2001 Fall MSCS Exam
Answer two out of three.

1. In the manufacture of computer circuit boards, it is common to have a machine that automatically solders wires to various points. This machine has a spool of wire, and under computer control, moves to one spot on the circuit board and connects one end of a wire; it then moves to another spot and attaches the other end of the wire. Normally, there are thousands of wires that need to be connected, so the machine has a lot of work to do. It also has to manufacture many circuit boards, and will do one board after another.

If the machine always moves at a constant speed, is it possible to change the order that connections are made so that it takes the minimum time possible to complete the wiring of a circuit board? Either give an optimal (polynomial time) algorithm for this, or explain why one is not likely. If it is not likely, provide an algorithm that is within a constant factor of optimal.

2. A set of \(n \) independent programs must be executed by deadline \(D \), where \(D \) is a positive integer. Two identical processors are available. The durations \(d_i \) of the execution of each program \(i \) on each of the processors is given. You need to assign the \(n \) programs to the two processors so that all the programs will be executed by the deadline \(D \).

Describe your solution; does it solve the problem for all instances? Is the problem in \(P \)? Is it in \(NP \)? Is it \(NP \)-complete?

3. Your company is building an airplane, and there are several subassemblies that need to be constructed; some of them must be completed before others can begin. For example, attachment of wings takes 3 days, but that cannot begin until both the wings and the fuselage are complete. There are no cyclic dependencies; to be precise, there is never an occurrence where you need \(A \) to complete \(B \), \(B \) to complete \(C \), and \(C \) to complete \(A \). Design an algorithm to determine the earliest date that the airplane can be finished, assuming you have enough employees to work on all parts at the same time.