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Abstract

Grid systems such as Globus, Legion, and Globe provide
an infrastructure for implementing metacomputing over the
Internet. The Component Architecture Toolkit (CAT) pro-
vides a software layer above the Grid that facilitates pro-
gramming and end user interaction with the Grid.

1. Introduction

Metacomputing systems such as Globus [10],
Legion[13], and Globe [19] provide sophisticated ser-
vice layers which allow users to access and manage
distributed hardware resources. These “Grid” systems
provide mechanisms for locating and monitoring machines
and networks, protocols for security and authentication,
mechanisms for remote file access, and tools for creating
and scheduling jobs [11]. However, building distributed
applications by programming directly to low level Grid
APIs is not easy. End users who wish to solve problems
using the Grid, tend to first think in terms of higher-level,
problem-centric concepts, such as determining which
software resources are applicable, and then designing and
building an application using those resources. Low-level
details such as process instantiation, machine/network
characteristics, and so forth typically come at a later stage
of the application building process.

The Component Architecture Toolkit (CAT) provides a
software layer above the Grid that enables end users to make
use of Grid services for building and running applications
composed of distributed software components [17]. In the
next section, we describe what components are, and how
they can be used in the context of the Grid.

2. Overview of Components

Our model of a component is based on the following def-
inition:

Components are software objects that provide
implementations of a set of standard behaviors.
These behaviors are defined by the componen-
t framework to ensure that components can be
composed and interoperate efficiently and with-
out conflict.

The dependences of one component upon another and the
communication between components are completely de-
fined by a set of interfaces. In some frameworks these in-
terfaces describe the events that components generate that
are responded to by other components. In other framework-
s they describe data stream that pass between components.
In still others, they describe uses-provides interfaces that
specify the methods that a component may call that are be
provided by others.

The framework provides a mechanism in which compo-
nent instances can be created and have their externally ed-
itable properties examined and modified. It also provides
a mechanism for connecting components, i.e. specifying
which component listens for events generated, or provide
services that are used, by a particular component instance.
In some systems component connections are made during a
“component assembly phase” prior to the application exe-
cution. In others, connections can be made on-the-fly, i.e.
dynamically as the application proceeds.

Components are assembled and connected together with-
in a “container” object provided by the framework. In the
case of distributed systems, a proxy object is used to repre-
sent the component within the container. In most systems,
a container can be also converted into a component allow-



ing a nesting hierarchy of component instances within an
application.

Distributed architectures often catalog components that
are available at different sites by using a distributed direc-
tory service. These services often contain proxies as well
as the metadata about components. For example, informa-
tion about required runtime environments that a component
needs, or special information about property editors.

A software component is different from mere aggrega-
tion of library codes in a standalone program. Components
are meant to be used in more dynamic settings where exe-
cutions are event-driven and in which few assumptions (be-
yond what is specified in the interfaces) about the operating
environment can be made. Furthermore, components act as
indivisable units of computation, where either the execution
as a whole goes forward or not, and is independent of how
the component operates internally (e.g., in parallel, serially,
asynchronously, etc.).

In the context of the Grid, components serve as the basic
building blocks for programming distributed applications.

3. Example Systems

There are a number of important component and
component-like systems that have been developed. These
range from commercial products like DCOM[7], the pro-
posed CORBA component model[15], Enterprise Java
Beans[1], AVS[2], Explorer [14] and Khoros[12] to re-
search systems like WebFlow[3], SciRun[18], NetSolve[9],
Ninf[16], Infospheres[6] and others. In addition, a DOE
sponsored group is defining a “Common Component Archi-
tecture” (CCA)[8] for scientific applications. In this section,
we describe the relationship of these systems to the CAT.

3.1. The Software Hierarchy

Framework

Middleware

Core Gr id
  Services

Resources

Appli cation Components/ 
Component Framework

Software runtime li braries/
Distributed Object Models

Security, scheduling, 
communication, all ocation

Networks, computers, 
databases, instruments, etc.

Figure 1. The Software Hierarchy

To understand the relationship between the differen-
t component models, object models and Grid systems, it is
helpful to consider the software hierarchy in Figure 1. At

the bottom level we have the basic Grid resources such as
networks, computers, databases, instruments, etc. These re-
sources are accessible through core Grid services such as se-
curity, communications, scheduling, allocation, etc. Globus
provides the most well known example of this type of grid
service system. Legion and Globe are the other prime exam-
ples of Grid systems. The difference between these become
apparent at the object model level.

