Administrivia

• Test on wednesday: first 3 classes not included, other than paper discussion
 – 3 papers: Digital Fountain, Bloom Filters and end-to-end argument

• Today:
 – start IP
Last Time

• Bridge: Level 2 switch
 – Switches directly at level 2
 – Unscalable routing: (e.g., learning bridges with spanning tree)
 – Addresses that are not spatially aggregatable
 – Limited in bridging heterogeneity

• Packet switching Approaches: datagram, Virtual circuit, source routing

• Examples
 – IEEE 802.1 for datagram
 – ATM for VCS
 – Myrinet for Source Routing
Spanning Tree Algorithm in IEEE 802.1

- IEEE 802.1 is the standard for “LAN/MAN Bridging and Management”
- Idea: bridges disable some ports to eliminate cycles
- General Algorithm:
 - Bridges elect a “tree root” bridge
 - Each bridge calculates shortest path to root
 - Bridges on each LAN elect a “designated bridge” such that
 * It is the closest bridge to the root
 * Break ties using bridge id
ATM as an example of VCS L2 switching

- Goal, one network to carry both voice and data

- Shape of design
 - VCS to support voice (QoS/reservation)
 - Fixed size cells to enable faster switching
 - Small size cells to support voice traffic and to enable low grain sharing of link
 - But how to support data on top of tiny 48-byte cells?
 * Solution: Add a software layer (Application adaptation layer) that supports larger variable size frames
 * Segmentation into ATM cells and Reassembly at the other side

- LAN Emulation (LANE) for ATM in LAN settings
Virtual LANs

- Logically configure parts of the extended LAN to form a virtual LAN
- Packets sent on one VLAN segment will be visible to all segments of the VLAN (but nowhere else)
- When a packet arrives at a bridge port with a host id as sender, the bridge inserts the VLAN id associated with that port
- Advantage: Enhances scalability – why?
- Disadvantage: Requires administrator intervention
Internetworking

• We know how to build directly connected networks

• Switches have the potential of scaling to large networks

• Bridges (link-level switching) provided valuable lessons
 – Not scalable (consider spanning tree, or addressing scheme)
 – Not heterogeneous (same MAC address family; compatible payloads, etc..)

• Scalability: must scale indefinitely
 – Addressing and Routing
 – Multicast and broadcast?

• Heterogeneity:
 – Users on different networks must be able to talk
 – Might need to cross several other networks on the way
• Internet Protocol (IP; due to Karn and Cerf)

• Runs on all hosts (remember the “hour-glass” shape of the Internet Protocol Suite)

• Provides isolation from the networking technology

• Must provide one service model that is common to all possible underlying technologies – what should we use?
 – Connectionless best-effort delivery
• Version: 4 for IPv4
• Hlen: number of 32-bit words in the header
• TOS: Type of Service; can be used for QoS
• Length: Number of bytes in the datagram
• Ident/Flags/Offset: used for fragmentation and reassembly
• TTL: Time to Live (maximum hop count allowed; why?)
• Protocol: key to identify higher level protocol (e.g., TCP)
• Checksum: applied to header (why not CRC?)
• Source and destination addresses (what addresses?)
• Options
• Payload
• Where does the “link-layer” header fit?
Why is this needed?

Each network has some Maximum Transmission Unit (e.g., ethernet 1500 bytes; PPP 532 bytes)

 – Restrict IP payload to the smallest MTU; or
 – Use fragmentation and reassembly if necessary

Strategy:

 – Fragment when necessary (MTU < Datagram)
 – Fragments are self-contained IP packets
 – Try to avoid fragmentation at the source
 – Refragmentation is possible
 – Delay reassembly until destination
 – What if a fragment is lost?
Fragmentation and Reassembly – How?

