Misc

- Last time: Finished IPnG, started Multicast

- Reading Set for this week assigned; no critiques
 - Papers are a reference set that I will draw on
 - Required papers are required to the point we cover them in class
Multicast – Recall

- Multicast to anonymous group; users join/leave the group

- Multicast Performance Metrics
 - Stress
 - Stretch
 - Join delay
 - Router overhead (computation/state)
 - Other...

- Multicast on a LAN segment (directly connected nodes)

- Using IGMP to track membership on a LAN segment

- Generalizing to a switched network
How to implement multicast over a large switched network?

Dumb solution: flood (broadcast) to everyone; ignore if you don’t belong to the group

– Why dumb?

Good solution must only send it to appropriate parts of the network

– Network as a graph – how should a multicast packet be forwarded ideally?
Reverse Path Broadcast (RPB)

- When a multicast packet comes in:
 - If it came from the NextHop for the source of the multicast, send it out on all links

- Better than a flood?
 - Broadcasts the packet away from the source, but does not loop back to it

- How does this approach perform in terms of our metrics?
Problems

• Floods the network, even if part of it does not include a member in the group

• Message forwarded twice over a LAN with two routers connected to it
 – solution, elect one of the routers as multicast agent
 – What extra capability is needed?

• Unnecessarily floods routers (once on every incoming link)
 – Possible solution – inform upstream routers which destinations they are your next hop for
Improvement – Truncated Reverse Path Broadcast (TRPB)

- Improve RPB by pruning leaf networks that do not contain a group member
 - How to determine if a network is a leaf?
 * A router can tell from the routing protocol messages (if it receives an update from a router on the same network)
 * Can be done through a modification to RIP
 - If a leaf, how do you figure out if it has members in the group?
 * IGMP
 - Good enough?
Reverse Path Multicasting (RPM)

- Idea: prune full subtrees, not just leaf networks
- Extend TRPB to prune subtrees
 - “on demand” pruning: done only on receipt of message to group
 * If a packet arrives at a router none of whose children have group members, a non membership report (NMR) packet is sent one hop towards the root
 * if the one-hop-back router receives such messages from all its child routers and none of its incident networks have group members, it sends an NMR packet to its predecessor, etc.
 * NMRs are stored with a finite time to live (TTL) – when TTL expires, multicast transmission resumes
 * if a network subsequently acquires a group member, it sends an NMR-cancel message
- Essentially, this is Distance Vector Multicast Routing Protocol (DVMRP) – RFC 1075
Link State Multicast

- Recall: link-state – exchange information with all routers about immediate neighbors

- Supporting Multicast –
 - Idea: information about what multicast groups that hosts on your network belong to becomes part of the state – how?
 - The “expanded” state information gets exchanged in the update
 ✴ Need to update when groups appear/disappear on a link
 - Each router can figure out the shortest multicast tree depending on the source and forward packets accordingly (a tree per source per group)

- Protocol is known as Multicast OSPF (MOSPF); RFC 1584
Multicast LS Overhead

- Computing and Storing Multicast trees
 - Expensive! need to compute/store for all senders on all groups
 - Optimization: Use a cache of computed multicast trees
 - recompute on demand (e.g., when the first packet is seen); LRU to expire cache
 - Tradeoff space (cache) for router cpu

- Problem: group volatility triggers flooding
 - Aggregate changes by delaying updates?
Multicast – Discussion

- Would like optimal tree for each source/group
 - Expensive, does not scale gracefully, especially at intermediate routers
 - Optimization: use a multicast route cache for active groups, construct trees as needed. Still need to keep and exchange information

- Dense vs. Sparse Multicast
 - Dense-mode multicast
 * Most networks have members in the group
 * DVMRP and MOSPF handle dense mode well
 - Sparse-mode multicast
 * Few networks have members
 * DVMRP and MOSPF don't perform well
 * Would like:
 - Routers not involved do nothing
 - Distribution trees do not require many resources
 - Scalable solutions
Core Based Trees (CBT)

• Idea, a single distribution tree per multicast group; also called “shared tree” approach

• A multicast message is picked up by a router
 – If it is part of the tree, it floods it along the tree
 – If not, it unicasts to the root of the tree (the core) which floods the tree

• Joining the tree
 – Node informs its router using IGMP of interest in joining the group
 ∗ If the router is not already part of the tree, it unicasts a join request to the “core”
 ∗ As each intermediate router receives the request, it sets up a transient join state
 · If router part of the CBT, it sends a Join ACK; otherwise
 · It forwards the join request on to the core
CBT Discussion