The next level up in the hierarchy can be called the object
model layer. In addition to providing an inheritance-based
object model, this layer also provides location and naming
services. The most important examples of grid object mod-
els include Legion and Globe. In the case of Legion, it also
includes a core grid service layer as part of its design. On
the other hand, Globus uses the library approach in which
it only provides framework programmers with a set of ser-
vices that can be accessed, but it does not provide a standard
object model. However it is possible to add an object model
layer above globus. For example, HPC++ [4] is a distribut-
ed object framework, which is largely compatible with Ja-
va’s RMI distributed object model, and runs over Nexus, the
core Globus communication library. HPC++/Java uses the
Java naming and RMI registry services.

CORBA from OMG is the most widely known distribut-
ed object middleware systems. Although CORBA provides
a rich set of services, it does not contain the grid level allo-
cation and scheduling services found in Globus and Legion.
On the other hand, it is not difficult to integrate CORBA
with either of these Grid systems. In addition it would not
be difficult to build the component architecture described in
this paper on top of a combination of CORBA and a Grid
layer like Globus or legion.

The middleware layer of a distributed system represents
the ”platform” upon which a component architecture frame-
work is built. The Java Bean component architecture is
built on the Java object model and uses an event-listener
mechanism to compose components. It is also not a dis-
tributed component model. The Enterprise Java Beans (E-
JB) model is a distributed component model that is also
designed to support CORBA client programs. EJB is tar-
geted at the design of server components that communicate
with remote clients. The most well known component mod-
el is Microsoft’s Distributed Component Object Model (D-
COM). DCOM is primarily limited to Microsoft Windows,
but there are several Unix based implementations. The Ob-
ject management group has proposed a component model
extension to CORBA which is intended to interoperate with
EJB. The CORBA proposal has not yet been adopted.

The DOE Common Component Architecture (CCA) is
a specification that is based, in part, on ideas contained in
the CORBA proposal. Like the CAT model described here,
CCA is based on the concept of connecting components by
type-compatible ”ports”. This is not a new idea. It is com-
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mon to SciRun from Utah, IRISexplorer, Khoros, AVS, and,
to some extent. WebFlow. In addition, the port-component-
connection model is used by systems like JavaStudio to con-
nect Java Beans.

4. Motivation

For large scale distributed scientific and engineering ap-
plications there are several additional concerns that go be-
yond those of the standard component model design con-
straints:

1. A component in a scientific and engineering applica-
tion may be a computational service that runs on a
large, parallel supercomputer. In this case, it is neces-
sary to consider the problem of marshaling and unmar-
shaling data structures that are distributed. Indeed, the
communication protocol between components of this
type may consist of parallel streams interleaved over a
very high speed network.

2. The volume of data traffic in these components may
be very large and special protocols may be required to
move it. Can the component communication transport
protocol adapt to this situation?

3. Long running applications may require frequen-
t checkpointing of the entire state of all threads of a
computation. Java serialization is not sufficient for this
task. What level of support is provided for this type of
fault recovery?

4. As performance is central to the workings of a scien-
tific application, does the component system provide
mechanisms to easily instrument the components?

An overview of how the CAT addresses these issues is
given in the following sections.

5. Use in Scientific Computing

In traditional scientific computing, programmers have
produced an abundance of standalone libraries which sci-
entists can incorporate into their own codes. This approach,
albeit useful, is static and usually requires intimate knowl-
edge about the nature and quirks of the program before it
can be fully and safely utilized. That is, these codes are
mostly for developers rather than for end users. Thus, these
codes may not be used beyond a small circle of elite users.

In contrast, component-style programming can widen
the potential user base of such standalone codes. It does
this by mandating that all components provide and imple-
ment a set of well-defined interfaces that end users as well
as programmers/programmatic tools, can use to indirectly

access the code. This indirection is implemented as the
“component wrapper”, and it functions as a layer interfac-
ing the standalone code to the component framework. This
allows the framework to treat disparate standalone codes in
a uniform way, without requiring special knowledge about
the purpose or internal workings of the codes. Moreover,
this shifts the “design” phase of program development clos-
er to the “execution” phase since the embedded codes are
pre-built/compiled and ready to use. This feature facilitates
rapid application development.

