
Con�guring A MapReduceFramework For
Performance-HeterogeneousClusters

JessicaHartog,RenanDelValle, MadhusudhanGovindaraju,andMichael J. Lewis

Departmentof ComputerScience,StateUniversity of New York (SUNY)at Binghamton
f jhartog1, redelval1, mgovinda, mlewis g@binghamton.edu

Abstract—When data centers employ the common and eco-
nomical practice of upgrading subsetsof nodes incrementally,
rather than replacing or upgrading all nodes at once, they
end up with clusters whose nodes have non-uniform processing
capability, which we also call performance-heterogeneity. Popular
frameworks supporting the effective MapReduce programming
model for Big Data applications do not �exibly adapt to
these envir onments. Instead, existing MapReduce frameworks,
including Hadoop, typically divide data evenly among worker
nodes, thereby inducing the well-known problem of stragglers
on slower nodes.Our alternative MapReduce framework, called
MARLA, divides each worker's labor into sub-tasks, delays
the binding of data to worker processes,and thereby enables
applications to run faster in performance-heterogeneousenvi-
ronments. This approach does intr oduce overhead, however.
We explore and characterize the opportunity for performance
gains, and identify when the bene�ts outweigh the costs. Our
results suggest that frameworks should support �ner grained
sub-tasking and dynamic data partitioning when running on
some performance-heterogeneousclusters. Blindly taking this
approach in homogeneous clusters can slow applications down.
Our study further suggeststhe opportunity for cluster managers
to build performance-heterogeneousclusters by design, if they
also run MapReduce frameworks that can exploit them. 1

I . INTRODUCTION

Scientistscontinueto develop applicationsthat generate,pro-
cess,and analyze large amountsof data. The MapReduce
programmingmodel helps expressoperationson Big Data.
The model and its associated framework implementations,
including Hadoop[1], successfullysupportapplicationssuch
as genomesequencingin bioinformatics[2] [3], and catalog
indexing of celestialobjectsin astroinformatics[4], by split-
ting dataacrossprocessingnodes,applyingthesameoperation
on eachsubset,andaggregating results.

Whenframeworkssplit dataevenly acrossnodes,andwhen
the map and reduce functions are applied uniformly, the
frameworks implicitly assumethat constituentnodespossess
similar processingcapability. When they do not, straggler
processesresultandperformancesuffers [5] [6].

We refer to clusters whose nodes exhibit non-uniform
processingcapability as being performance-heterogeneous.
Performanceheterogeneitycan result from data center ad-
ministratorsupgradingsubsetsof nodesincrementally, rather
than replacingor upgradingall cluster nodesat once. This
can result as funds becomeavailable incrementally, as older
nodesfail or becomeobsolete,and as new fasterprocessors

1This work wassupportedin part by NSF grantCNS-0958501.

continueto emerge.FutureGrid[7] andNERSC[8] exemplify
performance-heterogeneousclusters.The FutureGridtest-bed
is a geographicallydistributedsetof heterogeneousnodesthat
vary signi�cantly in terms of processorspeeds,number of
cores,available memory, and storagetechnologies.NERSC's
Carver cluster includes a mix of Intel Nehalemquad-core
processors,Westmere6-coreprocessors,andNehalem-EX8-
coreprocessors,for a total of 9,984cores.

Hadoop[1], the de facto standardMapReduceframework,
can perform poorly in performance-heterogeneousenviron-
ments[5] [6] [9] [10]. To improve performance,MapReduce
applications, in concert with supporting frameworks, must
considerdifferencesin processingcapabilitiesof underlying
nodes.Simply put, fasternodesshould perform more work
in the sametime, eliminating or greatly reducing the need
for applicationsto wait for stragglerprocessesto �nish [6]
[11]. Our MARLA MapReduceframework [9] supportspar-
titioning of labor into sub-tasks,and does not rely on the
HadoopDistributedFile System(HDFS) [12]. Instead,it uses
a standardimplementationof Network File System(NFS);
therefore,data need not reside on worker nodes before a
MapReduceapplication runs, and more capablenodescan
eventually receive and processmore data.MARLA therefore
does not require signi�cant local storagespaceon worker
nodes,but doesrequiredatamovement(via NFSor someother
underlying�le system)at runtime.

