MSocks

- Idea: Isolate the mobile end of the connection using a mobility aware proxy
- Proxy maintains connections while a mobile moves
- Connection re-established to new location after move
MSocks

Fig. 1. A common network topology showing the location of a proxy between the mobile node and correspondent host.
MSocks

Fig. 2. The MSOCKS architecture. Parts shown in gray are where MSOCKS alterations are made to the standard parts of proxy based client/server system.
Fig. 3. Packet exchange diagram for connection establishment between a MSOCKS client and a correspondent host via a MSOCKS proxy.
Fig. 4. Packet exchange diagram for a MSOCKS client accepting a connection from a server on a correspondent host via a MSOCKS proxy.
MSocks

Fig. 6. Packet exchange diagram for a mobile node reconnecting to an existing connection.
Host Identity Protocol – Motivation

- End points (machines) have multiple interfaces
- Interfaces not tied to IP addresses
- Transport layer coupled to IP addresses
- Use other namespaces?
 - Domain Names: hierarchical with no anonymity
 - Email/SIP addresses: provide naming, but are extensions of domain names
 - Majority of systems don't have an FQDN or email/SIP address
 - RFC points out 3 critical deficiencies
Deficiencies of Existing Namespaces

- Dynamic Readdressing cannot be directly managed
- Anonymity is not provided in a consistent trustable manner
- Authentication is not provided
HIP

• Protocol proposes:
 – New namespace, decoupling app/transport from network
 – Based on end-point IPnG debates (Chippa/Bellovin)

• Characteristics
 – Cryptographically based
 * Otherwise, security is harder (what types of attacks?)
 – “Statistically” Global scope—must be 128 bits
 – Fixed size
 – should be locally created—anonymity/resolvability tradeoff
 – Used in Security Association bindings and packet forwarding mechanisms
 – Long lived, but replaceable
What Problems Does it Solve?

• Consistent name for a system regardless of how it connects to the Internet
 – Non-spoofable because its cryptographically based

• Separate routing and name spaces
 – No attempt at routability
 – Interface independent
More Problems Solved

- Name for transport layer binding
 - Clean multi-homing
 - Similar to Mobile IP (but arguably less complex)

- Name for security association binding
 - independent of addressing
 - mobile
 - transparent to NAT
Using a Host Identity

- Each Host has at least one Identity
 - Assigned to the network stack
 - Cryptographic Identity for proofing—Identity is public key

- Host Identities can be well known or anonymous

- Higher layers only see Identities, not addresses
 - clean mobility and Addressing Realm spanning

- A payload and protocol for the secure exchange of identities
 - The Host Identity Payload or HIP
Some more details

- HIP is not fixed size; complicates use in transport protocols
 - Use a hash of HIP (called HIT) as the identifier
 - 64 bits not enough for statistical uniqueness (1% hash collision with 640M population)

- HIT in DNS, unless anonymity is desired
Focus only on Mobility Aspect

- Transport layer uses HIT
- Translated to IP through DNS
- So, how does mobility get supported? DNS?
 - They use DNSSEC (secure DNS) to keep track of “rendevouz server” for the node
 - this server holds the current IP of the mobile host
- Responder vs. Initiator (if initiator moves, no mobility support needed)
 - May send a mobility packet to update HIT to IP mapping
I3 Approach

- Use a DHT/overlay network to do the mapping
- Apurva will talk to us about I3 next class
- Then summary/discussion paper and micro-mobility
- After that multi-hop network routing
Mobility Management Requirements

- Location independent identifier
 - Identifier should remain static across location changes
- Compatibility with IP routing
- Location Management
 - Must be able to locate a node as it moves (others—otherwise mobile)
- Transparency—higher layers/applications should not be aware of mobility
- Security—additional vulnerabilities should not be introduced
Namespaces

- Mobile IP: IP address
- TCP-migrate: hostname
- HIP: New namespace, host identifier (public key)
Alternative MM Solutions

- Transport Layer solutions:
 - Don't use IP in the addressing – IP now can change
 - MSocks

- Application Level Approaches (SIP); send a new SIP invite after moving

- Session mobility: use a layer above TCP (at OSI session level) for mobility

- Personal mobility/presence

- Service mobility

- Alternative architectures (e.g., I3 and IPNL)
Performance Issues

- MIP-HA
 - Suboptimal routing
 - per packet encapsulation (tunneling)
 - Micro-mobility models being developed for fast handoff

- MIP-RO
 - Avoids suboptimal routing
 - Extra latency with each move

- MIP-LR: try to avoid home agent
Performance Issues

• Migrate
 – DNS records less cachable
 – What about non TCP applications? Loss of transparency or require their own development
 – Additional computation to generate secret upon SYN exchange

• HIP
 – Requires operation with and overhead of IPSEC’s ESP
 – Computational overhead to geneate keying material
 – Dynamic DNS or additional infrastructure for Rendevouz points
Other Issues

• Mobile IP does not require changes at all hosts

• But does not work well with NAT

• Others face significant deployment challenges as well

• Security is a major concern
 – session hijacking vs. mobility
 – DoS attacks since cryptographic verification takes time
 – What is the security story for mobile IP?

• Scalability discussion

• Robustness discussion
Micro-mobility

- Environments where nodes change their attachment points quickly
 - Small cells/high mobility

- would like seamless handover
 - Smooth handover = low loss
 - Fast handover = low delay (how low?)
 - Seamless handover = smooth + fast

- Micro-mobility solutions discussed in the context of Mobile IP next time