- Overhead is good, for \(G \) groups with \(S \) sources each, need only \(G \) trees, instead of \(S \times G \)

- Performance possibly bad
 - Data does not follow shortest route (average delay up)
 - Traffic concentration: may congest the tree while alternative paths are idle

- Recall learning bridges – any similarities?
Protocol Independent Multicast (PIM)

- Multicast most expensive when the group is sparse
- PIM distinguishes between sparse and dense multicast
- In the sparse mode
 - Similar to CBT – a shared distribution tree
 - Hosts join/leave groups explicitly using join/prune protocol messages
 - Where to send this message?
 - Every group is assigned a rendezvous point (RP) using a distributed algorithm
 - The RP collects information about members in the group and builds a shared multicast tree
 - It may elect later (“if traffic becomes heavy”) to build a source specific tree that is more optimal
- RFC 2362
PIM Operation

(a)

(b)

(c)

(d)

RP = Rendezvous point

--- Shared tree

--- Source-specific tree for source R1

SUNY-BINGHAMTON – CS528 Fall ’07 LEC. #18
PIM Discussion

- Choice of RP important
 - Single point of failure
 - can cause suboptimal operation

- Problem: both receivers and senders need to know addresses of RPs for every group
 - Configured or can extend IGMP to provide this information

- How do we make it real? Multicast across different AS’s

- Multicast requires router state
 - Breaks the E2E principle
 - Adds significant complexity and serious scaling issues
IP Multicast – Summary so far

- Source specific trees most efficient but require too much overhead
 - Flood and Prune (RPM)
 * IGMP to keep track of membership on leaves
 * NMR to prune if no members interested
 - Link layer multicast – efficient trees but not scalable either

- Sparse mode multicast
 - Construct one shared tree
 - Join by linking up to the tree
 - Tree not optimal, but significantly less overhead
MBone

- Mbone (Multicast Backbone)
 - Large scale experiment in supporting multicasting in the internet
 - Collection of Islands supporting multicasting (overlay network)
 - Each Island has a multicast router (e.g., a host running mrouted)
 - Routers connected via tunnels (IP-in-IP)
 - DVMRP has been the routing protocol/being replaced by PIM

- Sample applications: video conferencing (vic); shared whiteboard (wb)

- Highlights the difficulty of adding functionality to the internet
 - Qbone, 6bone

- Book on Mbone: http://www.savetz.com/mbone/
Problems with M-bone

- Scalability:
 - large flat network unscalable – especially in the absence of route aggregation
 - Mbone had 10,000 routes at its peak, most were /28 and /32
 - Problem: How to apply aggregation to multicast?

- Manageability
 - No central management – site-by-site basis
 - No control of how sites attach to the backbone
 - Inefficient operation results
Types of Inefficiencies

- Inefficient Tunnels: Tunnels crossing the same segment multiple times (10 tunnels on the same segment were observed by MCI)
 - Artifact of the “ad-hoc” overlay network; a true multicast network would never have that
- Inter-domain policy management
 - Mbone does not provide an inter-domain protocol – routing problems in one domain can easily spread through the topology
- Dense mode kills the network – Sparse mode solutions more realistic
Inter-domain Multicast

• Use hierarchy – same double pressure as hierarchical unicast routing

• General shape of the solution
 – Internally, use PIM-SM
 – Extend BGP to carry multicast reachability information
 * Why not just use the unicast tables?
 · Allow ISPs to have different topologies for unicast/multicast
 · Allow different policy decisions to be applied
 – A Multicast Source Discovery Protocol (MSDP) to allow interconnection of RP’s across different AS’s
• A new source for a group becomes active, registers with domain RP

• MSDP peer (typically the RP) sends a Source Active (SA) message to all directly connected peers (in different AS’s)

1. Check if you have any group members
 – If so, send a join to the source address in SA
 – Multicast data locally
 – Group members may send join message to source to construct source based tree as per PIM-SM conventions

2. MSDP peer does reverse path flood (based on next hop check)

• Any concerns?
Scalability Issues

- Big join latency
 - SA’s are expensive and delayed
 - Problem for bursty sources
 - Lots of packets then Long silence time
 - Packets lost because “forwarding state” hasn’t been established yet
 - Forwarding state times out by the time the next burst occurs

- RPB for among RPs – RPB not scalable

- Generally believed to be a short term solution
Potential Long Term Solutions

- Grand Unified Multicast (GUM aka BGMP)
 - Associate multicast addresses with domains
 * Single core tree model per group; single root
 * If a domain owns an address, it will be involved in the multicast for it (root will reside there)
 * Requires strict address allocation (paper discusses some schemes)
Deployment

