u |=γ c. Execution of this action
transforms γ to the state γ′ = 〈U,P,R,UA ∪ {〈u, r〉},PA〉.

Permission to revoke users from roles is specified by the rela-
tion can_revoke ⊆ R × R. This is analogous to can_assign ,
except that it does not allow preconditions, because there is little
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evidence that preconditions for revocation are useful [25]. The ac-
tion UserRevoke(ra, u, r) is defined similarly to UserAssign .

miniARBAC policy. A miniARBAC policy is represented as ψ =
〈can_assign, can_revoke〉. We often refer to tuples in these two
relations as rules. The role r to which users or permissions are
being assigned or removed (i.e., the third component of the tuple)
is called the target of the rule. A miniARBAC policy specifies
a transition relation between miniRBAC (or miniHRBAC) poli-
cies, which we often refer to as states. A transition is denoted by
γ

a→ψ γ
′, where a is one of the four administrative actions defined

above. When we do not care about the action a, we omit it from
the transition, and when the miniARBAC policy ψ is clear from
context, we omit it from the transition.

SMER Constraints. A Static Mutually Exclusive Roles (SMER)
constraint is an unordered pair of roles 〈r1, r2〉 whose membership
is required to be disjoint. SMER constraints help enforce separa-
tion of duty. We treat SMER constraints as an abbreviation for neg-
ative preconditions that enforce the required disjointness. Specifi-
cally, a SMER constraint 〈r1, r2〉 is an abbreviation for conjoining
¬r1 to the precondition of each can_assign tuple with target r2,
and vice versa.

Separate Administration. A role r is an administrative role if
it has an administrative permission, i.e., there is a can_assign tu-
ple with r in the first component. A role r is a regular role if it
has a regular permission, i.e., there is a PA tuple with r in the first
component. Our framework, like SARBAC [5], UARBAC [18],
and Oracle, allows a role to be both a regular role and an admin-
istrative role. This flexibility allows many policies to be expressed
more naturally. For example, in a university, a department chair
has both regular permissions (e.g., authorize expenses from the de-
partment’s accounts) and administrative permissions (e.g., appoint
faculty to committees).

Earlier work on ARBAC, such as ARBAC97 and ARBAC02 [25,
23], requires that (1) regular roles and administrative roles are sepa-
rate (i.e., no role is in both categories), and (2) in every can_assign
tuple, the first component is an administrative role, the condition
mentions only regular roles, and the target is a regular role. We
call this the separate administration restriction. Work on ARBAC
policy analysis [29, 27, 20] generally adopts this restriction, with
the exception of analysis for the AATU model in [20].1 This helps
simplify a difficult problem, enabling steps towards more general
solutions. The AATU model in [20] does not adopt this restric-
tion, but adopts two other big restrictions instead (no revocation;
no negative preconditions or SMER constraints).

The analysis algorithms in Sections 3 and 4 take advantage of the
separate administration restriction. Section 5 tackles policy analy-
sis without this restriction.

Other ARBAC Frameworks. Our focus on ARBAC97-like user-
role administration model is not a fundamental limitation of our
work. The proposals for user-role administration, permission-role
administration, and role-hierarchy administration in [25, 23, 17, 5,
18] differ from each other in important ways, but the aspects most
relevant to our algorithms—primarily the form of preconditions
of administrative operations—are generally not more complicated
than in the URA policies we analyze, so the ideas underlying our
algorithms can be adapted to analyze them. Handling RHA’s con-
ditions for scope preservation [5] would require some extensions.
UARBACP [18] is a schematic framework that allows arbitrary
constraints over arbitrary types to be used as (roughly speaking)

1The restriction adopted in the AAR model in [20] is similar al-
though not identical.

preconditions. Our algorithms can be adapted for instantiations of
UARBACP that use typical constraints such as checking whether a
user or object is a member of a given role, scope, or domain.

2.3 User-Role Reachability
The user-role reachability problem is: Given an initial miniR-

BAC policy γ0 = 〈R,UA0〉, a miniARBAC policy ψ, a set U0

of users, a user ut in U0 (called the “target user”), and a set goal
of roles, can the users in U0 together transform γ0 (under the re-
strictions imposed by ψ) to another miniRBAC policy γ in which
ut is a member of all roles in goal? A sequence of administrative
actions (i.e., UserAssign and UserRevoke actions) that performs
such a transformation is called a plan for (or solution to) the prob-
lem instance. We will often refer to user-role reachability simply as
“reachability”. A reachability problem instance can be represented
as a tuple 〈γ0, ψ, U0, ut, goal〉. We sometimes refer to miniRBAC
policies as “states”.

Reachability Under Separate Administration. The separate ad-
ministration restriction allows the specification of a problem in-
stance to be simplified. When adopting this restriction, we also
assume, without loss of generality, that the target user ut is initially
a member of regular roles only (if the target user were initially a
member of administrative roles, we could give those roles to an-
other user in U0 instead, without affecting the answer to the reach-
ability problem). Note that the separate administration restriction
implies that the target user cannot be added later to an administra-
tive role.

We call the other users in U0 “administrators” (we could require
that they are members of administrative roles only, but allowing
them to be members of regular roles as well has no impact on
the analysis). With this restriction, it is sufficient to consider only
administrative actions by the administrators that change the target
user’s role memberships. Let A be the set of administrative roles
of users in U0 in the initial state γ0. We can merge those roles into
a single administrative role with the union of the administrative
permissions of roles in A, and eliminate all other administrative
roles. We can then make this single administrative role implicit,
i.e., we can eliminate the first component of the can_assign and
can_revoke relations. Similarly, because role memberships of dif-
ferent users are independent, we can eliminate all users other than
the target user. We can then make this user implicit, i.e., we can
eliminate the first component of the user assignment UA. We can
also eliminate the first two parameters of administrative actions.

With these simplifications, a reachability problem instance can
be represented as a tuple 〈γ0, ψ, goal〉 where γ0 = 〈R,UA0〉 is a
simplified miniRBAC policy, ψ = 〈can_assign, can_revoke〉 is
a simplified miniARBAC policy, and goal ⊆ R. Since the set of
roles is fixed, we sometimes elide it, representing a state as UA,
instead of 〈R,UA〉.

