
Nyami: A Synthesizable GPU Architectural Model for

General-Purpose and Graphics-Specific Workloads

Jeff Bush
San Jose, California

jeffbush001@gmail.com

Philip Dexter†, Timothy N. Miller†, and Aaron Carpenter⇤
†Dept. of Computer Science

⇤ Dept. of Electrical & Computer Engineering
Binghamton University

{pdexter1, millerti, carpente}@binghamton.edu

Abstract
Graphics processing units (GPUs) continue to grow in pop-
ularity for general-purpose, highly parallel, high-throughput
systems. This has forced GPU vendors to increase their fo-
cus on general purpose workloads, sometimes at the expense
of the graphics-specific workloads. Using GPUs for general-
purpose computation is a departure from the driving forces be-
hind programmable GPUs that were focused on a narrow subset
of graphics rendering operations. Rather than focus on purely
graphics-related or general-purpose use, we have designed and
modeled an architecture that optimizes for both simultaneously
to efficiently handle all GPU workloads.

In this paper, we present Nyami, a co-optimized GPU archi-
tecture and simulation model with an open-source implementa-
tion written in Verilog. This approach allows us to more easily
explore the GPU design space in a synthesizable, cycle-precise,
modular environment. An instruction-precise functional simu-
lator is provided for co-simulation and verification. Overall,
we assume a GPU may be used as a general-purpose GPU
(GPGPU) or a graphics engine and account for this in the archi-
tecture’s construction and in the options and modules selectable
for synthesis and simulation.

To demonstrate Nyami’s viability as a GPU research plat-
form, we exploit its flexibility and modularity to explore the im-
pact of a set of architectural decisions. These include sensitivity
to cache size and associativity, barrel and switch-on-stall multi-
threaded instruction scheduling, and software vs. hardware im-
plementations of rasterization. Through these experiments, we
gain insight into commonly accepted GPU architecture deci-
sions, adapt the architecture accordingly, and give examples of
the intended use as a GPU research tool.

1 Introduction
Historically, high-performance computing (HPC) performance
growth has generally followed Moore’s law. This trend con-
tinues today, except for one major recent discontinuity: the
adoption of GPUs. In terms of performance per Watt and per-
formance per cubic meter, GPUs can outperform CPUs by or-
ders of magnitude on many important workloads. The adop-
tion of GPUs into HPC systems has therefore been both a major
boost in performance and a shift in how supercomputers are pro-
grammed.

Unfortunately, this shift has suffered slow adoption because
the GPU programming model is unfamiliar to those who are ac-
customed to writing software for traditional CPUs. In an at-

tempt to bridge this gap, Intel developed Larrabee (now called
Xeon Phi) [25]. Larrabee is architected around small in-order
cores with wide vector ALUs to facilitate graphics rendering and
multi-threading to hide instruction latencies. The use of small,
simple processor cores allows many cores to be packed onto a
single die and into a limited power envelope.

Although GPUs were originally designed to render images for
visual displays, today they are used frequently for more general-
purpose applications. However, they must still efficiently per-
form what would be considered traditional graphics tasks (i.e.
rendering images onto a screen). GPUs optimized for general-
purpose computing may downplay graphics-specific optimiza-
tions, even going so far as to offload them to software. Ideally, a
GPU would have the capability to process both general-purpose
and graphics-specific workloads with high performance and ef-
ficiency. Additionally, a modular approach can allow system
integrators to make static selections among alternative compo-
nents to optimize more for one paradigm or the other.

These factors make it important for the research and develop-
ment communities to have effective tools that allow them to con-
tribute new performance and energy-efficiency improvements,
particularly as GPUs are traditionally very power-hungry [19].
Unfortunately, most GPU design details are proprietary, and
there are limited options for accurate and modular architectural
simulations.

With this work, we have attempted to take a fresh look at
both graphics and GPGPU applications to develop an architec-
ture, and associated simulation model, that performs well for
both types of workload. Like Larrabee [25], we adopt a more
traditional programming model, but we avoid the performance
and die-area drawbacks by using a more GPU-like RISC ISA
and pipeline architecture. As such, a given die area can hold
a greater number of processor cores, increasing the aggregate
throughput and performance per Watt.

Thus, we present Nyami, implemented as synthesizable logic
in Verilog. This allows us to conduct design space exploration
for GPUs, with very precise simulation of GPU operation at the
RTL and gate levels. The Nyami architecture and model allow
us to explore the trade-offs inherent in simultaneously design-
ing a GPU for general-purpose and graphics-centric workloads
in order to facilitate selecting an optimization target (graph-
ics, GPGPU, or a compromise). The Nyami Verilog model
provides a flexible framework for exploring architectural trade-
offs that affect GPU performance in general, including changes
to the cache hierarchy, pipeline structure, and hardware thread

173978-1-4799-1957-4/15/$31.00 ©2015 IEEE

scheduling. Most importantly, Nyami is offered up as a new
platform for research, designed to help researchers contribute
to high-performance GPU research. Although Nyami is syn-
thesizable, it is still easy to modify, which is important for test-
ing architectural hypotheses and performing design space explo-
ration. (Source code and documentation are available on-line.)
Our accompanying software also includes an LLVM-based C++
compiler [16] that targets the Nyami ISA and a functional simu-
lator written in C, allowing us to test the architecture across the
various design stack levels, including cycle-precise simulation,
instruction emulation, and power/area analysis.

While numerous open-source CPU implementations have
been available for many years [2, 15, 20, 24], this is not true for
GPUs. There are only two open-source fully-functional GPUs
currently active, OpenShader [18], which is still under devel-
opment, and Nyami. This currently leaves Nyami as the only
fully-functional, synthesizable open source GPU implementa-
tion available. Nyami is also written to be a research tool,
where the implementation in Verilog directly reflects the archi-
tecture, with minimal obfuscating performance optimizations.
To demonstrate the significance of Nyami’s contribution, we
will describe the native architecture, as well as a number of de-
sign explorations, including hardware thread scheduling tech-
niques, rasterization methods, and cache configuration design
space exploration.

The rest of the paper is organized as follows. Section 2 dis-
cusses relevant existing work. Section 3 gives an overview of the
Nyami simulation model and relevant baseline design choices.
Section 4 presents examples of the significance of open-source
GPU simulation and co-optimization techniques. Finally, Sec-
tion 5 concludes.

