Administivia/Projects

- Project
 - My daily plea to start ASAP
 - I may give an extension, but homework and critique will be assigned next week
 - Help session Friday 10am in room J-15 (Engineering building, first floor)
Last Time/Today

- Last Time
 - ARQ

- Today
 - Digital Fountain paper
 - Medium Access Control (MAC)
Internet Architecture Papers

- End to end principle: put it at the ends since application knows best. Can make an exception for performance

- Clark 85 paper: Internet was designed for a set of military requirements
 - Design reflects that – examples?

- Clark 2002 paper: Tussles in cyberspace – implications for designer?
Application Model – Bulk Data Transfer

- Properties
 - Lots of data
 - Many receivers of different types
 - Real time?

- Example applications
 - Software distribution Updates
 - Pushing data to web caches
 - Internet radio stations TV stations?

- Why not ARQ?
ARQ not suitable

- Many receivers
 - Ack/Nack explosion
 - Sender must track lots of state

- Heterogeneous receivers
 - Sender has to buffer to accommodate the slowest receiver
 - Different types of receivers – loss rates high on low BW channels

- Hard to join/leave

- If delay sensitive, ARQ has large variability in delay
Solution

- Use erasure codes (type of FEC) to redundantly encode k source packets into n packets; n = k + l
- multicast n packets
- receiver reconstructs packets from any k received packets
- Is this better?
Two families of Erasure Codes Studied

- Reed Solomon Codes
 - Optimal encoding efficiency
 - But difficult to decode (quadratic in k)

- Tornado codes (invented by the authors in late 1990s)
 - Suboptimal (but pretty good) efficiency
 - Easier to decode (linear in k)

- What is efficiency?
Reed Solomon Codes

- Most existing DF proposals based on Reed-Solomon Codes
- Each packet is a “function” of all the message packets
- If k packets are received, we have k equations in k variables
- Dense matrix inversion can be used to recover the original message
- Very expensive! field exponentiation to generate codes; matrix inversion to recover data
- Interleaved version may be better – more later
Tornado Coding

- Code packets are xor of a small random set of the original packets
 - How the random graph connectivity is chosen is not in this paper; heavy tail distributed

- Some additional code packets can be generated from xor of the first level code packets

- \[y_1 = x_1 \text{xor} x_2 \text{xor} x_3. \] If \(x_1, x_2 \) and \(y_1 \) are received, can recover \(x_3 \)

- Tornado name origin from cascading decoding when a missing piece is received
Tornado Coding/Decoding

Encoding

Decoding
Decoding/Encoding Performance

<table>
<thead>
<tr>
<th></th>
<th>Tornado</th>
<th>Reed-Solomon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decoding inefficiency</td>
<td>$1 + \epsilon$ required</td>
<td>1</td>
</tr>
<tr>
<td>Encoding times</td>
<td>$(k + \ell) \ln(1/\epsilon)P$</td>
<td>$k\ell P$</td>
</tr>
<tr>
<td>Decoding times</td>
<td>$(k + \ell) \ln(1/\epsilon)P$</td>
<td>$ke P$</td>
</tr>
<tr>
<td>Basic operation</td>
<td>XOR</td>
<td>Field operations</td>
</tr>
</tbody>
</table>

Table 1: Properties of Tornado vs. Reed-Solomon codes

- Very expensive to do RS decoding on large files!
- Discuss also an interleaving technique to reduce the cost of RS
- Tornado codes outperform both
Performance