2.4 Parameterized Complexity
Parameterized complexity [6] is an approach to deal with com-

putationally difficult problems. The idea is to identify an aspect
of the input that makes the problem computationally difficult, in-
troduce a parameter to measure that aspect of the input, and de-
velop a solution algorithm that may have high complexity in terms
of that parameter, but has polynomial complexity in terms of the
overall input size when the value of that parameter is fixed. This
is called fixed-parameter tractability. Formally, a problem is fixed-
parameter tractable (FPT) with respect to parameter k if there ex-
ists an algorithm that solves it in O(f(k) × nc) time, where f is
an arbitrary function (depending only on its argument k), n is the
input size, and c is a constant.
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We say that a problem is fixed-parameter polynomial with re-
spect to parameter k if there is an algorithm that solves it inO(nck)
time, where n is the input size, and c is a constant. Note that, for
a fixed value of k, the time complexity is polynomial in n. We say
that a problem is fixed-parameter k1-tractable and k2-polynomial
if there exists an algorithm that solves it in O(f(k1)× nck2) time
for some function f and constant c.

3. FIXED-PARAMETER TRACTABILITY OF
REACHABILITY UNDER SEPARATE AD-
MINISTRATION

This section presents parameterized complexity results for user-
role reachability under the separate administration restriction. Our
exposition is for policies without role hierarchy. Analysis of poli-
cies with role hierarchy can be reduced to analysis of policies with-
out role hierarchy, by transforming the policy and goal to make the
effects of inheritance explicit, as described in [27].

A role is negative (in a problem instance) if it appears negated
in some precondition in the policy; other roles are non-negative. A
role is positive if it appears positively (i.e., not negated) in some
precondition in the policy or appears in the goal; other roles are
called non-positive roles. A role that is both negative and posi-
tive is called mixed. This section shows that reachability analysis
is fixed-parameter tractable with respect to the number of mixed
roles. We prove this constructively, by giving a fixed-parameter
tractable algorithm based on a reduction theorem that shows that it
is safe to execute certain sequences of transitions atomically, i.e., as
a single larger (composite) transition. In some ways, our reduction
is a special case of Lipton’s reduction [21], but in another way, our
reduction differs from Lipton’s reduction and its numerous succes-
sors. Those reductions justify treating given sequences of transi-
tions (which appear in the control flow graph of the program) as
atomic, i.e., as composite transitions. An ARBAC policy has no
control flow, so our reduction itself defines composite transitions,
and justifies using them instead of the original transitions.2 In ad-
dition, we prove fixed-parameter tractability for our algorithm. We
are not aware of any similar complexity results in the literature for
reductions or partial-order reductions, whose performance is usu-
ally evaluated in a purely empirical way.

The heart of our method is the definition of a reduced transition
relation ; that takes larger steps than the original transition rela-
tion→; specifically, a single step of ; may correspond to multiple
steps of →. The reachability algorithm itself is a straightforward
exploration of the states reachable from the initial state via the re-
duced transition relation. Note that increasing the transition size by
a factor of k can reduce the number of explored states by a much
greater factor, because it can eliminate many intermediate states
produced by execution of different subsets of the original transi-
tions that are aggregated into the reduced transitions.

An invisible transition is a transition that adds a non-negative
role or revokes a non-positive role; other transitions are called vis-
ible transitions. The reduced transition relation differs from the
original transition relation in two ways. (1) Transitions that revoke
non-negative roles or add non-positive roles are prohibited; they
are useless because they do not add roles in the goal and do not
enable any transitions. (2) Invisible transitions get combined with
a preceding visible transition to form a single composite transition.

2Our algorithm is not a special case of traditional partial-order re-
ductions [9, 4], because our algorithm exploits the fact that cer-
tain transitions are left-movers, while traditional partial-order al-
gorithms exploit only full commutativity (independence) of transi-
tions.

Invisible transitions can safely be executed immediately after the
preceding visible transition, because they never disable any transi-
tions.

More formally, for a state γ, let closure(γ) denote the largest
(with respect to ⊆) state γ′ reachable from γ by executing invis-
ible transitions. A straightforward proof, based on the definition
of invisible transition, shows that this closure is well-defined, i.e.,
there is a unique largest such state. The reduced transition relation
is defined by: γ1

a
; γ2 iff there exists a state γ such that γ1

a→ γ
and γ2 = closure(γ) and γ1 6= γ2 and a is UserAssign(r) or
UserRevoke(r) for some negative role r (we don’t need to al-
low non-negative roles here, because they are added implicitly by
closure and never revoked).

The following theorem shows that user-role reachability can be
solved by exploring the reduced transition relation. For a problem
instance I , let PRI , NRI , and NRI denote the sets of positive,
negative, and non-negative roles, respectively, in I . For a relation
→, let→∗ denote its reflexive-transitive closure. A goal is reach-
able from a state γ0 iff (∃γ : γ0 →∗ γ ∧ goal ⊆ γ).

THEOREM 1. For all miniRBAC states γ0 and all goals goal ,
goal is reachable from γ0 iff (∃γ : closure(γ0) ;∗ γ ∧ goal ⊆
γ).

The proof is straightforward. This theorem implies that reacha-
bility analysis can be solved by computing the states reachable from
closure(I) via ;, and checking whether the goal is a subset of any
of the resulting states. The graph constructed by this computation
is called the reduced state graph.

THEOREM 2. The reduced state graph can be constructed in
time O(f(|NRI ∩ PRI |)|I|c), for some function f and some con-
stant c. Thus, user-role reachability is fixed-parameter tractable
with respect to the number of mixed roles.

PROOF: To reduce clutter, we omit the subscript I on NR and PR.
We introduce some terminology. An NR-state is a subset of NR.
The NR-state graph is the projection of the reduced state graph
onto NR-states; thus, an edge (s1, s2) in the state graph induces
an edge (s1 ∩ NR, s2 ∩ NR) in the NR-state graph. Let Gred

and GNR denote the reduced state graph and the NR-state graph,
respectively.

We show that the number of states in Gred is O(f(|NR ∩PR|))
for some function f . Every state in Gred is reachable by a simple
path in Gred . Every simple path in Gred corresponds, by projec-
tion, to a distinct path in GNR, because every ; transition changes
the set of NR roles in the state. Furthermore, these paths in GNR

contain at most one occurrence of each cycle in GNR, because
going around a cycle in GNR a second time would not add any
more NR roles to the state, hence the corresponding fragment of
the path in Gred (note that a path in GNR uniquely determines a
corresponding path in Gred , because ; adds all allowed positive
roles at each step) would be a cycle, contradicting the assumption
that the path in Gred is simple. Therefore, the number of states in
Gred is bounded by the number of paths in GNR that go around
each cycle at most once. This number is clearly bounded by some
function of the number of nodes in GNR. The number of nodes in
GNR is clearly bounded by some function of |NR|. To see that it is
bounded by some function of |NR ∩ PR|, note that the set of non-
positive roles in the state is the same in every state in Gred except
the initial state, because the reduced transition relation never adds
non-positive roles to the state, and revocation has no preconditions,
and hence invisible transitions that revoke non-positive roles occur
only in composite transitions leaving the initial state. Thus, the set
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of non-positive roles is the same in every state in GNR except the
initial state, so the number of nodes in GNR is bounded by some
function of the number of positive roles in NR.