The CAT provides a library and runtime environment
suitable for component-style programming.

6. Overview of the CAT Framework

The CAT framework is composed of four cooperating
systems that provide the following services: componen-
t information, component creation, component communi-
cation, and component control. Each system is accessed
through a well-defined interface by other systems. The CAT
Resource Information Service (RIS) provides mechanisms
for storing and accessing information relevant to a compo-
nent’s execution. This includes general component infor-
mation such as the component’s purpose and the kinds of
inputs and outputs it has, as well as implementation specif-
ic information such as what hardware and networks it may
be run on. The CAT also provides a generic component
process creation facility, dubbed the “procreator”, that en-
capsulates all the polices, usage restrictions, job schedul-
ing, etc. that are involved in starting up processes on host
machines. Once a component is started, it is able to com-
municate with other components through a special form of
remote method invocation (RMI). The CAT uses RMI to au-
tomate and manage the execution of components, as well as
to enable users to control these components remotely.

7. The CAT Component Model

The component model the CAT presents to the user is
one based on the notion of ”ports”. Ports are interfaces
which can be thought of as generalizations of inputs and
outputs associated with a function call. More specifically, a
port is a typed communication channel through which com-
ponents can delegate their external I/O. Components may
have any number of input or output ports associated with
them. Each input port can be connected with at most one
output port; however, output ports may have an arbitrary
number of input ports connected to it. Communication be-
tween components is established when an output port on
one component is connected to a type-compatible input port
on another, and data is passed between the ports. Data trans-
fer is initiated when a component writes to its output port
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String getName()
name of the component given
by the component developer

String getReadme()
short description of what the
component is/does

String getStateInfo()
short description of current in-
ternal state of the component

STATUS getStatus()
current component status, e.g.,
BUSY, WAITING, etc.

RETVAL addListener
(StatusListener c)

add component status listener

RETVAL removeListener
(StatusListener c)

remove component status lis-
tener

Vector getInputPorts() list of current input ports

Vector getOutputPorts() list of current output ports

RETVAL setSignal(SIGNAL s) set a signal

Vector getStatusList()
get the current list of stati de-
fined for the component

Vector getSignalList()
set the current list of signals
defined for the component

RETVAL setQuery(QUERY q,
String args)

set and evaluate the query

Vector getQueryList()
get the current list of queries
defined for the component

RETVAL initialize(String[]
args)

initialization command line ar-
guments to pass to component

Vector
getPostExecutePorts()

list of output ports involved in
the most recent execution

String getResultsURL()
URL of where/how to access
output content

Vector
getPreExecutePorts()

list of input ports required to be
”filled” prior to execution

Table 1. The CAT2component interface

and notifies each of its input port listeners that new data is
available for reading.

In the CAT model, components and their ports are re-
quired to implement a set of standard framework interfaces.
These interfaces allow the CAT to obtain structural and se-
mantic information about the components and ports, which
can be subsequently presented to the end user. The inter-
faces also provide a control mechanism that allows the ob-
jects to be manipulated by the CAT, and indirectly by the
end user. Tables 1-4 show the component and port inter-
faces using an Java-like syntax.

A brief overview of how and when these methods are
used is explained in the next section.

Ports simplify the conceptual model for users since they
need only be concerned with what a component accepts as
input (from other components or from the user) or what
it produces as output. The CAT component model shields
users from various underlying complexities (e.g., how data

String getType()
port type represented as a fully-
qualified Java class name

STATUS getStatus()
current port status (e.g.,BUSY,
EMPTY, etc.)

String getName()
name of the port as provided by
component developer

String getReadme()
short description of the port’s pur-
pose, usage, etc.

CAT2component
getComponent()

the component asssociated with this
port

RETVAL getTag() ”meta data” associated with the port

String getStateInfo() current internal state of the port

Table 2. The CAT2port base interface extend-
ed by input and output ports interfaces

Object read() read from the input port

RETVAL write(Object d) write datad to the input port

Table 3. The CAT2inputPort interface

Object read()
peek at the data contained on the
output port

RETVAL propagate()
propagate the data to the input
port listeners

RETVAL addListener
(InputPort i)

add input porti to list of listeners

RETVAL removeListener
(InputPort i)

remove input porti from list of
listeners

Table 4. The CAT2outputPort interface

RETVAL generic return value object that indicates success (or not)

QUERY object used to enumerate simple query functions

STATUS object used to store current state information

SIGNAL control signals used to manipulate the component

Table 5. Class types used in CAT framework
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transfer/conversion takes place) so that the user can instead
focus on higher level application building.

