Administrivia

- Second Midterm 11/19
- Project extension to 11/19 (not very helpful with midterm and homework due in the same week)
- Last time: started lookup
- Today: Finish IPnG discussion → Start Multicast

Why NAT may not Evil

- Isolates site address from global address space
 - More secure
 - External changes don’t affect site and vice versa
 * Changing provider becomes easy (only NAT box changes)
 * Internal IP reassignment easier
 - What if two NAT’ed networks merged?
- Is global addressability really needed?
 - Dominant applications are client/server based
 - only server needs to be addressable
 - Is this true with new applications such as peer to peer?
- Delays (eliminates?) address depletion, without having to re-engineer the net
 - Is the cost of maintaining NAT really less than switching an network over to IPv6?

IPNL paper

- Can we retrofit instead of re-engineer?
 - Given a limited or faulty design, is it better to tear it down and restart or to try and fix it?
 - Should you fix a clunker or buy a new car?
- NAT already used to delay the most critical problem with IPv4 – address depletion
 - We discussed why NAT is considered a hack, but are there legitimate benefits to it?
 - Only a quick discussion of this paper; need to move on to multicast

IPNL Paper

- Motivation: Can a “suitable” Internet architecture be developed using an extension to NAT?
- “suitable”
 - All hosts have long-lived, globally routable addresses (if they so choose) that serve to also identify the host.
 - Routers are stateless – no per connection state
 - A network’s address prefix is assigned independently of where the network attaches to the Internet
 - Packets cannot be easily hijacked by rogue or misconfigured hosts
- what is an extension vs. a brand new protocol
 - Isolate changes to hosts and NAT boxes, no changes to routers
More specifically

- Multiple Realms (zones) behind a front door (16-bit realm identifier)
 - Internal NL routers dynamically maintain information to reach realms behind the same front door
 - DNS zone associated with every realm
- Routing possible by FQDN or by IPNL address

Routing by FQDN

- Realm associated with one or more DNS zones (exclusive)
- An internal router keeps explicit paths to zones behind the same n-router

General Idea

- Create another layer on top of IP (IPNL) that is routed using “NAT boxes” (IPNL routers)
 - Uses FQDN as a unique end to end identifier
 - Extends the available IP address space by defining an private IP address space
 - Original IP address becomes “high order” part of the full address
- A Realm is behind one (or more?) frontdoors
 - Internal IP routers route based on the private address only
- To an IPNL router, the internal IP “realm” becomes like a switched non broadcast link layer, with IP being the address family

Topology
Discussion

- IPNL is an academic solution, but generally idea is being pushed using even less drastic changes
 - Provide peer-to-peer addressability on top of NAT
- One suggestion that is getting more traction than IPNL is...
 - NUTSS (NAT, URI, Tunnel, SIP, STUN)
 - Basically, uses SIP URI names as global names, uses STUN to associate name with current NAT box/port
- Another suggestion is Teredo (IPv6 over UDP over IPv4)

Routing

- If source and destination don't share the same front door
 - Route by default to the front door
 - Front door routes through middle realm to destination front door (uses global DNS)
- Routing also possible by IPNL address (need address resolution, a little complicated)

Discussion

- Less drastic solutions than IPv6 possible to overcome the address depletion problems
- Does it address the shortcomings of NAT?
- Does it address the shortcomings of IPv4?
 - What about the other functionality that is allowed by IPv6?
- IPNL is an academic solution, but its representative of similar solutions that are getting traction (more in a little bit)
- Which solution will win?
 - Nobody really knows...
Multicast

- Multicast is sending messages to a set of receivers potentially scattered all over the internet
 - Can you think of applications?
- Multicast approach: just unicast to the destinations, will this work?
- Multicast approach: broadcast to everyone, drop the packet if you don't need it
- What do we want in a multicast implementation?
Reserved Internet Multicast Addresses (IANA)

- Class D addresses are 224.0.0.0 to 239.255.255.255
- 224.0.0.0 to 224.0.0.255 are local link addresses (TTL=1)
 - 224.0.0.1: All systems on this subnet
 - 224.0.0.2: All routers on this subnet
 - 224.0.0.5: OSPF routers
- 224.0.1.0 to 238.255.255.255 are globally scoped addresses
- 239.0.0.0 to 239.255.255.255 are limited scope addresses (within AS)