- Within Internet, co-locate MBone with true multicast
 - Assign an AS for MBone, to connect it to inter-domain MCast
 - As AS’s transition to true multicast support, they unsubscribe from MBone
 - Paper mentions that number of MBone routes decreasing dramatically while number of MBGP routes increasing dramatically (it is happening?)
- Deployment in Internet 2 (a research backbone connecting universities)
 - Support for native multicast is a design requirement
 - Painful realization that dense mode is unscalable
 - MBGP/PIM-SM/MSDP solution deployed and working reasonably
• Free Riding Multicast

1. Extend BGP to track group membership
2. Sender computes the tree, and includes it in packet (essentially multicast source routing).
 – May have to fragment a packet if the tree doesn't fit
 – Some tricks to reduce that
3. Forwarding APs just act on the header
Discussion

• Naming: How to obtain globally unique multicast addresses
 – Some global form of dhcp?
 – How do we do this in a scalable and distributed fashion?
 – Use DNS?
• Security Nightmare?
• Reliability? congestion control?
• User Level multicast (surprisingly, only recently studied)
• Will discuss the papers next time
• Multicast Still an open problem – partial solutions deployed
Adding Functionality to Multicast

- Receiver driven Layered Multicast (RLM)
 - How to adapt transmission rates to match heterogeneous link bandwidths

- Scalable Reliable Multicast (SRM)
 - How do you recover from losses

- Unicast – Sender does all the hard work (remember sliding window)

- Multicast
 - Cannot have sender adapt effectively (and scale)
RLM: Problem

• Want streaming video on the internet

• With multicast routing, this is becoming possible
 – Best effort is ok, we can tolerate some losses and retransmissions not useful anyway

• But, what rate should we stream the video at?
 – Path “capacity” different for different receivers
 * What determines capacity?
Rate Determination and Adaptation

- One possibility: Use a fixed rate
 - Lowest common denominator?
 - Send as high as the best link?

- Allow sender to adapt to congestion
 - Solves congestion, but converges to lowest common denominator

- Solution – Adapt to congestion in a heterogeneous way
 - Sender transmits at highest rate
 - Degrade flows as they go down more constrained links (how?)
 - Everyone receives the best possible quality for them
Key Idea: Layered Compression

- A layered approach to compressing video data
 - Receiving at a low layer, provides bad quality (but viewable video)
 - Successive layers refine the stream
 - Sender transmits all layers
 - Degradation is possible by dropping to the layer matching the available bandwidth

- Alternative is “simulcast”: send different streams concurrently at different quality levels
 - Is this better or worse?
Determining Capacity

- Who decides what the path capacity is, and how?

- Receiver-driven approach
 - Receiver determines the path bottleneck capacity
 * Using drop rates, for example
 - Receiver decides how the flow gets degraded
 * By choosing the layer it should listen to
 - No changes to routers beyond IP multicast
How it works

- Sender sends in multiple layers, each in a separate multicast group

- Receiver listens to as many layers as its bandwidth can take
 - This is its “level of subscription”
 - Routers implicitly configured to add or drop a layer based on receivers joining/leaving the group
 - Multicast tree automatically extended when needed

- Adaptation
 - Congestion – drop a layer
 - How to go back up if there is available capacity?

- We will only skim the implementation details
Measuring Capacity

• Receivers probe link capacity by doing “join experiments”
 – Join the group for the next layer; back off if congestion
 – Increase if no congestion
 – Repeat periodically to adapt to changes in the network

• Need to control the frequency of join-experiments
 – Solution used: a join-timer with exponential backoff
Scalability

• What happens if receivers do join-experiments independently?

• Ideally, join experiment rate is independent of group size
 – But we would like the adaptation rate not to suffer

• Solution: shared learning
 – Receivers of a layer learn from experiments to join that layer
 – How?
Shared Learning

- Receivers multicast experiment notifications to the group for the layer
 - Receivers interested in layer watch for congestion
 * One experiment serves many receivers
 - Receivers decide based on failed experiments only
 * An experiment can succeed for some receivers but fail for others
 - Should the learning multicast be group wide??
Discussion

- Many parameters/magic numbers involved. Not clear how to determine what the best set is, or whether there is one set that fits all

- Relies on cooperate of all sources (one bad source can congest all)

- Is shared learning an optimization or a critical component
 - With enough sources, there will always be one probing a higher layer