The time complexity of standard state-graph construction algo-
rithms is polynomial in the size of the input and linear in the size
of the output (i.e., the reduced state graph). Therefore, the worst-
case time complexity of constructing the reduced state graph is
O(f(|NR ∩ PR|)|I|c), for some function f and some constant
c.

2

Slicing. Before applying the above algorithm, we apply a slic-
ing transformation that back-chains along the rules to identify roles
and rules relevant to the given goal, and then eliminates the irrele-
vant ones. The special twist here, compared to traditional cone-of-
influence reduction [4], is to take into account whether a role ap-
pears positively or negatively. Let ppre(t) be the set of roles used
as positive preconditions in a can_assign rule t. Let posPre =
{〈p, r〉 | ∃t ∈ can_assign : p ∈ ppre(t) ∧ target(t) = r}.
Define Rel+ (“relevant positive roles”) by Rel+ = {p | 〈p, r〉 ∈
posPre∗ ∧ r ∈ goal}. Note that Rel+ contains every role r such
that adding r to the state might be useful in reaching the goal. Roles
that appear negatively in the preconditions of can_assign rules
whose target is in Rel+ are also relevant, so we define Rel− to
contain those roles.

The sliced problem instance is obtained by deleting roles not in
Rel+ ∪ Rel−, deleting can_assign rules whose target is not in
Rel+, and deleting can_revoke rules whose target is not in Rel−.
Note that slicing can turn a negative role into a non-negative role,
increasing the benefit of the reduction.

Example. Consider the ARBAC policy

can_assign = {〈r1, r2〉, 〈r2, r3〉, 〈r3 ∧ ¬r4, r5〉,
〈r5, r6〉, 〈¬r2, r7〉, 〈r7, r8〉}

(1)

can_revoke = {r1, r2, r3, r5, r6, r7} (2)

Consider the reachability problem for this policy with initial state
UA0 = {r1, r4, r7} and goal = {r6}. The goal is not reachable
from the initial state. Figure 3 describes the sets of reachable states
and transitions generated using four variants of forward search, ob-
tained by independently turning reduction and slicing on and off.
For this policy, NR = {r2, r4}.
Total Revocation and State Merging. Total Revocation holds
for a problem instance if every role that can be assigned by one
of the administrators can also be revoked by one of the admin-
istrators, i.e., (∀〈c, r〉 ∈ can_assign : r ∈ can_revoke).3 In
most ARBAC policies, an administrator who can assign users to
a role can also revoke users from that role, and vice versa. Thus,
in practice, most problem instances satisfy total revocation. For
those problem instances, state merging can be used to optimize
the above algorithm. Specifically, two reachable states s1 and s2
can be merged during the search if (s1 ∩ NR) = (s2 ∩ NR) and
(s1∩NR) ⊇ (UA0∩NR), because a plan that reaches s1∪s2 from
γ0 can be constructed by concatenating (1) a plan that reaches s1
from γ0, (2) revocations of roles in ((s1 ∩NRI) \UA0), and (3) a
plan that reaches s2 from γ0. A corollary of this result is: for prob-
lem instances I that satisfy total revocation and UA0 ∩ NRI , two
reachable states s1 and s2 can be merged if s1 ∩ NR = s2 ∩ NR.
This implies that, for such problem instances, the state graph has at
most 2|NR| nodes, i.e., the function f in Theorem 2 is f(x) = 2x

(in general, f could be larger than exponential).

3This simple definition is suitable when the separate administration
restriction or hierarchical role assignment (cf. Section 5) holds.

4. FIXED-PARAMETER TRACTABILITY OF
REACHABILITY WITH ONE POSITIVE
PRECONDITION UNDER SEPARATE AD-
MINISTRATION

The “one positive precondition” restriction, denoted |ppre| ≤ 1,
means that the precondition of each can_assign rule contains at
most one positive literal. This section considers policy analysis
under the |ppre| ≤ 1 and separate administration restrictions.

Sasturkar et al. showed that reachability for policies satisfying
|ppre| ≤ 1, separate administration, CR (all roles can be uncon-
ditionally revoked), and EN (no explicit negation, i.e., negation
is used only in the form of SMER constraints) is fixed-parameter
polynomial with respect to the goal size [27].

We generalize that result by eliminating the restrictions on revo-
cation and negation. This leads to the result that reachability for
policies satisfying |ppre| ≤ 1 is fixed-parameter |Irrev |-tractable
and |goal |-polynomial, where Irrev is the set of irrevocable roles.
If we allow those parameters to vary, the worst-case running time is
exponential in the goal size, and doubly exponential in the number
of irrevocable roles. We believe that the algorithm is practical nev-
ertheless, primarily because both parameters are very small (two or
less) in all natural examples we have considered so far. Also, in ex-
periments with synthetic examples with more irrevocable roles (see
Section 8), the measured running time increases only modestly with
|Irrev |; we expect that the worst-case doubly-exponential behavior
occurs only in contrived examples.

Let I = (γ0, ψ, goal) be a problem instance satisfying |ppre| ≤
1, where γ0 = 〈R,UA0〉 and ψ = 〈can_assign, can_revoke〉.
Because |ppre| ≤ 1, each element of can_assign can be written
in the form 〈p ∧ ¬N, r〉, where p is a positive literal (i.e., a role)
or true , and N is a (possibly empty) set of roles; ¬{n1, n2, . . .}
abbreviates ¬n1 ∧ ¬n2 ∧ · · · . Let Irrev be the set of irrevocable
roles, i.e., Irrev = R \ can_revoke .