2 Related Work
GPU Architectures The earliest 3D graphics accelerators im-
plemented a fixed-function pipeline, specialized for graphics.
But the progress of 3D games and other demanding graphics
workloads have been relentless in their demand for more so-
phisticated rendering functionality, driving the adoption of “pro-
grammable shaders.” Initially, only fragment processing was
programmable, followed quickly by vertex and geometry pro-
cessing, as more graphics acceleration was integrated on-chip.
Modern GPUs are now based on a massively parallel multi-
threaded architecture, with numerous simple compute cores
(numbering hundreds or thousands) on one chip, and as a result,
they are capable of general-purpose computation. In general,
GPUs are designed for highly data-parallel computation, which
can be done concurrently using arrays of scalar or vector proces-
sor cores. Each thread of the computation is largely independent
of the surrounding threads, as position, color, and texturing are
calculated independently for each pixel.

In the early days of GPGPU research, there were no open
application program interfaces (APIs) for general-purpose pro-
cessing, forcing researchers to use OpenGL to render images
that contained the computational results; input data came from
textures, and outputs appeared in a rendered image. Since then,

CUDA and OpenCL have exposed general-purpose compute
functionality for most modern GPU platforms.

Intel’s Larrabee architecture [25] is an often-cited modern ex-
ample of a divergence from the architectural trends of traditional
GPU architecture. Instead of numerous scalar processor cores,
Larrabee is an array of general-purpose SIMD cores being used
as a graphics processor, adapted from the existing x86 CPU ar-
chitecture. These in-order x86 cores are enhanced with wide
vector functional units, with very little special-purpose logic for
graphics. While many traditional GPUs use hardware for task
control, scheduling, and rasterization, Larrabee does all of this
in software under the assumption that software control gives
flexibility that confers performance advantages. Specifically,
rasterization and graphics rendering is done in software. In Sec-
tion 4, we will explore this option, as well.

Aspects of modern GPU architecture are described in other
sections below. Top vendors of discrete high-performance GPUs
include Nvidia and AMD (ATI). AMD and Intel also produce
GPUs that integrate on the same die as their CPUs. There is
also a sizable market for embedded GPUs, which are licensed
as IP blocks to be integrated into systems-on-chip for portable
devices, and vendors include Imagination Technologies (Pow-
erVR), ARM, and Qualcomm. Relatively recent literature on
the basics of GPU architecture includes [8, 17, 31, 32].
GPU Simulators GPUs and GPGPUs are an active area of re-
search. However, most GPU architectures are proprietary, and
information about internal details is trade secret. This makes it
challenging for researchers to evaluate microarchitectural trade-
offs in a simulation environment. There are a few notable sim-
ulators that warrant discussion. The Guppy project modified
an open source processor, LEON3, to be more GPU-like, and
is synthesizable for FPGA [3]; unfortunately it is not widely
available to the public. Similar work has been done to create
soft GPGPU frameworks in FPGA hardware [4]. The ATILLA
project is a cycle-accurate emulator for GPU architectures, writ-
ten in C++ although with more emphasis on graphics than com-
putation [11]. GPGPU-SIM is a cycle accurate GPGPU simula-
tor also written in C++ that simulates modern architectures and
has a very sophisticated execution pipeline model [6]. GPGPU-
SIM has also been integrated with the Gem5 CPU simulator
[29]. The Barra simulator is a parallelizable GPU/GPGPU sim-
ulator, but is based on arrays of PowerPC cores, making its per-
formance characteristics diverge substantially from typical GPU
behavior [9]. Multi2sim not only allows the simulation of GPUs
but couples an AMD Evergreen GPU with a x86 CPU for het-
erogeneity [27]. PowerRed, while not a functional simulator,
provides RTL-level power estimations for GPUs [22].
Open-Source GPUs Besides Nyami, there is only one other
open-source fully functional GPU project in some state of devel-
opment. OpenShader [18], mentioned above, is designed strictly
for synthesis and high clock frequency, with a 10-stage scalar
ALU. Currently, only the ALU is functional, while other com-
ponents are implemented as simulation-only stubs.

There are also two open-source projects that are in early
stages of development or have limited capabilities. Theia [28] is

174

available from OpenCores and is designed primarily for raytrac-
ing. Lacking floating point support, Theia currently has limited
applicability to typical GPU applications. Silicon Spectrum is in
the early stages of an open source community buy-out of their
existing graphics accelerator IP (2D and fixed-function 3D) [7].

Overall, each of the discussed GPUs and simulators provides
a useful piece of the GPU simulation puzzle including synthesiz-
ability, ease-of-use, open-source availability, accuracy, and flex-
ibility. However, each is also significantly lacking in at least one
of these categories. Nyami is a significant step towards a more
complete simulation framework for modular testing of GPU ar-
chitectural choices. Nyami also includes video and DRAM con-
trollers, allowing it to be loaded into an FPGA to render graphics
in real-time. This allows researchers to run more sophisticated
tests than can practically be run in simulation.

3 Overview of Nyami’s Architecture and
Verilog Model

Nyami’s default configuration is described in Table 1. While
many of these configuration settings are standard for a many
GPU and GPGPU architectures, a few warrant discussion below.

3.1 General Pipeline/Execution
Nyami executes a register-to-register RISC ISA. Arithmetic in-
struction operands can be scalars or vectors or a combination,
and masks can be applied to vectors to select which destina-
tion elements are modified. Integer and floating point values are
stored in the same register file. Load and store instructions sup-
port 8, 16, and 32-bit scalar sizes, and vector loads and stores
support scatter/gather and strided accesses. Branch instructions
have no delay slot; strand switching occurs to avoid a stall.
Hardware Threading Within the in-order, single-issue core (il-
lustrated in Figure 1), we provide multi-threading capabilities
to improve utilization and hide latencies. Each hardware strand
has a distinct program counter and set of architectural registers
and appears to software as an independent processor. The de-
fault is four strands. Simulated sensitivity studies (see Section
4.1.2) show that beyond four strands with the Nyami architec-
ture, the performance begins to saturate, largely because of the
native pipeline structure. These strands can be swapped into the
pipeline on stalls or in a cycle-based interleaved fashion. Sec-
tion 4 shows the performance comparison of the switch-on-stall
(SoS) and barrel instruction scheduling policies.