In this paper, we con�gure a clusterto exhibit varying de-
greesof performance-heterogeneity, andtest the effectiveness
of splitting MapReduceapplicationswith several degreesof
granularity. Using smallersub-tasksincreasesthe opportunity
to react to performance-heterogeneity, but also requiresthat
the application pausemore often to wait for data to arrive.
Our experimentshelp identify the circumstancesunderwhich
the bene�ts of �ne-grainedsubtaskinganddelayeddataparti-
tioningoutweightheassociatedcosts.Wevaryclusternodesto
includetwo andthreedifferentlevelsof processing capability,
and con�gure different percentagesof nodesat each level.
For each cluster environment, we divide application labor
into different granularities of subtasks,to help identify the
best strategy for task distribution on clusterswith different
characteristics.

This papermakes the following contributions:
� It demonstrateshow incrementalupgradesof a cluster

can affect performanceof MapReduceapplicationsthat
do not respondto clusterperformance-heterogeneity. Ap-



plicationdevelopersdonot typically reaptheperformance
improvementsthat clusterproviderspurportedlypay for.

� It identi�es an approachfor MapReduceframeworks to
improve performanceon clustersthat containnodeswith
non-uniformprocessingcapabilities.

� It provides evidencethat upgradesto a cluster that do
not improve all nodesof the clusteruniformly can have
a rangeof impactson theturnaroundtime of MapReduce
applications,suggestingthatdatacentermanagersshould
carefully considerupgrades. Theseconsiderationsshould
be madebasedupon both the techniquesemployed by
the MapReduceframework to respondto heterogeneity,
andthe applicationsthe framework runsmostfrequently.

The paperproceedsas follows: Section II describesrelated
work, and Section III provides relevant backgroundon our
MARLA MapReduceframework, including the mechanisms
for dividing andsub-dividing tasksat runtime.SectionIV then
describesour testbedandexperiments.SectionV includesand
analyzesresultsfrom experimentsrunningon clusterscontain-
ing two levels of processingnodesin varying percentages.
Section VI describesresults for clusters that exhibit three
levels of node capability. SectionsVIII describesour plans
for future work.

II . RELATED WORK

Zahariaet al. [5] and Xie et al. [6] addressMapReducejob
schedulingin heterogeneousclusters.During speculative ex-
ecution,Hadoop's straggler mechanismstartsduplicatetasks
when it discovers slow nodes,but this strategy falls short of
solving the problem in clusterswith increasedperformance-
heterogeneity. Fadikaet al. [10] show that Hadoop's straggler
mitigation schemealso falls short in non-dedicatedclusters
with third-party load.

The LATE scheduler[5] allows Hadoop to speculatively
executethe task that the framework expectsto completefur-
thestinto thefuture.LATE relieson HDFSfor dataplacement
and thereforecan not delay the binding of data to worker
processes;this restrictionlimits thetasksthatmaybene�t from
speculative execution.

Xie et al. [6] pro�le clusternodecapabilitiesandskew data
partitioning accordingly;slow nodesreceive less work than
fasternodes.Thisstaticpro�ling sufferswhen“surprise”third-
party loadsbegin or end in the middle of a MapReducejob,
therebyalteringa node's ability to completework comparedto
the pro�le-basedprediction.Furthermore,when fasternodes
receive morework andsubsequentlyfail, theapplicationstalls
for longer thanwhenslower nodesfail.

Ahmad et al. [11] notice that Hadoop's speculative execu-
tion favors local tasks over remote tasks,and speculatively
executeremotetasksonly nearthe endof themapphase.The
authors' Tarazuenhancementsuite re-distributes speculative
executionof remotetasksbasedon an awarenessof network
communication.Tarazumonitors this communicationto de-
termine whetherthe map phaseor the shuf�e phasecreates
the bottleneck.In contrast,our work delaysdistributing data
until just beforeworkers needit, insteadof making and then

reconsideringbinding decisions.In addition,Tarazuconsiders
clusterswith two classesof hardware—wimpy (Atom) nodes
and brawny (Xeon) nodes.We �nd, as shown by Nathuji et
al. [13], that clustersmoreoften have levels of hardware that
exhibit more closely-relatedperformancethan thoseconsid-
ered for Tarazu.Our work analyzesthe scenariowhere the
differencebetweenworker nodesis a morerealisticdepiction
of the datacenterupgradeprocessdescribedby Nathuji et al.

Our work studieshow well a delayedtask-to-worker bind-
ing of application data to worker nodesallows a MapRe-
duce framework to make ef�cient use of performance-
heterogeneousclusters,and the extent to which the strategy
introducesoverheadin homogeneousclusters.We believe this
paperto beuniquein varyingboththegranularityof datasplits
(andthereforethenumberof tasks),andalsotheperformance-
heterogeneityof the underlyingcluster.