8. Control Model

In the previous section, we described the calls that may
be invoked on a component and port by the framework.
However, equally important is theprotocol for using these
calls. In this section we describe how the CAT interacts with
the component and ports through these interfaces. Note that
this protocol is independent of the actual implementation.

CAT

Component

RIS

11

Locate 
component
to instantiate

22 Request 
component 
creation

44 Obtain handle to component, 
query component, discover 
ports, and initialize

55 End user 
manipulates 
component

Procreator

33 Create new 
instance of 
component

User Interface
Output
port(s)

Input
port(s)

CComm−
unicate

create locate

control

Figure 2. Component location, creation, com-
munication, and control

During a component’s initial startup (i.e., after the
component has been created), the CAT will invoke the
component’sinitialize() method. This method al-
lows a user of the component to pass any initializa-
tion information that may be necessary for the compo-
nent to properly execute. The CAT makes subsequent
callsgetName() , getReadme() , getQueryList() ,
getSignalList() , and getStatusList() to fur-
ther acquaint itself with the component. The CAT also
makes queries to discover the ports associated with the
component throughgetInputPorts() and getOut-
putPorts() . Once the CAT has a handle to a port, it
can query the port for its type information via theget-
Type()) method. This type information can be used later
to test port compatability between input and output ports
(e.g., prior to connecting components via their ports).

Once a component has been started up and initialized,
three ways of obtaining component state information be-
come possible. In the first case, a component can deter-
mine its own control and notify the CAT of any changes
in its state via theaddListener() method. Here the
CAT passively waits for component status updates. In
the second case, the CAT assumes a more active role by
polling the component through itsgetStatus() method.

This is most useful when both the CAT and componen-
t share control of the component’s execution. In the third
case, the CAT directly controls the component’s execu-
tion and can infer the component state (e.g., busy, modi-
fied, waiting, etc.). This latter mechanism of component
control is achieved via thesetSignal() method which
provides a hook for the CAT to send various control sig-
nals, such asSIGNAL.EXECUTE, SIGNAL.KILL , SIG-
NAL.SUSPEND, and so forth to the component. Some sig-
nals may require pre- or post- processing in order to make
use of them. For example, the CAT will invokegetPre-
ExecutePorts() to obtain a list of input ports that must
have data prior to a component’s execution. The CAT can
use those ports to notify associated components (and ances-
tor components if necessary) to forward data to the compo-
nent(s) which need them. Once a component’s execution
completes, the CAT invokes agetPostExecutePort-
s() to obtain a list of input ports which were affected by
that execution. This list is subsequently used to issue further
setSignal(SIGNAL.EXECUTE) calls on the associat-
ed components.

By default, it is assumed that execution flow follows data
flow within a set of connected components.

9. Implementation

The CAT software is composed of three parts: a frame-
work library, a set of composition and control tools, and a
set of resource information tools. Underlying it all is our
choice of Grid: Globus. Globus was chosen since it was
the most developed in terms of high-performance commu-
nication protocol support (Nexus), authentication and com-
ponent creation schemes (GSS, GRAM), and resource lo-
cation mechanisms (MDS). Furthermore, Globus is imple-
mented in several languages (C/C++ and Java) which facili-
tated higher level tool building (NexusRMI). Legion shared
many of these features and a port of CAT to Legion will be
undertaken as soon as resources are available.

The framework library constitutes the core logic behind
our CAT component model. It has been implemented in
both HPC++ [4] (for the component wrappers embedding
C/C++/Fortran codes) and Java (for non-compute intensive
components and for the CAT workspace controller). The
reason for using HPC++ to write most of the backend com-
ponents was because the performance of its communication
library (based on Nexus) scaled much better than the al-
ternative (a purely Java approach) as data transfer size in-
creased.