The algorithm has two stages.
The first stage uses backwards search from the goal to construct

a directed graph G = (V,E). The nodes correspond to states (i.e.,
sets of roles). The graph contains an edge from a state UA1 to
UA2 if there is a can_assign rule (p ∧ ¬N, r) such that, starting
from UA1, revoking roles in UA1 that appear in N (we say that
those roles “conflict” with the rule), and then adding r using this
rule leads to UA2. Given UA2, if such a predecessor state UA1

exists, then we say that the rule is backwards enabled in UA2. The
predecessor function and backwards enabled function are defined
as follows.

pred(〈p ∧ ¬N, r〉,UA) (3)
= (p= true) ? UA \ {r} : (UA \ {r}) ∪ {p}

backEnab(〈p ∧ ¬N, r〉,UA) (4)
= r ∈ UA ∧ pred(〈p ∧ ¬N, r〉,UA) ∩N = ∅

The graph is defined to be the least fixed-point of the following
rules. The graph is computed by a straightforward workset algo-
rithm.

goal ∈ V
(∀ UA2 ∈ V, t ∈ can_assign : backEnab(t,UA2)
⇒ e ∈ E ∧ label(e) = t where e = 〈pred(t,UA2),UA2〉)

(∀ 〈UA1,UA2〉 ∈ E : UA1 ∈ V )
(5)

The second stage of the algorithm uses the graph 〈V,E〉 to de-
termine plan existence and, if the goal is reachable, produce a plan.
The plan corresponds to a path in the graph from an initial node
to the goal. However, each state encountered during the plan is
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Figure 1: Left: Part of state space generated without reduction and without slicing (32 states, 96 transitions). Top right: State
space generated without reduction and with slicing (8 states, 16 transitions). Bottom right: State space generated with reduction and
without slicing (3 states, 3 transitions). ua and ur abbreviate UserAssign and UserRevoke , respectively. The state space generated
with reduction and slicing (not shown) contains 1 state, namely, {r1, r2, r3, r4}, and 0 transitions.

not simply (the set of roles in) the corresponding node in the path;
rather, each state encountered in the plan may be a superset of the
corresponding node in the path. This is because roles that were
needed to satisfy preconditions of earlier transitions in the plan
might still be in the state. This possibility is unavoidable, because
some of those roles might be irrevocable. In addition, our algorithm
leaves revocable roles in the state unless and until they need to be
revoked to enable the next transition.

Let P = 〈e1, e2, . . . , en〉 be a path in 〈V,E〉, represented as
a sequence of edges. The candidate plan corresponding to P , de-
noted plan(P ), is A1.A2. · · · .An where

• 〈pi ∧ ¬Ni, ri〉 = label(ei).

• UA′i, the intermediate state in the plan immediately before
execution of Ai, is defined by (1) UA′1 is the source node of
e1, and (2) for i ≥ 1, UA′i+1 = UA′i \ revokei ∪{ri}. Note
that these intermediate states in the plan may be supersets of
the corresponding nodes in the path, as discussed above.

• revokei = Ni ∩UA′i (i.e., the set revokei of roles that need
to be revoked byAi contains roles that are present in the cur-
rent state and conflict with the next can_assign transition).

• Ai = {UserRevoke(r) : r ∈ revokei}.UserAssign(ri).

Note that Ai consists of the indicated UserRevoke actions in arbi-
trary order, followed by the indicated UserAssign action.

We call plan(P ) a “candidate plan” because it might attempt to
revoke an irrevocable role. A path P is feasible if plan(P ) does
not contain UserRevoke(r) for any r ∈ Irrev .

A node UA in the graph is an initial node if it is a subset of
the initial state UA0. This definition allows initial revocation of
revocable roles in UA0 \ UA. This is necessary because every
edge in the graph corresponds to a sequence of operations that adds
at least one role to the state. Irrevocable roles in UA0 \ UA are
placed in airs(UA), defined below.

LEMMA 3. There is a plan for I iff there is a feasible path P
from an initial node to the goal node.

PROOF: This follows directly from the construction of the graph
and the above definitions. 2

To determine whether a feasible path exists, we compute, for
each node UA in the graph, the set airs(UA) of sets of additional
irrevocable roles that can be in states corresponding to that node;
“additional” here means “not in UA”. More precisely, S ∈ airs(UA)
iff (1) UA is an initial node and S = (UA0 ∩ Irrev) \ UA, or (2)
S ⊆ Irrev and S ∩ UA = ∅ and there exists a feasible path P
from an initial node UA1 to UA such that execution of plan(P )
from UA1 leads to the state UA ∪ S.

LEMMA 4. There is a plan for I iff airs(goal) is non-empty.

PROOF: This is a corollary of the previous lemma, and the ob-
servation that (by definition of airs) airs(goal) is non-empty iff
there exists a feasible path from an initial node to goal . Note that
airs(goal) might contain only the empty set. That counts! It im-
plies there exists a feasible path P from an initial node to goal such
that plan(P ) adds no additional irrevocable roles. 2

Considering every path individually would be very expensive, so
we introduce an alternate characterization of airs that leads to a
more efficient algorithm. Specifically, airs is the least (with re-
spect to the pointwise extension of the subset ordering) solution of
the following set inclusion constraints, where the set comprehen-
sion {f(x1, x2, . . .) : x1 ∈ S1, x2 ∈ S2, . . . | p(x1, x2, . . .)}
denotes the set obtained by iterating over each combination of val-
ues x1, x2, . . . in S1×S2×· · · and, if p(x1, x2, . . .) holds, adding
f(x1, x2, . . .) to the result set.

• For each initial node UA, airs(UA) ⊇ (UA0∩Irrev)\UA.

• For each edge UA1
〈p∧¬N,r〉−→ UA2, if UA1 is reachable with

additional irrevocable roles S in the state, and if this edge is
a feasible transition from that state (i.e., if ((UA1 ∩ Irrev)∪
S) ∩ N = ∅), then UA2 is reachable with additional irre-
vocable roles S ∪ ((UA1 \ UA2) ∩ Irrev) (in other words,
irrevocable roles present in UA1 must still be present in the
next state and, if they do not appear in UA2, are “additional”
in that state, by definition); formally,

airs(UA2) ⊇ {S ∪ ((UA1 \UA2) ∩ Irrev) :
S ∈ airs(UA1) | ((UA1 ∩ Irrev) ∪ S) ∩N = ∅}
The role r added along this edge does not appear in the set
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constraint, because the construction of the graph ensures that
r appears in UA2 and hence is never “additional” in states
corresponding to UA2. As an optimization, ((UA1∩Irrev)∪
S)∩N can be simplified to S ∩N , because the construction
of the graph implies UA1 ∩N = ∅. Similarly, the construc-
tion implies that (UA1 \ UA2) equals {p} if p 6= true and
equals ∅ otherwise.