The pipeline cannot be stalled, as it would also unnecessarily
stall other strands in the pipeline. Thus on a stall, the offending
strand must be rolled back, which invalidates all successive in-
structions for that strand in the pipeline. When the stalled strand
is ready again, it is restarted from the point of the stall.

Nyami utilizes a unified scalar/vector pipeline, rather than
separate units, and instructions can mix vector and scalar
operands (with scalar registers being duplicated to all lanes of
the operation). It also uses a very wide vector unit that can pro-
cess sixteen 32-bit integers or floats in single-cycle and 4-cycle
pipelines. All vector instructions support specifying an optional
mask register to control which lanes will be updated. This is
illustrated in Figure 2. This is especially useful for divergent

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0

1 98 97 96 5 6 93 8 9 10 89 12 87 14 85 84

Operation
Result

Original Values
in Destination

Mask Vector

Final Values in
Destination

Figure 2. Operation results can be ignored by setting bits in the
mask register to 0.

lock-step parallel execution, as found in Single Program Multi-
ple Data (SPMD) architectures.

The Nyami microarchitecture also bears some similarities to
Sun Niagara [14], which emphasizes thread-level parallelism
and utilizes a simple in-order pipeline. Features inspired by Nia-
gara include how strand scheduling and rollbacks are done, how
coherency works, and the interface between L1 and L2 caches.

3.2 Divergence
Current GPUs [8, 17, 31, 32] employ a SIMT (single instruction
multiple thread) architecture that allows an instruction cache to
be shared across multiple threads and multiple ALUs (“lanes”),
as long as those threads execute exactly the same sequence of
instructions. When branches make those threads go different
ways, this is known as “warp divergence” in Nvidia nomen-
clature, where the processor must alternate between threads in
the same warp, substantially impacting performance. This has
two major disadvantages: (1) a substantial amount of circuitry
is dedicated to warp divergence and reconvergence; and (2) in
ideal conditions, every lane is busy executing the same instruc-
tion as every other lane (albeit on different data), but the threads
are technically independent, with the potential for divergence.
This requires a significant amount of redundant decode and data
flow logic across lanes. Nyami optimizes for the common case,
making all lanes share a single front-end, putting many of the
challenges GPUs face (e.g. divergence and convergence) under
software control.

More specifically, Nyami puts the burden of divergence han-
dling on the compiler. When there is potential for divergence
among vector lanes (e.g. at the edges of a triangle), the com-
piler reserves a general-purpose scalar register (using its stan-
dard register allocator) to track which vector lanes (work items,
in OpenCl nomenclature) are active on that path. Then each
divergent path is executed serially, applying the current mask
register to all vector instructions. When a reconvergence point
is reached, the mask register is updated. Divergence and recon-
vergence points are computed statically by the compiler, and the
compiler can allocate multiple registers to track nested diver-
gent paths. The overhead of updating masks is relatively low,
requiring only simple Boolean operations.

3.3 Cache Hierarchy
Each core has private L1 instruction and data caches, all of
which are 4-way set associative for the default of 4 strands, to
ensure high hit rate for each strand. The cores share the L2
cache. Communication between L1 and L2 uses separate re-

175

Attribute Design Specification

Registers 30 general purpose scalar, 32 general purpose vector, 32 control

General Pipeline
In-order, single-issue, unified scalar/vector pipeline; scalar execution is duplicated across
lanes; multi-threaded supported (4-way default); no stalling; rollback on mispredict and/or
memory access

Execution RISC, Single Instruction Multiple Data (SIMD),
Memory Access 8, 16, 32 bit scalars; 512-bit vectors

L1 Cache Private 4-way set associative L1 I-cache and D-cache with miss queue
(write-through/no-write-allocate);

L2 Cache Shared write-back/write-allocate L2 with split transaction protocol
Cache Coherence L2-based allocation; Directory based write update, processor consistency
Synchronization Similar to load-linked/store-conditional; can implement spin-locks or lock-free operation

Table 1. The Nyami default architectural configuration is described here. Many parameters are flexible and can be changed to fit the
simulation needs. For brevity, only defaults are listed here.

Vector
RF

16-wide vector Int & FP ALUs

FIFO 0
FIFO 1
FIFO 2
FIFO 3

pc0
pc1
pc2
pc3

fetch
select

Scalar
RF

Decode
Logic

Int
Exec

FP
Exec

1

FP
Exec

2

FP
Exec

3

FP
Exec

4

icache

schedule
logic

th
re

ad
se

le
ct

W
rit
eb
ac
k

data
cache

store
buffer

L2 cache interface

Figure 1. Nyami’s native pipeline supports multiple simultaneous hardware threads (strands) and supports both vector and scalar operations,
as shown here in a unified pipeline.

quest and response communication networks. L1 requests are
sent using dedicated links to an L2 arbiter, which stores the re-
quest and processes them in the order of arrival. The response
is broadcast on a bus, which each core checks to update its own
cached copies. Upon a write from the core’s store buffer, the
L2 directory is used to specify an update to all cores that have
that cache block in the local L1, sent via the broadcast bus. The
request/response networks provide high throughput for requests
and an efficient mechanism for data response and write updates,
each of which is well suited for GPUs, which often have high
read-to-write ratios (in our workloads, reads occur about 3.5
time as often as writes). Since L1 is write-through and write-
no-allocate, coherence traffic is trivial, and only current sharers
need to be tracked in the L2 directory. Additionally, the L2 man-
ages the L1 cache allocation and therefore has global knowledge
of the state of all caches. Writes from an L1 must happen in-
order, but writes from different strands can occur in any order,
providing processor consistency. The L2 is write-back/write-
allocate to the memory to minimize off-chip accesses.

The L2 cache can accept a new request every cycle in the best
case. Because it has high throughput (up to 64 bytes per cycle),
a single core typically cannot saturate the L2 bandwidth. Ar-
bitration logic within cores (among L1I, L1D, and store buffer)
and between cores funnels L2 access requests down to a single
request interface, allowing the L2 to service memory accesses
in a predictable order, which simplifies coherence. As the num-
ber of cores grows, contention for L2 access increases, but the
pipelined memory system maintains high throughput, and multi-
threading allows processor cores to be effective at hiding the la-

tency. Both the L1 and L2 hierarchies support hit-under-miss
and can reorder requests, and there are queues at each level of
the hierarchy to support large numbers of pending requests. The
L2 cache is pipelined to 6 stages; with arbitration, the hit latency
for the L2 with no contention is 9 cycles.