Reserved Internet Multicast Addresses (IANA)

- Recall that class D IP addresses are reserved for multicast (to be used as group ids)
- Senders transmit to a class D address; routers forward it along to appropriate receivers
- Receivers must express interest in receiving traffic for a multicast group
 - Must join the multicast group

Multicasting on a LAN

- How to implement Multicast on a LAN segment?
- Like broadcast? All nodes receive it?
 - Wasteful
- NIC identifies whether its host is a member of the multicast group
 - How is a group defined?
- How far should a multicast packet propagate?
 - NIC identifies whether its host is a member of the multicast group
 - No ARP to translate?
 - How is a group defined?
- ARP to translate?
- How is a group defined?
- Ethernet Multicast group 01:xx:xx:xx:xx:xx
 - Reserved for IP: 01:00:5e:00:00:00 to 01:00:5e:7f:ff:ff
 - Copy low order 23 bits from IP address to the low order 23 bits above

Extending Beyond a Single Segment

- Groups represented by a class D address
- Internet Group Management Protocol (IGMP – RFC 2236)
 - Used by routers to determine which groups have members on attached networks
 - Implemented on top of IP; it is in the same layer since IP uses it (like ICMP)
 - Supported by all Internet hosts

Multicast Groups

- How to implement Multicast on a LAN segment?
- Like broadcast? All nodes receive it?
 - Wasteful
- NIC identifies whether its host is a member of the multicast group
 - How is a group defined?
- How far should a multicast packet propagate?
 - NIC identifies whether its host is a member of the multicast group
 - No ARP to translate?
 - How is a group defined?
- ARP to translate?
- How is a group defined?
- Ethernet Multicast group 01:xx:xx:xx:xx:xx
 - Reserved for IP: 01:00:5e:00:00:00 to 01:00:5e:7f:ff:ff
 - Copy low order 23 bits from IP address to the low order 23 bits above

Multicast leaking issues in NIC

- How is a group defined?
- How far should a multicast packet propagate?
 - NIC identifies whether its host is a member of the multicast group
 - No ARP to translate?
 - How is a group defined?
- ARP to translate?
- How is a group defined?
- Ethernet Multicast group 01:xx:xx:xx:xx:xx
 - Reserved for IP: 01:00:5e:00:00:00 to 01:00:5e:7f:ff:ff
 - Copy low order 23 bits from IP address to the low order 23 bits above
IGMP Operation

- Idea: Each router polls the hosts on its interfaces for their group memberships.
- Each multicast router maintains a list of group memberships for each of its interfaces.
 - Router multicasts a general membership query to the all-systems multicast address on each of its interfaces when it starts up and periodically.
 - Hosts respond separately for each group of which they are a member.
 - When a host joins a group, it multicasts an announcement to the group address (to which the router is listening).
 - When a host leaves a group, it transmits a leave-group message.
- Any problems?

Optimizations

- Too many responses to membership query.
 - Host waits a random time before responding.
 - Responses are multicast on the group address.
 - If it receives another group membership response it does not respond.
- Too many leave-group messages.
 - Send leave message (to all-router multicast group) only if you were the host to respond to the last general-membership message.
 - Other hosts know that there is at least one more member so not necessary to leave group.
 - Router multicasts a group membership query when it receives the leave-group message.
- Reduce number of queries.
 - Only one router designated as querier on each LAN segment.

Still Something Missing

- How to implement multicast over a large switched network?
- Dumb solution: flood (broadcast) to everyone; ignore if you don’t belong to the group.
 - Why dumb?
- Good solution must only send it to appropriate parts of the network.
 - Network as a graph – how should a multicast packet be forwarded ideally?
Problems

- Floods the network, even if part of it does not include a member in the group
- Message forwarded twice over a LAN with two routers connected to it
 - Solution, elect one of the routers as multicast agent
 - What extra capability is needed?
- Unnecessarily floods routers (once on every incoming link)
 - Possible solution – inform upstream routers which destinations they are your next hop for

Multicast Performance

- How should the performance of a multicast algorithm be judged?
 - Network load (how many “link level” transmissions)
 - Router state (size of the tables in the router)
 - Router cpu requirement
- Additional metrics
 - Loss probability
 - Delay
 - Join delay ...