These constraints can be rewritten as a monotonic recursive defini-
tion.

airs(UA2) = (UA2 ∈ initialNodes ? {∅} : ∅) ∪
{S ∪ ((UA1 \UA2) ∩ Irrev) :

UA1
〈N,r〉−→ UA2 ∈ inedges(UA2),

S ∈ airs(UA1) | ((UA1 ∩ Irrev) ∪ S) ∩N = ∅}

The solution can be computed by a straightforward fixed-point
computation, using a workset algorithm. Existence of a plan for I is
then determined using Lemma 4. The fixed-point computation can
easily be augmented to store additional information that provides a
plan for I , if a plan for I exists.

Now we analyze the algorithm’s time complexity. Let g = |goal |.
Each node in V contains at most g roles, because the search starts
with the state goal , and the definition of UA1 ensures that |UA1| ≤
|UA2|. There are

(|R|
g

)
sets containing exactly g roles, and each of

these sets has 2g subsets, so |V | isO(2g
(|R|
g

)
), which isO(2g|R|g).

|E| is O(|V |2) which is O(22g|R|2g). Processing each possible
node or edge takes O(|I|) time, so the running time of Stage 1
is O(|E||I|). In Stage 2, each node in V gets labeled with a set
of subsets of Irrev , and propagating each subset along each edge
takesO(|I|) time, so the running time of Stage 2 isO(|E|22|Irrev|

|I|).
Thus, the overall running time is O(22g|R|2g22|Irrev|

|I|). This
shows that reachability for problem instances with |ppre| ≤ 1 is
fixed-parameter |Irrev |-tractable and |goal |-polynomial.

This algorithm and complexity result can be extended to han-
dle a class of policies that do not satisfy |ppre| ≤ 1. Extending
the algorithm is easy: interpret p as a set of positive precondi-
tions, instead of a single positive precondition, and in the defini-
tion (3) of pred, replace “ ∪ {p}” with “ ∪ p”. The consequence
is that generated states may contain more than |goal | roles. A pol-
icy is cycle free if the posPre relation (defined in Section 3) is
acyclic. Consider any path P in the generated graph from a state
UA1 to a state UA2, for a cycle free policy. Since the policy is
cycle free, the number of edges in P labeled by a selected rule t
is bounded by |UA2|. Note that |UA1| is larger than |UA2| due
to uses of t by at most |ppre(t)| × |UA2|. Thus, the maximum
size of a state in the graph is bounded (loosely) by π × |goal|,
where π = Πt∈can_assign max(1, |ppre(t)|). The complexity anal-
ysis proceeds as above, except with g replaced with π × |goal |.
This shows that the extended algorithm is fixed-parameter |Irrev |-
tractable and (π×|goal |)-polynomial, for cycle free policies. Note
that π = 1 when |ppre| ≤ 1, so this result specializes to the previ-
ous result, although only for cycle-free policies.

Partial-Order Reduction. The graph construction can be opti-
mized with a partial-order reduction [9, 4]. It is trickier than in
Section 3, because the graph construction is a backward search, and
the states corresponding to nodes in the graph are only partly deter-
mined during the backward search. A straightforward adaptation of
the reduction in Section 3 is unsound. That reduction executes tran-
sitions whose target is a non-negative role as soon as they are en-
abled, hence those transitions appear early in the plan. A straight-
forward adaptation of it for backward search is to defer processing
of such transitions whenever other transitions are backwards en-

abled; this also causes such transitions to appear early in the gen-
erated plan. However, this is unsound: it sometimes defers such
transitions too much. For example, consider a reachability prob-
lem instance with can_assign = {〈r0, r1〉, 〈¬r0, r2〉, 〈true, r0〉,
〈¬r2, r3〉}, can_revoke = ∅, UA0 = ∅, and goal = {r1, r2}. The
technique proposed above defers processing of rules whose target
is the non-negative role r1, so only the rule that adds r2 would be
explored backwards from the goal state. Therefore, the algorithm
would fail to find the plan for this problem instance, namely, the
plan that adds r2, then r0, and then r1.

To avoid this problem, our reduction takes a different approach:
it identifies transitions that can be processed eagerly during the
backward search, causing them to appear late in the resulting plan.
A role r is backwards invisible in a state UA if every transition
t = 〈p∧¬N, r〉 with target r satisfies (p = true ∨ p ∈ UA∨ p 6∈
NRI) ∧N ∩ Irrev = ∅, and at least one transition with target r is
backwards enabled in UA2. The first conjunct in the formula en-
sures that backward execution from UA of a transition with target
r does not disable backwards-enabled transitions with other targets
(so the backward algorithm can process those transitions after pro-
cessing a transition for r). The second conjunct in the formula en-
sures that transitions for r will not be disabled by irrevocable roles
added to the state in stage 2.

To incorporate the reduction into the graph construction, modify
the definition of E so that, if some role r in UA2 is backward in-
visible in UA2 and the stack proviso is satisfied (see below), then
only can_assign rules for r are explored from UA2, otherwise all
backward enabled can_assign rules are explored from UA2. The
stack proviso ensures that no transitions are completely ignored
even when the state space contains cycles; it is satisfied if at least
one transition backward explored from the current state leads to a
state not on the DFS search stack [9, Chapter 6]. Note that slicing
can increase the benefit of this reduction, by turning negative roles
into non-negative roles.

This reduction is not a special case of traditional partial-order
reductions [9, 4], because it uses an extra condition to deal with the
fact that the search is split into two stages, and because it exploits
the fact that the eagerly executed transitions are left-movers, while
traditional partial-order algorithms exploit only full commutativity
(independence) of transitions.

5. BEYOND THE SEPARATE ADMINISTRA-
TION RESTRICTION

This section considers policy analysis without the separate ad-
ministration restriction. First, we generalize the reduction-based
algorithm in Section 3 to eliminate its dependence on this restric-
tion. Second, we identify a condition under which policy analysis
without the separate administration assumption can be reduced to
policy analysis with the separate administration assumption.

5.1 Fixed-Parameter Tractability of Reacha-
bility

Without the separate administration restriction, reachability anal-
ysis must consider plans that may contain administrative actions
that change the role memberships of any user in U0, not only the
target user. To accommodate this, we describe how to generalize
the reduction-based algorithm in Section 3 to track the role sets
of multiple users. The worst-case time complexity is exponential
in the number of those users. This demonstrates that reachability
analysis is fixed-parameter tractable with respect to the number of
negative roles and |U0|.