<table>
<thead>
<tr>
<th>SIZE</th>
<th>Reed-Solomon Codes</th>
<th>Tornado Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cauchy</td>
<td>Tornado Z</td>
</tr>
<tr>
<td>250 KB</td>
<td>4.6 seconds</td>
<td>0.11 seconds</td>
</tr>
<tr>
<td>500 KB</td>
<td>19 seconds</td>
<td>0.18 seconds</td>
</tr>
<tr>
<td>1 MB</td>
<td>93 seconds</td>
<td>0.29 seconds</td>
</tr>
<tr>
<td>2 MB</td>
<td>442 seconds</td>
<td>0.57 seconds</td>
</tr>
<tr>
<td>4 MB</td>
<td>1717 seconds</td>
<td>1.01 seconds</td>
</tr>
<tr>
<td>8 MB</td>
<td>6994 seconds</td>
<td>1.99 seconds</td>
</tr>
<tr>
<td>16 MB</td>
<td>30802 seconds</td>
<td>3.93 seconds</td>
</tr>
</tbody>
</table>

Table 2: Comparison of encoding times.

<table>
<thead>
<tr>
<th>SIZE</th>
<th>Reed-Solomon Codes</th>
<th>Tornado Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cauchy</td>
<td>Tornado Z</td>
</tr>
<tr>
<td>250 KB</td>
<td>2.06 seconds</td>
<td>0.18 seconds</td>
</tr>
<tr>
<td>500 KB</td>
<td>8.4 seconds</td>
<td>0.24 seconds</td>
</tr>
<tr>
<td>1 MB</td>
<td>40.5 seconds</td>
<td>0.31 seconds</td>
</tr>
<tr>
<td>2 MB</td>
<td>199 seconds</td>
<td>0.44 seconds</td>
</tr>
<tr>
<td>4 MB</td>
<td>800 seconds</td>
<td>0.74 seconds</td>
</tr>
<tr>
<td>8 MB</td>
<td>3166 seconds</td>
<td>1.28 seconds</td>
</tr>
<tr>
<td>16 MB</td>
<td>13629 seconds</td>
<td>2.27 seconds</td>
</tr>
</tbody>
</table>

Table 3: Comparison of decoding times.
Code Efficiency

- 99%+ less than 8% inefficiency
Interleaved RS

- Reduce cost by doing RS on per block
 - Cost moves towards linear from quadratic
 - But encoding efficiency drops
 - Still much slower than Tornado
Features of the Solution

- Compare with a theoretical ARQ based solution
- Low server overhead (overhead is not a function of number of receivers)
- Two way communication not needed
- Tolerates loss well (is it always more efficient than ARQ?)
- Good for network as well
• I skipped some interesting details; anything you want to bring up?

• Digital fountain idea is not the contribution of this paper; this paper argues for using Tornado codes and shows they are more efficient than RS or block interleaved RS
Automatic Repeat ReQuest (ARQ)

- Note:
 - Potential of duplication of packets
 - How to discriminate packet from duplicate?
 - Delayed packets?
 - Efficiency (sliding window size)
Go-Back-N vs. Selective Repeat

- Timeout interval
- Error
- Msg discarded by data link layer
- Buffered by data link layer
- Messages 2-8 passed to network layer

0 1 2 3 4 5 6 7 8 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 2 9 10 11 12 13 14 15 0
Sequence Numbers

- \texttt{SeqNum} cannot grow arbitrarily; will the protocol still work?

- Stop-and-wait is sliding window with window size one; true or false?
 - What was the equivalent of the sequence number there?
 - How big should the sequence number field be in general?

- What if \texttt{MaxSeqNum} is equal to the window size; will this work?
 - For a window size 8, 3 bit \texttt{seqNum} field (0..7)
 - Sender transmits frames 0..6, they arrive successfully but ACK’s are lost
 - Sender retransmits 0..6, receiver expecting 7, 0, .. 5; what happens?
Sequence Number (cont’d)

- $SWS < \frac{(MaxSeqNum+1)}{2}$
 - Intuitively, SeqNum slides between two halves of sequence number space

- What if packets are delayed? could still run into problems?
Dealing with Delayed Packets

• Is this an issue with link layer?
• Never reuse sequence number?
• Require in-order delivery?
• Other?
Place limit on Packet delivery time

- Time To Live: IP packets hop count is decremented at every hop; discard if the packet is too old

- Sequence numbers unique within the time-to-live period

- TCP standard defines a maximum segment lifetime
 - 120 seconds recommended
When is ARQ not suitable/efficient?