The composition and control tools are used to visually
manipulate components as well as to control their exter-
nal execution behaviour. These tools were written primarily
in Java since Java provides a rich object oriented language
and sophisticated set of standard libraries (AWT, network-

5



ing) that are portable and easy to use. The communication
between the Java-based CAT controller and HPC++-based
backend components was achieved using NexusRMI[5], an
alternative to JavaRMI which uses the Nexus protocol.

The resource information tools are used to access and
modify the RIS databases. These databases are implement-
ed in two parts: a distributed LDAP database, and a network
of CAT registries. LDAP is a lightweight directory protocol
service that stores data (text, binary) entries in a hierarchi-
cal (tree-structured) format. It is used to store mostly static
information about components, and is optimized more for
reading than for writing. We have taken advantage of L-
DAP’s extensibility features to cross-reference our compo-
nent entries with machine entries stored in the Globus MDS
(another LDAP-based database service). The second part
of the RIS databases is the network of CAT registries. A
CAT registry is a simple table that associates a name with
a remote reference (in this case, a reference to a live com-
ponent). It is built on top of the Java RMI registry. The
CAT provides tools that allow a user to publish information
about a running component to the LDAP database so that
other RIS users may be aware and potentially make use of
the services provided by the component.

The graphical user interface for the cat systems is based
on a drop-and-drag component composition system. The
reader interested in seeing detailed screen-dumps (or ob-
taining the CAT software), is directed to the website

http://www.extreme.indiana.edu/cat

10. Example CAT Session

A typical LSA scenario using the CAT is shown in Fig-
ure 3.

In this example, the user has created an component ap-
plication that attempts to solve a linear system using three
strategies. The internal structure of the application is a tree,
and follows a simple dataflow model. At the root of the
tree is the NewSystem component, which serves as an in-
put source for the application. This component reads in a
linear system data file from disk and converts it to a data
structure which can be sent to other components. Connect-
ed to the NewSystem component are an informational com-
ponent, BasicInfo, and two filter components, Scale and Re-
order. The BasicInfo component was used to determine the
properties of the input linear system, which helped guide
the user towards selecting effective solution strategies. The
first strategy was to simply solve the system using the Su-
perLU solver. The second strategy involved first scaling the
system and then using a sparse iterative solver on it. The
user also chose to view the effect that scaling had on the
system, and so connected a Visual component to the Scale
component. The third strategy was to reorder the system
instead, and then use a similar sparse iterative solver on it.

During the process of building the application, the us-
er elected to run components spread across different host
machines. Afterwards, the user brought up the Framework
Analysis Toolkit (FAT) tools to view the performance statis-
tics of the NewSystem component, as well as an automati-
cally generated web page that logs the execution results for
the SuperLU component. These tools helped the user fig-
ure out which strategies were more effecient at solving the
given system.

11. Real-world Example using the CAT

A prototype of our CAT software was used in a high-
performance computing challenge at the SuperComput-
ing’98 conference. We built an application containing lin-
ear system solver components distributed across several off-
sites machines, together with a parallel finite-element com-
ponent and a 3D visualization component onsite at the con-
vention. This application simulated the filling of an en-
gine block mold which had 2.55 million elements and re-
quired 16GBytes of memory to run. Several key HPDC
issues were addressed in our demo. First, the underlying
engineering problem required developing parallel solution
techniques for time-dependent, multi-physics finite-element
simulations on complex geometries. Second, certain re-
sources required for the simulation, such as the 3D visu-
alization device and compute nodes for the finite-element
solvers, were not all available in one place. Other issues,
such as machine-specific software licensing and the propri-
etary nature of some of the industrial codes required that
the component wrappers be built strictly from binary-only
libraries and their specifications, and that the resulting com-
ponents be run only at certain host sites. This showed how
any code, whether textual or library based, could potential-
ly be incorporated as a component into our framework in an
accomodating way.

12. Conclusion

Taking advantage of the Grid for high-performance sci-
entific computing requires a software framework layered
above the Grid that supports a new style of programming:
component-based programming. The CAT facilitates such
programming by providing a conceptually simple “port-
based” component model together with a suite of develop-
er tools for incorporating existing scientific codes into the
framework, as well as a set of end user tools for locating,
composing, building, and running distributed componen-
t applications over the Grid.
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Figure 3. CAT applied to a Linear System Analyzer (LSA) problem
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