Generalizing the partial-order algorithm in this way is straight-
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forward. We now deal with full user assignments UA ⊆ U × R,
not simplified user assignments UA ⊆ R. We strengthen the def-
inition of enabledness of an action in a state γ to require (in ad-
dition to the conditions in Section 2.2) that the administrative role
ra (the first argument to the UserAssign or UserRevoke action)
is a role of some user in U0 in γ. The definitions of visible and
invisible transitions and closure are unchanged. The reduced tran-
sition relation is defined by: γ1

a
; γ2 iff there exists a state γ

such that γ1
a→ γ and γ2 = closure(γ) and γ1 6= γ2 and a is

UserAssign(ra, u, r) or UserRevoke(ra, u, r) for some adminis-
trative role ra, some user u in U0, and some negative role r. Theo-
rem 1 still holds, provided we replace goal ⊆ γ with goal ⊆ γ(ut),
where γ(u) = {r | 〈u, r〉 ∈ γ}.

The proof of fixed-parameter tractability of this algorithm with
respect to the number of negative roles and |U0| is analogous to
the proof of Theorem 2, except that each state in GNR is now a
|U0|-tuple of subsets of NR, so the size of GNR is bounded by a
function of and |NR| and |U0|, so by the same argument as before,
the size of Gred is also bounded by some function of |NR| and
|U0|, i.e., the size of Gred is O(f(|NRI |, |U0|)) for some function
f . It follows that the worst-case time complexity of constructing
the reduced state graph isO(f(|NR|, |U0|)|I|c), for some function
f and some constant c.

5.2 Hierarchical Role Assignment
We say that an administrative role r is “available” in a state if

some user in U0 is a member of r in that state.
The separate administration restriction simplifies policy analysis

primarily because it ensures that the set of available administrative
roles does not change. Here, we identify a condition under which
changes to the set of available administrative roles, although possi-
ble, are not useful (for reaching a goal) and hence can be ignored.

The condition ensures that, in the initial state, the users in U0

already have all of the administrative permissions of administrative
roles to which they could assign themselves. This is achieved by
requiring that the users in U0 are implicit or explicit members of all
those administrative roles in the initial state.

A miniARBAC policy has hierarchical role assignment with re-
spect to a setA of administrative roles if: for all 〈ar, c, r〉 in can_assign ,
if ar is in A and r is an administrative role,4 then ar � r. This
implies that a user who can assign users to r is an implicit member
of r. We call this property “hierarchical role assignment” because
it relates the role hierarchy with the can_assign relation.

THEOREM 5. Let I = 〈γ0, ψ, U0, ut, goal〉 be a reachability
problem instance. LetA be the available administrative roles in γ0.
If the miniARBAC policy ψ has hierarchical role assignment with
respect to A, then the goal is reachable iff the goal is reachable via
a plan in which all assign and revoke actions act on the target user.

PROOF:
It is not useful for a user u1 in U0 to assign a user u2 other

than ut in U0 to an administrative role ar, because u1 is already
an implicit member of ar, and making another user a member of
r provides no additional administrative permissions to the group
U0 of users. Note that we allow assignment of administrative roles
to ut, because such assignments can truthify the precondition of a
can_assign rule, and this might enable addition of ut to a regular
role in the goal. It is not useful to assign a user u2 other than
ut to a regular role, or to revoke u2 from any role, because the
only potential benefit of such administrative actions would be to
4Recall that the concept of administrative role is well-defined even
without the separate administration restriction.

truthify the precondition of a rule allowing u2 to be assigned to
an administrative role, and we already showed that the latter role
assignment would be useless. 2

Our analysis algorithms in Sections 3 and 4 exploit separate ad-
ministration only to avoid considering administrative actions that
act on users other than the target user. Therefore, Theorem 5 im-
plies that those algorithms work correctly for problem instances
that satisfy hierarchical role assignment.

The same idea can be used to optimize reachability analysis for
problem instances I with “partially hierarchical” role assignment,
i.e., when I satisfies hierarchical role assignment for a subset A′

of the set A of available administrative roles in the initial state.
Administrative actions of roles in A \A′ might be useful in reach-
ing the goal. By starting with those actions, and adding additional
actions based on the dependencies induced by the can_assign re-
lation, we can identify a set of administrative actions on non-target
users that might be useful in reaching the goal; other administrative
actions on non-target users can be eliminated.

6. OTHER ANALYSIS PROBLEMS
This section presents algorithms for some other analysis prob-

lems. These algorithms use algorithms for user-role reachability
as a subroutine, so our results from Sections 3–5 are useful here.
These algorithms can invoke specialized algorithms for reachability
when the latter algorithm’s restrictions are satisfied (e.g., |ppre| ≤
1). It is straightforward to obtain fixed-parameter tractability re-
sults for these algorithms, based on our complexity results for user-
role reachability.

Role containment. Role containment problem instances have the
form [20]: in every state reachable from a given initial state, is
every member of role r1 also a member of role r2? This problem
can be reduced to user-role reachability by adding a new role r and
adding a can_assign rule with precondition r1 ∧¬r2 and target r.
The containment property holds iff, for every user u, there is not a
reachable state in which u is a member of r. As an optimization,
only users with distinct sets of initial roles need to be considered.

Weakest Preconditions. Weakest precondition queries return the
minimal sets of initial role memberships of the target user for which
a given reachability goal is achievable (for these queries, the initial
state does not specify the initial roles of the target user). An exam-
ple query is: what are the weakest preconditions for a user initially
in DeptChair to assign the target user to HonorsStudent? For poli-
cies satisfying the conditions of the backward algorithm in Section
4, that algorithm can be modified to efficiently answer such queries.
For each leaf node UA in the graph, we compute airs(goal) taking
UA as the only initial node, and if airs(goal) is non-empty, then
UA is a weakest precondition, unless we find another one that is a
subset of UA.

7. CASE STUDIES
This section briefly describes the ARBAC policies that we used

as case studies. Details of both policies are available from [31].
Our main case study is an ARBAC policy for selected aspects of

a university. The policy includes rules for assignment of users to
various student and employee roles. Student roles are undergradu-
ate student, graduate student, teaching assistant, research assistant,
grader, honors student, graduate student officer, graduate educa-
tion committee (which has a student member), etc. Employee roles
are admissions officer, assistant professor, dean, dean of admis-
sions, department chair, facilities committee, graduate admissions
committee, graduate education committee, honors program direc-
tor, president, professor, provost, etc. The role hierarchy includes
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the relationships President � Provost � Dean � DeptChair �
Professor. Sample can_assign rules are: the honors program di-
rector can add undergraduates to the honors student role; the pres-
ident can assign a professor who is not a department chair to the
provost role.