- Multiple receivers (e.g., multicast)
- Delay sensitive applications (e.g., real time traffic)
- High loss high delay channels (e.g., satellite)
- One way channels (e.g., TV)
- Digital Fountain paper example of alternative (basically FEC)
Medium Access Control (MAC)

- What are the possible ways to organize access to the shared medium?

- FDM? TDM? Traffic is bursty, utilization is poor

- Problem definition
 - N independent stations sharing a single channel
 - If two frames are transmitted simultaneously, they overlap on the channel and both are lost
 - Carrier sense or not?
 - Continuous or discrete time (can the stations agree on slots)?
 - Frames all the same size for now

- Traffic is generated randomly with an average of G in a given frame time

- When collisions happen, some frames are retransmitted and the average transmissions is bigger than G
Carrier Sense Not Used – ALOHA

- Due to Abramson’s group at U. Hawaii
- Wireless network used to connect the Hawaiian islands
- Simple algorithm:
 - Transmit when you have data to send
 - Listen at the same time, if you receive what you transmit no collision
 - otherwise backoff and retry
- Random traffic (and a lot of random phenomena) are often modeled as a Poisson distribution
- Probability of generating \(k \) frames in a given time frame is:

\[
P(k\ \text{frames generated}) = \frac{G^k e^{-G}}{k!}
\]

- What is the probability of successfully transmitting a frame in ALOHA?
ALOHA Success Probability

• Network traffic often modeled as a Poisson distribution – probability of generating k frames in a given time frame is:

\[P(k \text{ frames generated}) = \frac{G^k e^{-G}}{k!} \]

• A frame is transmitted correctly only if no other frames are transmitted at the same time
 – \(P(0) = e^{-G} \)

• Average number of frames transmitted successfully in a time frame is average number transmitted (G) times the probability that no other frames are generated (P(0))
 – \(S = G \times P(0) = G e^{-G} \) — is this the throughput?
 – How big is the vulnerable period for a frame?

• Success rate = \(Ge^{-2G} \)
 – What is the maximum success rate?
Slotted ALOHA

- Slotted ALOHA – time is split into slots, can only start transmission at the start of a slot
- Requires some way to synchronize all stations
- Which is better?
Carrier Sense Multiple Access – CSMA

• If you listen before you speak, should result in less confusion
 – 1-persistent: as soon as quiet, start transmitting
 – p-persistent: as soon as quiet, start transmitting with probability p; otherwise, wait for next slot and start transmitting with probability p if idle
 – Non-persistent: wait a random time if busy

• Which is best? How do they compare with slotted Aloha?
 – Consider different load conditions
 – What type is ethernet?

• Can anything else be done to improve performance?
Collision Detection

- Stop speaking as soon as you hear collision CSMA/CD; ethernet is CSMA/CD 1-persistent
- What happens if the propagation delay is long?
- Can collisions be avoided altogether?
- Reservation Protocols
Ethernet – A Contention Based Protocol

- Developed by Xerox PARC in the mid seventies
- Seminal paper by Metcalf and Boggs – reading (origins), class homepage
- Influenced by the Aloha packet-radio network (important project at university of Hawaii to connect the Hawaiian islands)
- Standardized by Xerox, DEC and Intel in 1978
- Similar standard by IEEE; IEEE 802.3
 - The 802 family of standards define link layer operations for shared media
 - Original standard 10Mbps; updated to 100Mbps and 1Gbps
- For “shared” links such as ethernet, need a distributed algorithm that provides fair access to the shared medium
Physical Properties

- Original Ethernet (thick-net; aka 10Base5)
 - Maximum segment 500m; taps at least 2.5m apart
 - Multiple segments connected with repeaters; no more than 2 repeaters between nodes

- 10Base2 (thin-net) runs 200m and is daisy chained

- 10BaseT (twisted pair) runs 100m with a star topology (hubs)
Ethernet Physical Layer