In order to (a) demonstrate the flexibility of Nyami simula-
tor’s and (b) justify the design choices in creating the default
configuration, we present a cache sensitivity study for a suite of
GPU benchmarks. Full discussion is in Section 4.

3.4 Pipeline Description
As shown in Figure 1, the instruction pipeline consists of the
following stages:

• Instruction Fetch: This stage contains the instruction cache
and maintains a FIFO of instructions and a program counter
for each hardware strand. Each cycle, it selects a strand and
issues its PC to all four ways of the instruction cache tag
and data SRAMs. These SRAMs have one cycle of latency.
Combinational logic after the SRAMs detects a hit or miss,
uses a multiplexer to select cache line data from the appro-
priate way, and enqueues it into the requested strand’s FIFO.
If a cache miss occurs, instruction fetch for that strand is sus-
pended and the missed address is put into a load miss queue.

• Strand Select: This stage selects the next strand to issue
an instruction from according to the configured policy (e.g.
round-robin). Strands that are not ready are skipped. This
can occur for empty instruction FIFOs, when waiting on a
data cache miss/full store buffer, or when a long-latency in-
struction has been issued. For instructions that require mul-

176

tiple execution cycles (e.g. scatter/gather vector load/store),
this will issue the same instruction multiple times with a sig-
nal that indicates which lane the operation is for.

• Decode: This stage selects the appropriate operand indices
from the instruction and issues them to the register file. The
register file has one cycle of latency, so the values will be
available to the next stage. This also contains a bypass net-
work that forwards results from subsequent stages where ap-
propriate.

• Execute: There are two parallel pipelines in the execute
stage, both of which support scalar and 16-wide vector op-
erations. A pipeline with one substage handles integer oper-
ations and also detects mispredicted branches. The floating
point pipeline has four substages. There is a structural hazard
at the end of this stage where the different pipeline lengths
converge. The strand select stage schedules around this by
tracking which instructions have been issued.

• Memory Access: In this stage, memory load instructions
(scalar and vector) will access the data cache tag and data
memories. Like in the instruction fetch stage, these are ac-
cessed in parallel. As the SRAMs have a cycle of latency,
cache hits are detected a cycle later and the appropriate cache
line is selected by a multiplexer via combinational logic be-
fore being passed to the next stage. If a cache miss occurs,
the address goes into a separate load miss queue. This stage
also contains the store buffer. When a load is executed, the
store buffer will be checked to see if the address is already
present and, if so, bypass the cache. Memory stores do not
access the local data cache. They instead go through the L2
cache, which eventually broadcasts and update to all cores.
This maintains proper coherence ordering.

• Writeback: This stage sets control signals that update the
register file when needed. The mask register (if used) is a set
of enable signals that control which vector lanes are updated.

There is a rollback controller that detects rollback conditions
from various stages and issues squash signals to appropriate
stages, prioritizing when multiple squashes are triggered simul-
taneously from different stages.

3.5 Compiler
A full C/C++ toolchain has been ported to this architecture,
based on the LLVM Compiler Infrastructure [16]. LLVM has
robust support in its intermediate code representation for vec-
tor types and operations. The backend implementation for this
processor exposes specialized vector functionality directly using
built-in intrinsics and standard GCC vector extensions. Vectors
are first class types, which can be local variables, struct/class
members, and function arguments. Standard arithmetic opera-
tors can be used on them, which will generate the appropriate
vector instructions. For example:
// Initialize a vector with an array constant

vec16f_t a = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16 };

vec16f_t b;

// Add two vectors

a = a + b;

// copy a lane of a vector into a scalar variable

float c = a[12];

// Copy a scalar into a vector lane

b[11] = 0;

Vector and scalar types can be mixed using an intrinsic that
expands a scalar to a vector. As mentioned above, the processor
uses a unified pipeline, so scalar and vector operands can be
mixed. The compiler is intelligent about generating instructions
that mix types automatically where possible. For example:

float d;

a = a + __builtin_vp_makevectorf(d);

Will generate:

add_f v0, v0, s0

A flexible intrinsic __builtin_vp_vector_mix allows sup-
port of predication from C++. It requires three parameters: a bit
mask and two vector parameters. Each of the low 16 bits of the
mask corresponds to a lane of the vector. A one bit will take the
lane from the first vector parameter, and a zero will take it from
the second. This intrinsic does not correspond to an instruction
but will infer the appropriate masked forms. For example, the
following:

vec16f_t a, b;

...

a = __builtin_vp_vector_mixf(mask, a + b, a);

Generates a single instruction:

add_f_mask v0, s0, v0, v1

The add_f_mask instruction uses a scalar register (e.g. s0) to
specify which lanes to take from vector registers (e.g. v0 and
v1).

3.6 Simulation Environment and Benchmarks
There is a large body of sophisticated parallel benchmarks in
the literature. For the purposes of this paper, we have restricted
ourselves to a few benchmarks. The first two are more narrow
microbenchmarks, while the remaining 3D tests exercise a more
complex, real-world workload. Rendered examples are found in
Figure 8.
• Alpha Blend: Blends a 64x64 image into a 64x64 destina-

tion image (32-bit pixels). This utilizes integer arithmetic to
extract and pack color elements and to blend the pixels, as
well as memory accesses to read and write the images.

• Dot Product: Computes a large number of dot products
from a memory array. This stresses floating point arithmetic.

• Teapot: Using the 3D engine, renders the standard Utah
teapot with a Phong shading model into a 512x512 pixel out-
put buffer. The model has 2304 triangles and 1364 vertices.

• Torus: Using the 3D engine, renders a torus shape with 288
triangles and 144 vertices, also Phong shaded into a 512x512
pixel output buffer.

177

• Cube: Using the 3D engine, render a simple cube, mapping
a 128x128 texture on each side, using bilinear filtering into a
512x512 pixel output buffer. The model has 12 triangles and
24 vertices and stresses texture mapping.