- Ident is the packet sequence number
- M-bit (flags field) is 1 in all but the last fragment
- How would refragmentation be implemented?
- “path MTU discovery” to minimize fragmentation
Forwarding Packets

• Two options to forwarding packets:
 – Sender supplies the full path (source routing)
 – Sender supplies the next hop, intermediate hosts figure out next hop
 * A local routing table is consulted to figure out the next hop

• Types of routes in a routing table
 – Direct vs. indirect routes
 – Host-specific vs. network specific vs. default routes
Internet Addresses – Pre 1993

- Class D [1110—- - - multicast group id - - -]
- Address broken into a network number and a host number
- Why different address classes?
 - Class A: 126 networks, each 2^{24} hosts
 - Class B: 2^{14} networks, each 2^{16} hosts
 - Class C: 2^{21} networks, each 2^{8} hosts
- What is an address associated with?
- Is this scalable? How many maximum hosts?
Address Translation

• Need to map the IP address to a physical MAC address for:
 – Destination host (for a direct connection)
 – Next hop router

• Possible approaches:
 – Encode the Physical address as part of the IP address?
 – Statically construct translation tables (e.g., administrator does it)
 – Dynamically construct translations (ARP)
Address Resolution Protocol (ARP)

- Maintain a table of IP to physical address mappings; another network cache
- If translation not in table, broadcast asking for it
- Target hears broadcast, and replies with physical address
- Table entries expire; TTL usually a few minutes
- What happens on switched LANs? Proxy ARP
ARP

<table>
<thead>
<tr>
<th>Hardware type = 1</th>
<th>ProtocolType = 0x0800</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLen = 48</td>
<td>P Len = 32</td>
</tr>
<tr>
<td>SourceHardwareAddr (bytes 0–3)</td>
<td>SourceProtocolAddr (bytes 0–1)</td>
</tr>
<tr>
<td>SourceProtocolAddr (bytes 2–3)</td>
<td>TargetHardwareAddr (bytes 0–1)</td>
</tr>
<tr>
<td>TargetHardwareAddr (bytes 2–5)</td>
<td></td>
</tr>
<tr>
<td>TargetProtocolAddr (bytes 0–3)</td>
<td></td>
</tr>
</tbody>
</table>

- Originally designed for ethernet; but completely flexible
 - Can specify the length of the address field

- Other nodes can hear the ARP exchange; may elect to add entry to their cache – is this a good idea?

- What to do with the packets while address is being resolved?
Proxy ARP

- A technique to extend ARP’s operation to switched networks

- When router sees an ARP packet from A to B, it answers with its own interface address

- Why is this necessary?
Back to the Routing Table

- Routes in the table map an IP address to the address of the next hop
- Three different types of routes can exist in the routing table
 - Host-specific: an entry giving the route to a specific host
 - Network specific: an entry giving the route for all hosts in a network
 - Default: an entry for routes to hosts we know nothing about
Route Examples

- Masks are actually used instead of *
Routing Table

- R2’s table: network based entries; two are direct routes

- How is the routing table constructed?
Example Forwarding Table

[root@garnet] netstat -r
Kernel IP routing table

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Genmask</th>
<th>Iface</th>
</tr>
</thead>
<tbody>
<tr>
<td>128.226.123.0</td>
<td>*</td>
<td>255.255.255.0</td>
<td>eth0</td>
</tr>
<tr>
<td>127.0.0.0</td>
<td>*</td>
<td>255.0.0.0</td>
<td>lo</td>
</tr>
<tr>
<td>default</td>
<td>128.226.123.1</td>
<td>0.0.0.0</td>
<td>eth0</td>
</tr>
</tbody>
</table>

- Go through entries in order

- Logically AND destination IP with Mask. If output matches destination, use the entry.
IP Addresses

- Problem: severe underutilization of address space if we follow the address classes strictly
 - Example, using a class C network for a LAN with 3 machines, 252 addresses are wasted
 - Example, if you have a network of 400 machines, need a class B address (65536)
- Need a bigger address space (IPv6, NAT)
- Until then, need to develop more efficient ways to use the available space
 - Use subnetting to fit multiple sub networks within a single network
 - Use supernetting to assign multiple networks a single id
Subnetting