- Some Confusion due to Ethernet (industry) standard vs. IEEE standard. Different Requirements for different physical cables
 - 5-4-3 is IEEE 802.3 rule; no more than 2 repeaters is “Ethernet” rule
 - 1024 hosts is the maximum number of hosts using 10BaseT or 10BaseF cables. These are star topologies (through hubs) and do not have the minimum separation between hosts requirement

- Ethernet FAQ (http://netman.cit.buffalo.edu/FAQs/ethernet.faq)
Frame Format

<table>
<thead>
<tr>
<th>64</th>
<th>48</th>
<th>48</th>
<th>16</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamble</td>
<td>Dest addr</td>
<td>Src addr</td>
<td>Type</td>
<td>Body</td>
</tr>
</tbody>
</table>

- Preamble: alternating 0’s and 1’s for synchronization
 - IEEE 803.2 uses count (in bytes) instead of type field

- Addresses are globally unique 6 bytes placed in firmware by the manufacturer; Example:
 5 : 8b : 40 : 2 : cf : 4a

- Multicast address starts with 1

- Broadcast address all 1’s
 - How does a sender know the receiver’s address? (ARP; later)

- Promiscuous mode – listen to all packets
Transmission Algorithm

• If line is idle:
 – Send immediately; upper bound message is 1500 bytes, lower bound is 46 bytes (why do we need a lower bound?)
 – If a collision is detected (by one of the senders), it transmits a jamming sequence (32-bits)
 – Must wait 51 μ-sec between back to back frames; why?

• If line is busy
 – Wait until idle and transmit immediately

• This is an example of a medium access algorithm (what we called a fair distributed algorithm for sharing the medium)
• What is the maximum time that a node has to wait before it detects a collision?

• What happens on a collision?
 – Node waits up to 51.2 \(\mu \)-sec, senses the line, then transmits if idle
 – If another collision, node waits up to 102.4 \(\mu \)-sec, then tries again
 – Another collision? Wait up to 204.8 \(\mu \)-sec
 – **Exponential back off**; gives up after 16 retries, timeout capped at 10
Contestation Discussion

- Contention based protocols are good under some circumstances
 - Low probability of collisions (low load)
 - Low cost of collision (low \(\tau \))

- Contention can be bad
 - Too much time wasted contending for the medium
 - Unpredictable performance

- Role of backoff
Reservation Based Protocols

• Try to eliminate collisions completely

• Reservation based protocols – collaborate on reserving the use of the medium
 – Advantage – eliminate collisions; more predictable performance
 – Disadvantage – reservation overhead paid even when not necessary; can be high

• Characteristics of the network: most notably the delay (τ) affects the choice of the MAC protocol

• Characteristics of the traffic also affect the choice
Reservation

- How is reservation implemented?

- There is an overhead for reservation – what happens if only a few nodes have traffic?

- What do you think is the ideal case for reservation? How does it compare to contention?
Satellite Networks

- Ground station transmits via uplink to satellite; satellite broadcasts down (downlink) to all stations

- Different types of satellite “constellations”
 - Geostationary Earth Orbit (GEOs) are very high (> 22,000 miles). Fixed orbit relative to earth
 - Low Earth Orbit (LEOs) are low orbit (few hundred miles), but move relative to earth. Latency much lower
 - MEO’s in the middle

- “Long fat pipes”: delay is a few hundred m-sec (270 msec typically used); bandwidth can be high
Satellite Networks

- Carrier sense not feasible:
 - Can’t sense uplink, it is a point to point connection
 - Sensing downlink results in sensing what was transmitted 270 msec ago
 - For same reason collision detection not useful (what is the equivalent of ethernets 46bytes minimum packet length?)

- What are our options? Given that CSMA and CD dont work:
 - Either Use ALOHA
 - Or, need some reservation based protocol
 - Claim: Static allocation (FDMA, TDMA, CDMA) methods are ultimate reservation protocol