Nyami features a set of built-in performance counters for
evaluating various performance metrics and is also easy to in-
strument with additional Verilog code for additional data collec-
tion. As a whole, the Nyami simulation environment provides
a flexible, synthesizable GPGPU-like architecture, with the fur-
ther advantages of simplicity and precision.

The following configurations are available for testing and
analysis:
• A C-based instruction-accurate functional simulator is pro-

vided, used as a reference model for co-simulation and ver-
ification and as a software prototyping platform. It runs at
a fast rate (the equivalent of around 25 MHz when run on
modern desktop hardware).

• The design can also be simulated using the Verilator [26]
simulation framework, which allows cycle accurate simula-
tion and complete inspectability at the waveform level. The
effective clock speed of this simulation running on modern
desktop hardware is around 70 kHz.

• The system can also be synthesized to run on FPGA at
a speed of 30 MHz. This configuration also features a
SDRAM controller and VGA display controller, allowing
real time display. The design can be instrumented in soft-
ware to gather performance data.

Additionally, because the Verilog code is synthesizable, it can
also be used to gather power and area statistics for various tech-
nology nodes. The multi-platform portability of Nyami makes
it an ideal environment for GPU architectural exploration and
evaluation.

3.7 3D renderer
A software 3D renderer has been implemented to explore the
capabilities of this architecture and provide a more complex
benchmark that exercises many parts of the implementation.
The engine was implemented almost completely in C++ (uti-
lizing platform specific intrinsics that are exposed by the com-
piler), and takes advantage extensively of both SIMD and hard-
ware multi-threading. The renderer uses tile based rendering,
which is sometimes known as a sort-middle architecture [12].
There are two phases during rendering:

• Geometry: During this phase, a vertex shading routine is ex-
ecuted on the vertices. The vertex shader is explicitly paral-
lelized in SIMD to process up to 16 vertices simultaneously.
The vertices in the array are statically assigned (by index)
to hardware strands. With four strands running on one core,
up to 64 vertices are in progress at any time. The computed
vertex parameters are written to an output array to be used
by the next phase. Strands wait at a barrier when they reach
the end of the vertex array.

• Pixel: The screen is broken into tiles (the size is configurable
in software). Each strand reads the next unrendered tile and
renders it completely before moving onto the next. This al-

lows the active tiles to fit in the L2 cache and provides a low-
contention way of scaling work as the number of strands/-
cores increases. The strands rasterize all triangles that over-
lap the tile (using a bounding box test). This is described in
more detail in Section 4.2. The rasterizer outputs aligned 4x4
pixel block coordinates with coverage masks. These blocks
contain 16 pixels, which map exactly to the width of the vec-
tor, allowing 16 instances of the pixel shader to be run si-
multaneously on each strand. The renderer first performs a
depth buffer check, followed by perspective correct interpo-
lation of the pixel parameters. It then calls a shader function
that computes the color values. With a single core and four
strands, there are up to 64 pixels being shaded simultane-
ously. When a strand has finished rendering the tile, it uses
a data flush instruction to explicitly push the contents out of
the data cache.

A texture sampler function can be called by the pixel shader.
This is implemented completely in software and performs bilin-
ear filtering. Like other parts of the renderer, it is vectorized and
computes values for up to 16 texels at a time using vector gather
load instructions.

3.8 Pipeline Visualization Tool
Included in the Nyami simulation environment is a visualiza-
tion tool that displays the state of the running strands over time.
Several papers have explored using graphical representations of
pipeline state to examine behavior, including [5, 30].

Figure 3 illustrates this functionality with four strands. In the
figure, each iteration of a loop can be seen as a repeating pat-
tern of two red stripes followed by several yellow stripes as the
pipeline handles multiplications. The visualization tool illus-
trates memory stalls, active strands, and dependency stalls in an
effort to aid in performance analysis.

4 GPU Architectural Design Exploration
We will now demonstrate some of the possibilities presented
when using Nyami to answer theoretical questions about GPU
architectural choices. Utilizing Nyami as a scientific research
tool, we have conducted several experiments, presented be-
low. Each experiment has required a fundamental architectural
change, which we were able to implement very quickly. These
include instruction scheduling policies, hardware vs. software
rasterization, varying cache size and associativity, and the addi-
tion of a write-combining load/store queue.

4.1 Scheduling: Barrel vs. Switch-on-Stall
GPUs take advantage of thread-level and data-level parallelism,
while also adapting well to increasing memory demand. The
memory access latency is the greatest challenge to maximizing
throughput, so GPUs are designed to have many simultaneous
transactions pending. The memory system performs best when
there are numerous outstanding requests to process, particularly
when they can be reordered, and the processor cores hide much
of the latency by assigning many threads to the same compute
hardware, switching among them as memory transactions stall
and complete. Ideally, both the memory and compute systems

178

Wait for Data Mem. Access Ready Long Latency Inst. Empty Instruction FIFO
Figure 3. Four strands states over time using the visualization application. Red indicates a strand waiting on a memory access. Green
indicates a ready strand. Yellow represents a strand waiting on a long latency instruction. Black shows a strand waiting due to an empty
instruction queue.

will always have an abundance of pending work to perform.
With enough work available, any time an instruction stream en-
counters a stall condition (RAW hazard or load dependency), a
processor core will typically be able to switch to another thread
with instructions ready to execute. This allows computation and
memory access to occur in parallel, maximizing the amount of
logic that is doing useful work at any one time.

Although there has been some substantial study of the effects
of multithreaded instruction scheduling for CPUs, CPUs are
optimized to minimize memory latency and maximize single-
thread throughput, while GPUs are optimized for high memory
latency and maximize overall throughput of all running threads.
Therefore, it seems appropriate to utilize Nyami to explore this
question for GPUs.

For instruction scheduling, we primarily have two options.
Some GPUs, e.g. from Nvidia, opt for coarse-grained multi-
threading, which we refer to as switch-on-stall (SoS). With this
policy, instructions for a given thread are issued back-to-back
until a stall condition is identified, and the next thread is se-
lected. An alternative is to use fine-grained multi-threading. The
extreme case is barrel processing, where a strand switch occurs
on every cycle and two instructions from the same strand are not
allowed to simultaneously occupy the same pipeline.