Improvement – Truncated Reverse Path Broadcast (TRPB)

- Improve RPB by pruning leaf networks that do not contain a group member
 - How to determine if a network is a leaf?
 * A router can tell from the routing protocol messages (if it receives an update from a router on the same network)
 * Can be done through a modification to RIP
 - If a leaf, how do you figure out if it has members in the group?
 * IGMP
 - Good enough?

Reverse Path Broadcast (RPB)

- When a multicast packet comes in:
 - If it came from the NextHop for the source of the multicast, send it out on all links
- Better than a flood?
 - Broadcasts the packet away from the source, but does not loop back to it
- How does this approach perform in terms of our metrics?
Reverse Path Multicasting (RPM)

- Idea: prune full subtrees, not just leaf networks
- Extend TRPB to prune subtrees
 - "on demand" pruning: done only on receipt of message to group
 - If a packet arrives at a router none of whose children have group members, a non membership report (NMR) packet is sent one hop towards the root
 - if the one-hop-back router receives such messages from all its child routers and none of its incident networks have group members, it sends an NMR packet to its predecessor, etc.
 - NMRs are stored with a finite time to live (TTL) – when TTL expires, multicast transmission resumes
 - if a network subsequently acquires a group member, it sends an NMR-cancel message
- Essentially, this is Distance Vector Multicast Routing Protocol (DVMRP) – RFC 1075

Link State Multicast

- Recall: link-state – exchange information with all routers about immediate neighbors
- Supporting Multicast –
 - Idea: information about what multicast groups that hosts on your network belong to becomes part of the state – how?
 - The “expanded” state information gets exchanged in the update
 - Need to update when groups appear/disappear on a link
 - Each router can figure out the shortest multicast tree depending on the source and forward packets accordingly (a tree per source per group)
- Protocol is known as Multicast OSPF (MOSPF); RFC 1584

Multicast – Discussion

- Would like optimal tree for each source/group
 - Expensive, does not scale gracefully, especially at intermediate routers
 - Optimization: use a multicast route cache for active groups, construct trees as needed. Still need to keep and exchange information
- Dense vs. Sparse Multicast
 - Dense-mode multicast
 - Most networks have members in the group
 - DVMRP and MOSPF handle dense mode well
 - Sparse-mode multicast
 - Few networks have members
 - DVMRP and MOSPF dont perform well
 - Would like:
 - Routers not involved do nothing
 - Distribution trees do not require many resources
 - Scalable solutions
Core Based Trees (CBT)

- Idea: a single distribution tree per multicast group; also called “shared tree” approach

- A multicast message is picked up by a router
 - If it is part of the tree, it floods it along the tree
 - If not, it unicasts to the root of the tree (the core) which floods the tree

- Joining the tree
 - Node informs its router using IGMP of interest in joining the group
 - If the router is not already part of the tree, it unicasts a join request to the “core”
 - As each intermediate router receives the request, it sets up a transient join state
 - If router part of the CBT, it sends a Join ACK; otherwise
 - It forwards the join request on to the core

Protocol Independent Multicast (PIM)

- Multicast most expensive when the group is sparse

- PIM distinguishes between sparse and dense multicast

- In the sparse mode
 - Similar to CBT – a shared distribution tree
 - Hosts join/leave groups explicitly using join/prune protocol messages
 - Where to send this message?
 - Every group is assigned a rendezvous point (RP) using a distributed algorithm
 - The RP collects information about members in the group and builds a shared multicast tree
 - It may elect later (“if traffic becomes heavy”) to build a source specific tree that is more optimal

- RFC 2362
PIM Discussion

- Choice of RP important
 - Single point of failure
 - can cause suboptimal operation

- Problem: both receivers and senders need to know addresses of RPs for every group
 - Configured or can extend IGMP to provide this information

- How do we make it real? Multicast across different AS's

- Multicast requires router state
 - Breaks the E2E principle
 - Adds significant complexity and serious scaling issues