The policy has some limitations. Our ARBAC framework does
not support parameters (of role, permissions, etc.), so the policy is
for a single department, a single class, etc. With a framework that
does, we could easily add parameters (such as department name
and class number) to the policy. We could analyze the resulting
policy by instantiating the parameters with appropriate sets of val-
ues and then applying our current analysis algorithms; we plan to
develop algorithms that handle parameters directly for efficiency.
The current policy is only for user-role assignment; this seems like
a good place to start, since the user assignment changes more of-
ten. Policies for administration of the permission-role assignment
and the role hierarchy will be added later. Despite these limitations,
this ARBAC policy is a substantial case study compared to others
in the literature, as discussed in Section 9.

These limitations do not significantly affect the characteristics
of the policy that guided this work, such as the size of precondi-
tions. Experience with this policy guided our choice of complexity
parameters and restrictions for the analysis algorithms in Sections
3–4 and suggested realistic values for some of the parameters used
in random policy generation in Section 8. In particular, we note the
following characteristics of the policy:

• Every can_assign rule has at most one positive precondi-
tion, so the analysis algorithm in Section 3 applies.

• The policy does not satisfy separate administration, but it has
hierarchical role assignment with respect to most sets of ad-
ministrative roles, so most reachability properties of the pol-
icy can be analyzed using the algorithms in Sections 3 and 4;
the others can be analyzed using the algorithms in Section 5.

• About 1/3 of the roles are administrative (i.e., have at least
one administrative permission). After the transformation to
eliminate role hierarchy (cf. first paragraph of Section 3),
about 1/4 of the roles are negative, about 1/4 are mixed, and
about 2/3 are positive. Since about 3/4 of the roles are non-
negative, the reduction in Section 3 should be effective.

• Problem instances with hierarchical role assignment have at
most two irrevocable roles, because admissions officers and
the graduate admissions committee can accept but not expel
students.

Formulating and checking properties of the policy helped uncover
some flaws in it, for example, a place where we accidentally used
Student instead of Undergrad, and places where we forgot to take
role hierarchy into account, e.g., places where we were thinking of
Provost and President as Faculty only, forgetting that these roles
also inherit (indirectly) from Staff.

Here are sample user-role reachability problem instances (with
answers!) for this policy. Can a user initially in DeptChair and
a user initially in Undergrad reach a state in which the latter user
is in HonorsStudent? Yes, because the user in DeptChair can as-
sign himself to HonorsProgramDirector, and then assign the un-
dergrad to HonorsStudent. Can a user initially in Provost and a
user initially in DeptChair reach a state in which latter user is in
Dean? No, because the rule for assignment to Dean has precondi-
tion Professor∧¬DeptChair. The Provost can remove users from
DeptChair, but the Provost cannot add users to Professor (only the
President can do that).

A sample role containment problem instance is: Is TA (i.e., teach-
ing assistant) contained in Grad (i.e., graduate student)? No. Al-
though Grad is a precondition for assignment to TA, a user can be
revoked from Grad while remaining in TA. (This example illus-
trates that preconditions are not necessarily invariants.)

Our second case study is an ARBAC policy for a health care in-
stitution, based on the policy in [7], extended with some aspects
of the policy in [3]. This case study is smaller, but we note that it
shares most of the above characteristics of the university policy. In
particular, every can_assign rule has at most one positive precon-
dition, separate administration is not satisfied, about 1/3 of roles are
negative, and problem instances with hierarchical role assignment
have at most one irrevocable role. One difference is less hierarchi-
cal role assignment (i.e., there are more sets of administrative roles
for which the policy does not have hierarchical role assignment).

8. EXPERIMENTAL RESULTS
This section presents the results of experiments done to evalu-

ate the performance of the forward and backward reachability al-
gorithms. The forward algorithm always uses the reduced tran-
sition relation; the backward algorithm includes the partial-order
reduction only when stated explicitly. The algorithms were applied
to the case studies in Section 7 and randomly generated ARBAC
policies. Our algorithm for random policy generation has several
parameters, allowing control over the number of roles, percentage
of negative roles, percentage of irrevocable roles, average number
of positive and negative preconditions per rule, average number of
rules per target role, etc. Generally, we used parameter values (e.g.,
for number of roles) and distributions of values (e.g., for number of
rules per target role) similar to those in the university policy as a
baseline, and then varied selected parameters to explore the effect.
Each data point reported for randomly generated policies is an av-
erage over 32 policies generated using the same parameter values.
In many cases, the standard deviation is comparable in magnitude
to the average; this suggests that statistical fluctuations cause the
observed aberrations in the trends (e.g., there are fewer states and
transitions for |R| = 300 than |R| = 200 in Table 1(b)) and sug-
gests seeking additional parameters to control random policy gen-
eration more tightly. Running times were measured on a 2.8 GHz
Pentium D with 1 GB RAM running Linux 2.6.20. All reported
running times are measured in seconds.

Case Studies. Both policies satisfy the restriction |ppre| ≤ 1
and hence both forward and backward reachability algorithms are
applicable for queries satisfying hierarchical role assignment. For
a variety of reachability queries with |goal | ≤ 2, forward with
slicing terminates in at most 0.01sec and backward with reduction
terminates in at most 0.19sec. For each goal, the forward algorithm
generates at most 2 states and 1 transition, and the backward algo-
rithm with reduction generates at most 5 nodes and 4 transitions.

Evaluation of the Forward Algorithm. Table 1(a) shows the
number of explored states, number of explored transitions, and
running time of the forward algorithm (without slicing) on ran-
domly generated policies with varying number of mixed roles and
with other parameters held constant. All three cost metrics grow
quickly as a function of the number of mixed roles. Table 1(b)
shows the performance of the forward algorithm (without slicing)
on randomly generated policies where the number of roles varies
(the number of rules varies with it, since average number of rules
per role is held constant), and the number of mixed roles is held
constant. In this case, the cost grows much more slowly.