Our first attempt to assess the impact of these two instruc-
tion scheduling policies employed artificial workloads. The re-
sult was a very small performance difference, mostly due to too
many simplifying assumptions. From a memory perspective,
the two policies are effectively equivalent: the order that strands
are unblocked by the L2 cache has a bigger impact on overall
throughput than the order in which they block. It was not until
we executed real workloads on Nyami in a cycle-precise manner
that any substantive differences were revealed, demonstrating
the value of a synthesizable GPU implementation.

Our original hypothesis was that SoS would have superior
performance because of its memory access behavior. When ex-
ecuting a graphics workload, it is typical for different threads to
execute the same or nearly the same sequence of instructions.
We therefore expected that the barrel processor would alternate
between phases of compute-intensive instructions and phases
where every strand floods the memory system with requests.
These floods would cause slowdowns due to high contention ac-

cess to the memory system. By contrast, SoS spreads out mem-
ory accesses, commonly executing several arithmetic instruc-
tions before encountering another stalling memory instruction.
In out-of-order CPUs, workloads with more spread-out accesses
often perform better than those that cluster memory accesses to-
gether, and we assumed that this would apply here as well.

This hypothesis was not supported by the evidence. For one
thing, although barrel and SoS have different memory behavior
at the start of a rendering pass, the memory system’s latencies
will naturally cause strands in a barrel system to desynchronize,
spreading out memory requests in steady-state, where memory
access patterns become more similar to those created by the SoS
policy. More importantly, SoS performance was hurt most by
contention for a limited-capacity load-store queue, which we
will explore further in Section 4.1.1.

An obvious advantage of using a barrel policy over SoS is that
a barrel processor can be architecturally simpler. If the number
of strands is greater than the number of pipeline stages, then a
barrel processor needs no logic to track register-to-register data
dependencies and requires no branch prediction. In fact, the
only time a barrel processor needs to stall is on high-latency
cache misses, and this can be detected far enough in advance that
there is also no need for hardware to support rollbacks. On the
other hand, barrel processors rely on never having two instruc-
tions from the same strand in the same pipeline at the same time,
and they also rely on there being a minimum number of cycles
between issuing instructions from the same strand. As a result,
if many strands assigned to a barrel processor are blocked, it
may be forced to insert idle cycles to respect those assumptions.
4.1.1 Improving the Load/Store Queue
Nyami was originally designed with a single-entry store queue
for each strand. The store queue is necessary to support RAW
data flow through memory within a single strand without wait-
ing on coherence with other caches, and this structure is also
used for cache management actions such as cache flushes and
synchronized accesses. Based on static analysis of benchmark
instruction sequences, we observe that memory stores occur at
a rate of 1 per 6 instructions, and a dynamic analysis finds that
stores occur at an average rate of 1 per 21 cycles (including stall
cycles). These would suggest that a single store entry is suffi-
cient. But for some workloads with heavy back-to-back stores

179

alpha

blend dot

product teap
ot toru

s
cube

g.m
ean

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
C

yc
le

s
SoS - 1-entry

Barrel - 1-entry

SoS - 2-entry

Barrel - 2-entry

Figure 4. For each benchmark, we see the performance compar-
ison of barrel vs. switch-on-stall strand scheduling, for both a
single entry and double entry store queue. The baseline is SoS
with 1-entry.

and scatter stores, writes can occur in bursts, making the single-
entry buffer a serious bottleneck. The barrel policy naturally
spaces out memory accesses within a strand, while the SoS pol-
icy will attempt to issue stores back-to-back, resulting in roll-
backs and wasted cycles.

We therefore took advantage of Nyami’s architecture-oriented
structure to implement a two-entry store buffer, which substan-
tially alleviated the congestion. When queuing a store in an
empty buffer, the request is forwarded immediately to the L2
cache. A second entry could also be pipelined behind the first
and forwarded to the L2, but we instead chose to hold it back to
support write combining, which also benefited performance.

With the single-entry store queue, SoS was slower than bar-
rel by 10%, on average. With the two-entry store queue, store-
related stalls were reduced substantially and even eliminated for
some benchmarks. SoS sped up by 16.4%, barrel sped up by
6.4%, and the performance gap shrank, making SoS only 0.6%
slower than barrel. The remaining performance difference is in-
fluenced by many small factors. SoS still has slightly higher
contention for the store queue, and barrel also has slightly better
cache hit rate. Figure 4 shows the overall performance results of
these comparisons, while Figure 5 explains the performance im-
provements in terms of reduction in stall cycles, where a 2-entry
store queue reduces memory stalls by 24% on average. Since a
barrel scheduling policy can more efficiently use a simpler and
smaller store queue implementation than SoS, barrel has yet an-
other circuit area and power advantage over SoS.
4.1.2 Varying Strands Per Core
To further examine the differences between SoS and barrel, we
also varied the number of strands per core. The default num-
ber of strands is 4, but 2, 8, and 16 were also tried. The per-
formance comparison of these experiments is shown in Figure
6. With more strands, there is greater potential to hide mem-
ory stalls. Adding more strands hides more L1 miss latency
for either scheduling policy. Beyond four strands, adding more

alpha blend

dot product cube
toru

s
teap

ot
g.m

ean
0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
M

em
or

y
S
ta

ll
s

Store Bu↵er
1-entry 2-entry

Figure 5. By increasing the store queue to 2-entries, we reduce
the data cache and store queue stall cycles, relative to 1-entry
store queue.

ari
th

meti
c

ba
rre

l
ari

th
meti

c

sos gra
ph

ics

ba
rre

l
gra

ph
ics

sos
ov

era
ll

ba
rre

l
ov

era
ll

sos

0.0

0.5

1.0

1.5

R
el

at
iv

e
C

yc
le

s

Number of strands
2 4 8 16

Figure 6. Performance of the Nyami architecture for the different
numbers of available strands, against the baseline of 4 strands.

strands has diminishing returns. For 16 strands, the general pur-
pose arithmetic benchmarks continue to show the trend of sat-
urating performance, but the graphical benchmarks have sub-
stantially worse performance. This is because the graphical
benchmarks have high memory footprints (each strand renders a
64x64 block of pixels and may additionally access texture data)
and therefore suffer more cache misses since more simultaneous
threads increase the working set.