III . DEFERRED BINDING OF TASKS

This papercharacterizesthe performanceof delayedmapping
of dataandtasksto worker nodesin theMARLA MapReduce
framework.2 This sectiondescribesimportant MARLA fea-
turesanddistinguishesMARLA from Hadoop,primarily with
respectto how the two frameworks operateon performance-
heterogeneousclusters.We have describedMARLA in more
detail elsewhere [9], including its performanceimprovements
on load-imbalancedclusters.

Clusters whose nodes possessnon-uniform processing
capabilities—some nodes faster than others—undermine
Hadoop's strategy of partitioning data equally acrossnodes
andapplyingmap andreduce methodsuniformly. Workers
on fast nodes �nish their work quickly but must wait for
straggler workers on slower nodes before the application
completes.

MARLA works directly with existing cluster �le systems
instead of relying on the Hadoop Distributed File System
(HDFS) [12]. MARLA insteadfocusessolely on map and
reduce task management.MARLA usesa networked �le
system(e.g. NFS) to decoupledata managementfrom the
framework, allowing the framework andthe �le systemto ad-
dresstheir separateconcernsindependently. MARLA specif-
ically targets high performancescienti�c computeclusters,
suchasthoseat theNationalEnergy ResearchScienti�c Com-
puting (NERSC)Center[8]. To run HadoopandHDFS, these
HPC centerstypically partition their clusters and dedicate
sub-partsfor exclusive use by Hadoop [14]. MARLA can
insteadoperateon existing shared�le systemssuchas NFS
or GPFS [15]. This feature increasesthe number of nodes
available for MapReducejobs, removes the requirementthat
individual nodescontainsigni�cant local storage, andenables
MARLA to supportscienti�c applicationsthat requirePOSIX
compliance.

The MARLA Splitter managesframework I/O. Frame-
work con�guration parametersdrive and determinethe divi-
sion of applicationinput into chunks.Different con�guration

2MARLA stands for “MApReduce with adaptive Load balancing for
heterogeneousandLoad imbalAncedclusters.”



parametersspecify(i) thenumberof tasks,and(ii) thenumber
of cores on each worker node. Workers requesttasks and
receive all associatedinput chunkdata.To facilitateprocessing
in a heterogeneousenvironment,MARLA allows the userto
con�gure a numberof tasksfor the datato be split into. This
parameterde�nes how many datachunksthe input shouldbe
divided into, which allows the user to adopt a bag-of-tasks
approachto combatingheterogeneity. After the Splitter
divides the tasksinto input datachunks,it sub-divides those
chunks into as many sub-tasksas there are cores on each
worker node,a valuede�ned by a framework parameter. This
is done to facilitate multi-threading on worker nodes.When
a worker noderequestsa task, the �le handlegetspassedas
anargument,andthe �le systemensuresthat theworker node
canaccessthe �le.

Hadoop insteadsplits and replicatesdata basedon block
size, and places it basedon node storagecapacity, among
other factors.Data placementin�uences the nodeson which
workerscompletetasks,oftenwell beforetheapplicationruns.
Although taskscan migrate from one nodeto anotherat the
requestof the Master, the system's implicit preferencetoward
local tasksmakesit dif�cult for Hadoop's stragglermitigation
techniqueto keepup with the non-uniformprocessingcapa-
bility of the clusternodeswhen only portionsof the cluster
have beenupgraded[11] [6].

MARLA's TaskController , or Master , makes the
user's map andreduce codeavailableto workers,andstarts
andstopsMapReducejobs.TheTaskController monitors
taskprogresson behalfof worker nodes,andresubmitsfailed
tasksto theFaultTracker . TheFaultTracker monitors
tasks for failure, issuing a “strike” against any node that
fails on a task that a worker on anothernode successfully
completes.Threestrikesrelegatea worker to a blacklist ,
precludingit from further participationin the job.

Originally, theslowestMapReducetasks—stragglertasks—
limited anddeterminedthe turnaroundtime of larger MapRe-
ducejobs.Causesof stragglertasksincludelesscapablenode
hardware,external load, and variancesin input chunk data—
somemay require more processingthan others.To adaptto
thesechallengeswithout making assumptionsbasedon static
pro�ling, MARLA supportsthebag-of-tasksmodelto combat
both staticanddynamicheterogeneity.

In this paper we characterizethe performanceof this
bag-of-tasksapproachwithin a MapReduceframework. We
identify bene�cial framework con�gurations for adapting
to performance-heterogeneousclusters.Assigning increasing
numbers of tasks per node allows frameworks to divide
data and tasksto better match node capabilities,but invites
overhead.