• Allow multiple networks to share the same “physical network” space

• Example, Computer science department has 100 machines. Electrical Engineering department has 100 machines. We need two networks that can each be managed and routed independently
 ∗ Assign 2 class C networks?
 ∗ Use subnetting to share one class C network
 ∗ 128.226.123.xx is the network number
 ∗ CS gets 128.226.123.0 to 128.226.123.127
 ∗ EE gets 128.226.123.128 to 128.226.123.255
 ∗ How?
 ∗ Address mask is used to figure out what network you are on
 · Address Mask is 255.255.255.128
 · Any address in CS ANDED with the mask produces 128.226.123.0
 · Any address in EE ANDED with the mask produces 128.226.123.128
Another Subnetting Example

<table>
<thead>
<tr>
<th>Network number</th>
<th>Host number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111111111111111111111</td>
<td>00000000</td>
</tr>
</tbody>
</table>

Subnet mask (255.255.255.0)

<table>
<thead>
<tr>
<th>Network number</th>
<th>Subnet ID</th>
<th>Host ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>128.96.34.128</td>
<td>128.96.34.129</td>
<td>128.96.34.139</td>
</tr>
</tbody>
</table>

Subnet mask: 255.255.255.128
Subnet number: 128.96.34.0

Subnet mask: 255.255.255.0
Subnet number: 128.96.33.0

SUNY-BINGHAMTON – CS528 FALL ’07 LEC. #10
Supernetting and CIDR

- Instead of assigning a corporation that has 400 hosts a class B address, assign it two class C addresses
- If the networks are consecutive they can be abstracted away as a single network
- Generalizing subnetting and supernetting gives us CIDR: Classless Internet Domain Routing
 - Idea: allow the network portion of the address to be dynamic in size
 - Use masks to sort things out
 - As you get closer to the destination, more details become available
CIDR – after 1993

- Address
 - network
 - host
 - prefix size

Mask is the number of significant bits represented by the prefix length: 24 prefix is 255.255.255.0

- Arbitrary sized network field
- Routes represented by tuple: address and prefix size
- e.g., 128.226.123.1/16, 128.226 is network

- Why CIDR vs. Static Networks?
 - Good: Fragmentation, Route aggregation
 - Bad?
CIDR Routing

- Multi-regional 192.0.0.0 - 193.255.255.255
- Europe 194.0.0.0 - 195.255.255.255
- Others 196.0.0.0 - 197.255.255.255
- North America 198.0.0.0 - 199.255.255.255
- Central/South America 200.0.0.0 - 201.255.255.255
- Pacific Rim 202.0.0.0 - 203.255.255.255
- Others 204.0.0.0 - 207.255.255.255

- How can we make use of this information?
Assigning Addresses

- Don't have to worry about hardcoded network class boundaries

- Company kludge.com wants 1024 addresses
 - Assign it 198.15.0.0 to 198.15.3.255 with mask 255.255.252.0
 - Router entry for this company can be 198.15.0.0/22

- Company bob.com wants 4096 addresses
 - Assign it 198.20.16.0 to 198.20.33.255 with mask 255.255.240.0
 (20 bit mask), must start at 4096 boundary

- Company oops.com wants 2048 addresses, assign it what?
Addressing – summary/discussion

- Two issues:
 1. Assigning addresses efficiently so we don't run out of addresses
 2. Scalability of routing

- What makes routing scalable?
 - Routing table size
 - Routing protocol overhead

- Classless addresses
 - any power of two size network
 - use masks to sort things out
 - Helps both efficient address assignment and routing scalability (how?)
Aside–Configuration: Who assigns IP addresses to hosts?