4.2 Rasterization: Hardware vs. Software
Rasterization is the process of converting polygons (specified
by vertexes or vectors) into pixels (raster images). This can be
done in hardware or software. While software rasterization is
not likely to match the peak performance of a hardware ras-
terizer, software is a sufficient alternative, particularly as well-
designed software can completely avoid unnecessary work in a
way that fixed hardware cannot. Here we present a comparison
between a Larrabee-like software rasterizer and a performance-
ideal hardware rasterizer. Figure 8 shows the rasterized images
for the hardware and software methods used.

180

cube torus teapot g.mean
0.0

0.2

0.4

0.6

0.8

1.0
R

el
at

iv
e

C
y
cl

es
Software Hardware

Figure 7. The relative cycles used by using a system with a hard-
ware rasterizer, relative to software rasterizer.

For software rasterization, we employ a recursive descent ap-
proach, similar to that used by Larrabee, which identifies which
pixels in a square area of the rendering surface intersect with
a triangle to be rasterized [1]. At each level of recursion, a
surface patch is subdivided into a 4x4 grid of smaller patches.
Utilizing half-plane equations, whole patches can be classified
as “trivially rejected,” “trivially accepted,” and “partially over-
lapped”. Trivially rejected patches are passed over without re-
cursion. Trivially accepted patches are completely filled, and
partial overlaps are further subdivided. Recursion stops at a 4x4
pixel patch, and a 16-bit mask is computed as an operand to
Nyami’s vector ALU.

Our hardware rasterizer is designed to be a drop-in replace-
ment for the software rasterizer, requiring minimal modification
to our benchmarks and isolating the performance effects exclu-
sively to the critical path in rasterization. This rasterization logic
sweeps the bounding box of the triangle to be rendered, cal-
culating 4x4 patches. These patches are returned to software
in the form of coordinates and 16-bit masks, where bits repre-
sent the inclusion of corresponding pixels in the triangle to be
painted. Inclusions are computed by the intersection of three
half-planes based on the triangle edge line equations. The hard-
ware rasterizer automatically sweeps past patches that fall en-
tirely outside of the triangle, and this has no impact on software
performance, because the sweep is done in parallel to painting
dequeued patches.

On average, the hardware rasterizer speeds up rendering per-
formance by 28% (for both barrel and SoS). The graphics bench-
marks perform several tasks, including geometry, rasterizing
(finding out which portions of the screen to paint), and rendering
(painting pixels). The hardware rasterizer virtually eliminates
the time overhead of rasterizing, replacing the Larrabee recur-
sive algorithm with hardware that operates in parallel. For the
purposes of our experiments, the hardware rasterizer we imple-
mented is nearly ideal in performance and therefore will require
more circuit area than a well-optimized design. However, our
performance counters show it to have very low utilization such
that it could be shared among just under 600 strands, thereby
making it a relatively cheap solution even in the worst case.

4.3 Varying Cache Size and Associativity
To illustrate the value of Nyami as an experimentation platform,
we present another demonstration of its flexibility. In software-

64
1

128
1

128
2

256
1

256
2

256
4

64
1

128
1

128
2

256
1

256
2

256
4

Cache Associativity (total # of lines, ways)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
C

y
cl

es

Barrel SoS

Figure 9. Geometric mean across benchmarks of execution cy-
cles for different cache sizes, relative to baseline (256 lines, 4-
way set associative). The top numbers (64, 128, and 256) refer
to the total size of the cache (in number of lines) and the bottom
numbers (1, 2, and 4) represent the associativity (1-way, 2-way,
and 4-way).

based simulators like MARSSx86 [21] and SESC [23], chang-
ing cache parameters is very simple, because the parameters are
merely inputs to software that managed dynamically generated
data structures. On the other hand, parameterizing hardware can
be much more difficult. For instance, a software implementa-
tion of a cache tag array will store tag data in 32-bit integer vari-
ables, leaving most of the bits unused. In hardware, data struc-
tures must be sized much more tightly to the specifications of
the cache size and associativity. When these parameters are ad-
justed in Nyami’s configuration, they automatically affect mem-
ory word and data bus sizes all across the circuit.

When varying cache parameters, the effects on performance
and cache hit rate are not at all unexpected, as shown in Figure 9.
As expected, smaller caches have lower hit rate, increasing ex-
ecution time, and increasing associativity has more benefit than
increasing capacity.

4.4 Synthesis Report
Using Quartus, we synthesized the baseline configuration of
Nyami for the Altera Cyclone IV E (EP4CE115F29C7) FPGA.
Including DRAM, video controller, and a single 4-strand pro-
cessor core, Nyami occupied a total of 92,186 logic elements
(59,154 combinatorial only, 6,419 register only, 26,613 both),
which is 81% of the device’s 114,480 total logic elements. Ad-
ditionally, 128 of 532 (24%) dedicated multiplier blocks were
used. Since Nyami is not optimized for clock frequency, static
timing analysis reported about 30 MHz.

Synthesis could also be done using transistor technology
models to extract transistor-level area and power analysis. Us-
ing Synopsys Design Vision [10] and NanGate 45nm transis-
tor technology model [13], we did a preliminary synthesis as a
proof of concept. For brevity, only a few simple components are
included in this analysis. The default 32-bit entry, 1K SRAM
cache consumes 20.5mW and uses 244,000 µm2. The simple

181

Figure 8. Output of Teapot, Cube, and Torus benchmarks. (To save on toner, original black backgrounds repainted white.)

arbiter requires only 14.4 µW and 52.9 µm2. A 64-bit, 2-entry
synchronous FIFO synthesized to 1303.4 µm2 and consumes
261.7 µW .

5 Conclusions
In this paper, we have presented Nyami, which is a new GPU
and GPGPU architecture, simulation framework, and research
tool. Unlike other GPU simulators, Nyami is based on a synthe-
sizable circuit written in Verilog, providing cycle-precise simu-
lation of a multithreaded GPU. Nyami itself explores new GPU
architectural choices, borrowing the best design decisions from
Larrabee and traditional GPUs, and we employ Nyami to ex-
plore the impacts of a set of architectural choices.