IV. EXPERIMENTAL SETUP AND OVERVIEW

Our experimentsrun on the BinghamtonUniversity Grid and
Cloud ComputingResearchLaboratoryexperimentalresearch
cluster, which comprisesthe following components:

� 1 Master node running a 4 core Intel Xeon 5150 @
2.66GHzand8 GB RAM

� 24 Baselinenodes- 4 coreIntel Xeon 5150@ 2.66GHz
and8 GB RAM

� 24 Faster nodes- 8 core Intel Xeon E545 @ 2.33GHz
and8 GB RAM

� 12 Fastest nodes - 32 core Intel Xeon E5-2670 @
2.60GHzand126 GB RAM

Eachnoderuns64-bit Linux 2.6.32andsharesanNFSserver.
To emulateclustersthat evolve as describedby Nathuji et
al. [13]—who reportthatdatacentersperformpartialupgrades
of their compute and storageinfrastructuresapproximately
every two years—wemodelincrementalupgradesby enabling
differentportionsof the clustercontainingdifferentcombina-
tions of the threeclassesof machines.

We do not includeperformancedatafor Hadoopas it does
not support deferredbinding of tasks. In our earlier work,
we comparedHadoopwith our MARLA framework for load
imbalancedandfault-tolerancescenarios[9]. The comparison
shows that MARLA and Hadoophad a similar performance
pro�le for processing�oating point data in a homogeneous
cluster. However, in 75-nodeclusterwith 600 cores,in which
75% of the nodeshave third-party CPU and memory loads,
MARLA takes 33% less time than Hadoop to process300
million matrices.For the widely usedMapReducebenchmark
of processinga 0.6TB �le for word frequency count,Hadoop
andMARLA weretestedfor fault tolerance.In this test,a 32-
nodeclusterprogressively lost 6, 8, 10, 12, 14,and16 nodes.
TheresultsshowedthatMARLA consistentlyperformedbetter
thanHadoopwhenfacedwith lossof nodes.

In this paper, our experimentsmultiply matricescontaining
random �oating point values. The CPU-intensityof matrix
multiplication emulatesthe characteristicsand requirements
of many Big Dataapplications.ThedifferencesbetweenBase-
line, Faster, andFastestnodeslie primarily in processorspeeds
andthenumberof cores;therefore,CPU-intensiveapplications
highlight this differencemost effectively. We report (i) the
averagetime for ten runs of each experiment,and (ii) the
numberof 33� 33 matricesthat aremultiplied.

We designand run experimentson a clusterthat utilizes a
centralized�le system(NFS).We limit the scopeof this paper
to the realmof NFS for two reasons.The �rst is basedon our
prior work MARIANE [14], in which we discusshow it is
often the casethat HPC environmentsare unable to utilize
the MapReduceparadigmbecauseof the burdens imposed
by HDFS. The MARLA framework utilizes the samecode-
baseas MARIANE as it was also designedwith such HPC
environmentsin mind. A comparisonof how theuseof HDFS
hasan effect on the performanceof a MapReduceframework
in suchan environmentwaspreviously consideredin [14] and
is omitted here due to spaceconstraints.The secondreason
we restrict our experimentsto useof a centralizeddatastore
is becauseof evidence that suggeststhat many companies,
like Facebook,useNFSalongsideHDFSwhenprocessingBig
Data[16]. SinceHDFS doesnot supportlate-bindingof tasks
to workers,and that is the aspectof this framework we wish
to study, we limit our study to an NFS-basedenvironment.



A. Clusters with Two Levelsof Nodes

The �rst set of experimentsvaries the cluster con�guration,
thesplit granularity(that is, thenumberof tasks-per-nodeinto
which the framework splits the problem),and the input data
size. In particular, we run tests for all combinationsof the
following:

� Clustercon�guration: 16-nodeclusterswith someBase-
line nodesand someFasternodes,varying the percent-
agesof eachin incrementsof four nodes,or 25% of the
clusternodes.3

� Split granularity: We vary the numberof tasksper node
from one to four. To utilize the upgradednodesmost
effectively, thenumberof coresparameterof theMARLA
framework is de�ned aseight.Recall that this parameter
de�nes how many sub-tasksto attribute to eachtask.

� Problem size: We use input matrices of size 33 � 33
randomly generated�oating point values, multiplying
500K, 750K,1M, 1.25M, 1.5M, 1.75M, 2M, and2.25M
matricesduringexecutionof thevariousMapReducejobs.

SectionVcontainsresultsfor this setof experiments.