Slicing significantly improves the typical performance of the for-
ward algorithm, although it does not change the worst-case perfor-
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Mixed State Trans Time
3 8 18 0.07
5 33 122 0.32
7 187 960 2.60
9 350 2238 5.62
11 1404 10699 24.7
13 5593 50511 128.10

Roles State Trans time
100 42 152 1.09
200 54 193 4.42
300 41 159 5.40
400 57 218 13.65
500 74 266 17.63

(a) (b)

Table 1: (a) Running time of forward algorithm vs. number
of mixed roles with |R| = 32. (b) Running time of forward
algorithm vs. number of roles with 5 mixed roles.

|goal| Nodes Trans Time
1 30 125 0.01
2 377 3022 0.14
3 2128 23744 2.59
4 14395 215396 97.95

Roles Nodes Trans Time
100 78 360 0.02
200 124 539 0.03
300 242 1095 0.10
400 329 1459 0.13
500 401 1789 0.25

(a) (b)

Table 2: Performance of backward algorithm for (a) varying
goal size and (b) varying number of roles with |Irrev |/|R| =
0.05 and |goal | = 1.

mance. For most policies, the algorithm explored just one or two
states after slicing, terminating within 0.04 sec.

Evaluation of the Backward Algorithm. We evaluated the back-
ward algorithm on randomly generated policies satisfying |ppre| ≤
1. Table 2(a) shows that the analysis cost grows quickly as a func-
tion of the size of the goal when other parameters are held con-
stant. Table 2(b) shows that the analysis cost grows very slowly as
a function of the number of roles (and rules), when the percentage
of irrevocable roles and the goal size are held constant (at 5% and
1, respectively).

The reduction technique for backward algorithm reduces the state
space and the running time of policies used in Table 2(a) by 24%
and 19% on the average, respectively. It does not affect the state
space and running time of policies used in Table 2(b).

Forward Algorithm with Slicing vs. Backward Algorithm. We
applied the forward algorithm with slicing to the same policies used
for the experiments reported in Table 2(a). The average execution
times were 0.04 sec, 0.38 sec, 0.87 sec and 1.08 sec when |goal|
is 1, 2, 3, and 4, respectively. Observe that the average execution
time for the forward algorithm increases slightly with |goal|, while
the corresponding increase in the execution time for the backward
algorithm is much more significant.

Note that slicing does not change the worst-case complexity of
the forward algorithm. When |goal| = 1 and |Irrev| ≤ 1, the
backward algorithm has better time complexity than the forward al-
gorithm, except when |NR| = 0 and both algorithms have similar
(polynomial) complexity. For a set of randomly-generated policies
with |goal | = 1, |Irrev | = 2, |R| = 50, and |NR| varying be-
tween 0.6|R| and 0.9|R|, the backward algorithm is 11 to 30 times
faster than the forward algorithm. We observe that when |goal| and
|Irrev| are small and fixed, the backward algorithm is superior to
the forward algorithm in terms of analysis time and the size of the
explored state space.

9. RELATED WORK
Policy Analysis. We classify related work on security policy anal-
ysis into three categories.

The first, and largest, category is analysis (including enforce-
ment) of a fixed security policy. Some representative papers in this
category include [15, 2, 11, 16, 10, 13]. Work in this category is

less closely related to our work, so we do not discuss it further.
The second category is analysis of a single change to a fixed

policy or, similarly, analysis of the differences between two fixed
policies. Jha and Reps present algorithms to analyze the effects
of a specified change to a SPKI/SDSI policy [16]. Fisler et al. [8]
give algorithms to compute the semantic difference of two XACML
policies and check properties of the difference.

Work in the first two categories differs significantly from our
work (and other work in the third category) by not considering the
effect of sequences of changes to the policy.

The third category is analysis that considers sequences of changes
to a policy; the allowed changes are determined by parts of the pol-
icy that we call “administrative policy”. Harrison, Ruzzo, and Ull-
man [12] present an access control model based on access matrices,
which can express administrative policy, and show that the safety
analysis problem is undecidable for that model. 5 Following this,
a number of access control models were designed in which safety
analysis is more tractable, e.g., [22, 24]. While those models were
designed mainly with tractability in mind, we aim to provide more
practical results, by starting with more a realistic model, based on
ARBAC97 [25], and identifying properties of typical policies that
can be exploited for efficient analysis. Our framework allows fea-
tures not considered in those papers, such as negative precondi-
tions.

Finally, we focus on prior work on analysis of ARBAC policies.
Schaad and Moffett [29] use the Alloy analyzer [14] to check

separation of duty properties for ARBAC97. They do not consider
preconditions for any operations; this greatly simplifies the analysis
problem. Since they leave the analysis to the Alloy analyzer, they
do not present analysis algorithms or complexity results.

Li and Tripunitara [20] give algorithms and complexity results
for various analysis problems—primarily safety, availability, and
containment—for two restricted versions of ARBAC97, called AATU
and AAR. Their results are based on Li, Mitchell, and Winsbor-
ough’s results for analysis of trust management policies [19]. Our
work goes significantly beyond their analyses for both AATU and
AAR by allowing negative preconditions and thereby SMER (static
mutually exclusive roles) constraints. This forces us to consider
other (more realistic) restrictions, such as bounds on the size of pre-
conditions, and to use fixed-parameter tractability to characterize
the complexity of our algorithms. In addition, our work in Section
5 goes significantly beyond their analysis for AAR by dropping the
separate administration restriction. Sistla and Zhou [30], like [19],
consider trust management policies changing in accordance with
role restrictions that indicate, for each role, whether arbitrary rules
defining that role may be added, and whether they may be removed.
The administrative policies we consider are finer-grained than such
role restrictions.

Sasturkar et al. [27] present algorithms and complexity results
for analysis of ARBAC policies subject to a variety of restrictions.
Our work goes beyond theirs by providing efficient algorithms for
larger and more realistic classes of policies, providing fixed-parameter
tractability results to more accurately characterize the complexity
of those algorithms, and giving analysis algorithms that do not rely
on the the separate administration restriction, which is implicitly
adopted throughout their paper. Also, they do not consider contain-
ment analysis.

Case Studies. Our ARBAC policy for a university contains signif-
icantly more can_assign rules than the ARBAC policies presented

5That result does not apply to ARBAC policy analysis, because the
HRU model allows creation of subjects and objects, while ARBAC
does not allow creation of users, roles, or permissions.
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in [25, 28, 23, 29, 17, 5, 27, 20, 18], which typically contain about
4 administrative roles and the equivalent of 4 to 7 can_assign
rules.6 Some papers, such as [28, 17], sketch the general struc-
ture of RBAC and ARBAC policies of very large organizations, but
only a few specific administrative roles and rules are presented in
the paper (or otherwise made publicly available), and no analysis
algorithms were applied to those policies. We analyzed our AR-
BAC policy for a university. The policy contains 11 administrative
roles, 21 other roles, 28 can_assign rules (106 rules after the trans-
formation to eliminate role hierarchy), etc.
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