- Two approaches:
 - Static: parameters are hard wired
 * Conceptually easy, but difficult to administer
 * Necessary for servers to have a fixed point of attachment to the Internet
 - Dynamic:
 * Parameters obtained from a server
 * Easy to administer
 * Dynamic use of available addresses
 * How to do it?
Host Configuration Protocols

• Reverse ARP (RARP – RFC 903):
 – When machine is booted, it announces its hardware address and asks if anyone knows its IP address
 – RARP server replies and assigns the machine an IP address

• Boot Protocol (BOOTP 951):
 – Newer protocol, layered on top of UDP
 – New capability is to supply also the name of a machine that will serve the boot image
 * This allows diskless workstations to boot via the network

• Dynamic Host Configuration Protocol (DHCP – RFC 2131 and 2132):
 – Successor to BOOTP
DHCP

• Goals:
 – Provide all the information necessary to configure the host
 * IP address
 * Subnet Mask (to be explained soon)
 * DNS server (to be explained later)
 * Routing information
 – Allow management and sharing of IP addresses
 * Servers manage a finite number of IP addresses
 * Addresses are leased to clients for finite leases
 - Renew lease if you need IP address longer
When a host “wakes up”, it sends a DHCP-DISCOVER message (ip address 255.255.255.255)

- Message contains hosts MAC address
- Either the DHCP server or a DHCP relay agent receives the message
- If DHCP relay agent, it forwards the message to the DHCP server
- Server replies with an IP number and configuration information

Layered on top of UDP

What happens if a host turns itself off without releasing the address?
Network Address Translation (NAT)

- One machine has a legitimate IP address and is connected to the Internet
- Internally, other machines are assigned private addresses
- NAT machine establishes “proxy” connections on behalf of the other machines
- Only NAT machine is visible to the outside
Internet Control Message Protocol (ICMP)

- A protocol for signalling/feedback among routers and hosts
 - Not intended for use by applications; used to send information about problems
 - No multiplexing is provided (i.e., to a specific process), it is intended purely as a host-to-host mechanism
- Built on top of IP, but considered “at the same layer”
- To prevent message explosion, ICMP messages are not generated in response to errors experienced by other ICMP messages
- Several types of information can be exchanged (bad packets, congestion, failed routes, etc..)
ICMP

- ICMP message types include:
 - Echo request/reply (with or without a timestamp)
 - Address mask request/reply
 - Parameter problem
 - Source quench (to control congestion)
 - Redirect (router knows a better route)
 - Destination unreachable (port, protocol, host)
 - TTL exceeded
 - Checksum failed ...

- What is the idea? I thought IP was unreliable??

- Several applications use ICMP (ping, traceroute...)

SUNY-Binghamton – CS528 Fall ’07 Lec. #10
Traceroute

- Implemented by sending UDP datagrams to the destination

- First packet has TTL=1
 - Next hop replies that destination is unreachable (ICMP message); we learn what the next hop is
 - Increase TTL by 1, and repeat
Traceroute Example

[root@garnet] /usr/sbin/traceroute syracuse.edu
traceroute to syracuse.edu (128.230.18.35), 30 hops max, 38 byte packets
1 128.226.123.1 (128.226.123.1) 1.394 ms 0.772 ms 0.748 ms
2 128.226.100.1 (128.226.100.1) 6.363 ms 6.919 ms 5.027 ms
3 * 128.226.100.30 (128.226.100.30) 3.908 ms 4.659 ms
4 149.125.1.1 (149.125.1.1) 1.488 ms 2.788 ms 3.857 ms
5 199.109.4.38 (199.109.4.38) 14.012 ms 12.792 ms 11.748 ms
7 128.230.249.2 (128.230.249.2) 22.655 ms 20.399 ms 20.445 ms
8 128.230.93.1 (128.230.93.1) 20.780 ms 20.514 ms 22.336 ms
9 cwis01.syr.edu (128.230.18.35) 20.704 ms * 24.706 ms