B. Clusters with ThreeLevelsof Nodes

Thesecondsetof experimentsstudiestheeffect of introducing
the third classof Fastestnodes.We vary a 24-nodecluster
to containall Baselinenodes,and then a variety of upgrade
combinations.In particular, we vary the number of Faster
nodesfrom zero to twenty-four, in incrementsof two. We
simultaneouslyvary thenumberof Fastestnodesfrom zeroto
twelve, in incrementstwo. We usetuple notation< b;f ; t >
to indicatethe numberof nodesat the < b = B aseline; f =
F ast; t = F astest > levels. We run tests for all tuples
< b;f ; t > in the following set: f < b;f ; t > j b 2 [0; 24]; f 2
[0; 24]; t 2 [0; 12]; 2b;2f ; 2t 2 N; b+ f + t = 24g.

In this con�guration, we alsovary the numberof coresper
worker alongsidethenumberof tasks.This is doneto identify
what happenswhen the numberof coresin the con�guration
�le is not re�ective of the actualnumberof coreson the most
powerful of the nodes.To do this we considersplitting the
tasksinto 8 sub-tasksaswe did for the previous experiments;
we also considersplitting the tasks into 32 sub-tasksin an
effort to take full advantageof the Fastestnodes.As with the
previoussetof experiments,we also vary thenumberof tasks.
We vary this parameterin thesamemannerasthepreviousset
of experiments,from one to four times the numberof nodes
in the cluster. SectionVI containsresultsfor this third setof
experiments.

V. VARIABLE DATA SIZE THROUGH UPGRADE

This sectiondescribesresultsfrom teststhat vary three dif-
ferent aspectsof a MapReducematrix multiply application
runningover MARLA. In particular:

� Increasingthe split granularity—the numberof tasksper
worker node into which the original data set is split—
provides more opportunity for Faster nodesto receive

3We do not usethe Fastestnodecon�guration for this setof experiments.

and completemore work in smallerchunksthan slower
nodes.In a 16 nodecluster, resultsdescribesetsof runs
with datasplit into 16 tasks(1 per node),32 tasks(2 per
node),48 tasks(3 per node),and64 tasks(4 per node).

� Altering the performance-heterogeneityof the clusterin-
�uencesthedegreeto which thesystemrequiresstraggler
mitigation. Resultsdescribesetsof runs on a homoge-
neoussystemof all Baselinenodes(labeled“0% Faster”
in �gures), a systemwith 25%of thesystemupgradedto
Fasternodes,systemswith 50% and 75% Fasternodes,
anda homogeneoussystemof 100%Fasternodes.

� Varying the problem size ensuresthat trends exist as
computationalrequirementsof the application increase.
Experimentsset the size of matricesat 33 � 33 �oating
point numbers,and set the numberof such matricesin
the input dataat 500K, 750K,1M, 1.25M, 1.5M, 1.75M,
2M, and2.25M matrices.

Foursplit granularities,� ve performance-heterogeneitylevels,
andeight input setsizestranslateto 160differenttests.Graphs
depict theaveragesof ten runsof eachtest.We plot portions
of the data in several different ways to explore trends and
highlight resultsthat provide insight.

A. Traditional Coarse-GrainedSplits

Figure 1 plots only the data for the most coarsegrain split
granularityof onetaskperworker node. This split mirrors the
default behavior in Hadoopand explicitly disallows straggler
mitigation becauseall nodes(no matter their capability) re-
ceive exactly one task at the outsetof the application.Each
group of � ve bars correspondsto a different problem size
along the x-axis, the y-axisre�ects executiontime, and each
bar correspondsto a different performance-heterogeneity(or
upgradelevel). Larger problem sizes take longer to �nish,
andclusterswith 75% and100%upgradednodesoutperform
less capableclusters.However, a homogeneouscluster with
all Baselinenodes,andclusterswith 25% and50% upgraded
nodesall performthe same.

To understandthis behavior, consideran example.Suppose
we have N worker nodesandwe assignN + 1 approximately
equal sized tasksto eachof them. In order for this running
time to be comparableto the casewhere we have N tasks
for N nodes,we would needa clustercon�gured in sucha
way that the fastestnodeis nearlytwice asfastasthe slowest
node.In this scenario,thefastestnodetakestwo tasksof equal
size, and the slowest node takes one task of that samesize.
This implies that the executiontime of the job is not related
simply to the speedof the slowest node,but to the speedof
the fastestnoderelative to the slowestnode.

Expanding this example shows us that in order for our
clusterto be ableto achieve aperformanceimprovementwith
3N tasksperworker, thefastestnodewould have to beableto
computeat leastoneof theslowestnode's tasks;meaningthat
the fastestnodewould have to completethreetasksbeforethe
slowestnodecould �nish two tasks.Note that the turnaround
time in this casewill thendependon the ability of the fastest
nodeto completefour tasks,but thatit is suf�cient to complete