Through these experiments, we show the performance impli-
cations of using barrel and switch-on-stall instruction schedul-
ing policies, identify and fix bottlenecks in the store queue, and
demonstrate the benefits of using a dedicated hardware raster-
izer over an equivalent software technique. These demonstrate
Nyami’s value to GPU researchers, both in terms of modularity
for design space exploration and as the only fully-functional,
synthesizable open source GPU currently available. Finally,
we use Nyami to answer interesting theoretical questions about
GPU architectural choices.

Full source code for this is available on github at the following
links:

https://github.com/jbush001/NyuziProcessor

https://github.com/jbush001/NyuziToolchain

The architecture is continuing to evolve and details have most
likely changed since publication of this paper. The sources used
to prepare the results in this paper are branched as ’ispass-2015’
in the above projects.

References
[1] Michael Abrash. Rasterization on larrabee. Dr. Dobbs Journal, 2009.

[2] Gaisler Aeroflex. Leon3 User Manual. http://www.gaisler.com/.

[3] A. Al-Dujaili, F. Deragisch, A. Hagiescu, and W. Wong. Guppy: A GPU-like soft-
core processor. In Int’l Conf. on Field-Programmable Technology, pages 57–60, 2012.

[4] K. Andryc, M. Merchant, and R. Tessier. Flexgrip: A soft GPGPU for FPGAs. In
Int’l Conf. on Field-Programmable Technology, 2013.

[5] A. Ariel, W. Fung, A. Turner, and T. Aamodt. Visualizing complex dynamics in
many-core accelerator architectures. In Performance Analysis of Systems & Software
(ISPASS), 2010 IEEE International Symposium on, pages 164–174. IEEE, 2010.

[6] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt. Analyzing CUDA work-
loads using a detailed GPU simulator. In IEEE Int’l Symp. on Perf. Analysis of Systems
and Software, pages 163–174, 2009.

[7] Francis Bruno. Open Source Graphics Processor (GPU) [Kick-
starter]. http://www.kickstarter.com/projects/725991125/

open-source-graphics-processor-gpu.

[8] J. Chen. Gpu technology trends and future requirements. In Electron Devices Meeting
(IEDM), 2009 IEEE International. IEEE, 2009.

[9] S. Collange, M. Daumas, D. Defour, and D. Parello. Barra: A parallel functional
simulator. In Int’l Symp. on Modeling, Analysis, & Simulation of Computer and
Telecummunication Systems, pages 351–360, 2010.

[10] Synopsys Design Compiler. http://www.synopsys.com/.

[11] V. del Barrio, C. Gonzalez, J. Roca, A. Fernandez, and R. Espasa. ATTILA: A cycle-
level execution-driven simulator for modern GPU architectures. In Int’l Symp. on
Performance Analysis of System and Software, pages 231–241, 2006.

[12] Matthew Eldridge. Designing graphics architectures around scalability and commu-
nication. PhD thesis, STANFORD UNIVERSITY, 2001.

[13] Nangate Inc. Nangate 45nm open cell libary. http://www.nangate.com, 2009.

[14] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Niagara: A 32-
way multithreaded sparc processor. Micro, IEEE, 25(2):21–29, 2005.

[15] D. Lampret. OpenRISC 1200 IP Core Specification. http://opencores.org.

[16] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong pro-
gram analysis & transformation. In Code Generation and Optimization, 2004. CGO
2004. International Symposium on, pages 75–86. IEEE, 2004.

[17] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. Nvidia tesla: A unified
graphics and computing architecture. Micro, IEEE, 28(2):39–55, 2008.

[18] T. Miller. OpenShader: Open architecture GPU simulator and implementation.
http://sourceforge.net/projects/openshader/.

[19] European Parliament. Eu commission regulation regarding energy-related
products. http://www.eup-network.de/fileadmin/user_upload/

Computers-Draft-Regulation-subject-to-ISC.PDF.

[20] I. Parulkar, A. Wood, J. Hoe, B. Falsafi, S. Adve, J. Torrellas, and S. Mitra.
OpenSPARC: An open platform for hardware reliability experimentation. In Fourth
Workshop on Silicon Errors in Logic-System Effects (SELSE), 2008.

[21] A. Patel, F. Afram, S. Chen, and K. Ghose. MARSSx86: A full system simulator for
x86 CPUs. In Proceedings of the 2011 Design Automation Conference, 2011.

[22] K. Ramani, A. Ibrahim, and D. Shimizu. Powerred: A flexible power modeling frame-
work for power efficiency exploration in GPUs. In Workshop on General Purpose
Processing on Graphics Processing Units, 2012.

[23] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, S. Sarangi P. Sack,
K. Strauss, and P. Montesinos. SESC simulator. http://sesc.sourceforge.
net, January 2005.

[24] C. Santifort. Amber ARM-compatible core. http://opencores.org/project,amber.

[25] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, P. Dubey, S. Junkins A. Lake,
R. Cavin, R. Espasa, E. Grochowski, T. Juan, M. Abrash, J. Sugerman, and P. Han-
rahan. Larrabee: A many-core x86 architecture for visual computing. IEEE Micro,
pages 10–21, 2009.

[26] W. Synder. Verilator. http://www.veripool.org/.

[27] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli. Multi2sim: A simulation frame-
work for CPU-GPU computing. In Int’l Conf. on Parallel Architectures and Compi-
lation Techniques, pages 335–344, 2012.

[28] Diego Valverde. Theia: ray graphic processing unit. http://opencores.org/
project,theia_gpu.

[29] H. Wang, V. Sathish, R. Singh, M. Schulte, and N. Kim. Workload and power budget
partitioning for single-chip heterogeneous processors. In IEEE Int’l Conf. on Parallel
Archtiecture and Compilation Techniques, pages 401–410, 2012.

[30] C. Weaver, K. Barr, E. Marsman, D. Ernst, and T. Austin. Performance analysis
using pipeline visualization. In 2001 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS-2001), 2001.

[31] C. Wittenbrink, E. Kilgariff, and A. Prabhu. Fermi gf100 gpu architecture. Micro,
IEEE, 31(2):50–59, 2011.

[32] Y. Zhang, L. Peng, B. Li, J.-H. Peir, and J. Chen. Architecture comparisons between
nvidia and ati gpus: Computation parallelism and data communications. In Workload
Characterization (IISWC), 2011 IEEE International Symposium on, pages 205–215.
IEEE, 2011.

182

