Con guring A MapReducd-rameavork For
Performance-HeterogeneoQsusters

JessiceHartog, RenanDelValle, MadhusudharGovindaraju,and Michael J. Lewis

Departmentof ComputerScience StateUniversity of New York (SUNY)at Binghamton

fjhartogl, redelvall,

Abstract—When data centers employ the common and eco-
nomical practice of upgrading subsetsof nodesincrementally,
rather than replacing or upgrading all nodes at once, they
end up with clusters whose nodes have non-uniform processing
capability, which we also call performance-heterogeneityPopular
frameworks supporting the effective MapReduce programming
model for Big Data applications do not exibly adapt to
these ervironments. Instead, existing MapReduce frameworks,
including Hadoop, typically divide data evenly among worker
nodes, thereby inducing the well-known problem of stragglers
on slower nodes.Our alternative MapReduce framework, called
MARLA, divides each worker's labor into sub-tasks, delays
the binding of data to worker processesand thereby enables
applications to run faster in performance-hetengeneouservi-
ronments. This approach does introduce overhead, however.
We explore and characterize the opportunity for performance
gains, and identify when the bene ts outweigh the costs. Our
results suggestthat frameworks should support ner grained
sub-tasking and dynamic data partitioning when running on
some performance-hetengeneousclusters. Blindly taking this
approach in homogeneous clusters can slow applications down.
Our study further suggestshe opportunity for cluster managers
to build performance-hetengeneousclusters by design, if they
also run MapReduce frameworks that can exploit them. *

I. INTRODUCTION

Scientistscontinueto develop applicationsthat generatepro-

cess,and analyze large amountsof data. The MapReduce
programmingmodel helps expressoperationson Big Data.

The model and its associted framevork implementations,
including Hadoop[1], successfullysupportapplicationssuch
as genomesequencingn bioinformatics[2] [3], and catalog
indexing of celestialobjectsin astoinformatics[4], by split-

ting dataacrossprocessingnodes applyingthe sameoperation
on eachsubset,and aggreating results.

Whenframeworks split dataevenly acrossnodes,andwhen
the map and reduce functions are applied uniformly, the
frameworks implicitly assumethat constituentnodespossess
similar processingcapability When they do not, straggler
processesesultand performancesuffers [5] [6].

We refer to clusters whose nodes exhibit non-uniform
processingcapability as being performance-hetegeneous
Performanceheterogeneitycan result from data center ad-
ministratorsupgradingsubsetof nodesincrementally rather
than replacingor upgradingall cluster nodesat once. This
can result as funds becomeavailable incrementally as older
nodesfail or becomeobsolete,and as new fasterprocessors

1This work was supportedn partby NSF grant CNS-0958501.

mgovinda,

mlewis g@binghamton.edu

continueto emege. FutureGrid[7] andNERSC[8] exemplify

performance-hetegeneousclusters.The FutureGridtest-bed
is a geographicallydistributed setof heterogeneousodesthat

vary signi cantly in terms of processorspeeds,number of

cores,available memory and storagetechnologiesNERSCS

Caner cluster includes a mix of Intel Nehalemquad-core
processorsyVestmereb-core processorsand Nehalem-EX8-

core processorsfor a total of 9,984 cores.

Hadoop[1], the de facto standardMapReducdramawork,
can perform poorly in performance-heterogeneo@sviron-
ments[5] [6] [9] [10]. To improve performanceMapReduce
applications,in concert with supporting frameworks, must
considerdifferencesin processingcapabilitiesof underlying
nodes.Simply put, fasternodesshould perform more work
in the sametime, eliminating or greatly reducingthe need
for applicationsto wait for stragglerprocesses¢o nish [6]
[11]. Our MARLA MapReduceframenork [9] supportspar
titioning of labor into sub-tasks,and does not rely on the
HadoopDistributed File System(HDFS)[12]. Instead,it uses
a standardimplementationof Network File System(NFS);
therefore, data need not reside on worker nodes before a
MapReduceapplication runs, and more capablenodes can
eventually receve and processmore data. MARLA therefore
does not require signi cant local storagespaceon worker
nodes put doesrequiredatamovement(via NFS or someother
underlying le system)at runtime.

In this paper we con gure a clusterto exhibit varying de-
greesof performance-heterogeneigndtestthe effectiveness
of splitting MapReduceapplicationswith several degreesof
granularity Using smallersub-taskdncreaseghe opportunity
to reactto performance-heterogeneithut also requiresthat
the applicaion pausemore often to wait for datato arrive.
Our experimentshelp identify the circumstancesinderwhich
the bene ts of ne-grained subtaskingand delayeddataparti-
tioning outweighthe associatedosts We vary clusternodesto
includetwo andthreedifferentlevels of procesig capability
and con gure different percentage®f nodesat eachlevel.
For each cluster ervironment, we divide application labor
into different granularites of subtasksto help identify the
best stratgy for task distribution on clusterswith different
characteristics.

This papermakesthe following contrikutions:

It demonstratedhiow incrementalupgradesof a cluster
can affect performanceof MapReduceapplicationsthat
do not respondo clusterperformance-heterogeneitp-



plicationdevelopersdo nottypically reapthe performance
improvementsthat clusterproviders purportedlypay for.
It identi es an approachfor MapReduceframenorks to
improve performanceon clustersthat containnodeswith
non-uniformprocessingcapabilities.

It provides evidencethat upgradesto a cluster that do
not improve all nodesof the clusteruniformly can have
arangeof impactson the turnaroundime of MapReduce
applicationssuggestinghat datacentermanagershould
carefully considerupgrads. Theseconsiderationshould
be madebasedupon both the techniquesemployed by
the MapReduceframavork to respondto heterogeneity
andthe applicationghe framewvork runsmostfrequently

The paperproceedsas follows: Sectionll describesrelated
work, and Sectionlll provides relevant backgroundon our
MARLA MapReduceframework, including the mechanisms
for dividing andsub-dviding tasksat runtime.SectionlV then
describeur testbedandexperiments SectionV includesand
analyzegesultsfrom experimentsunningon clusterscontain-

ing two levels of processingnodesin varying percentages.

Section VI describesresults for clustersthat exhibit three
levels of node capability SectionsVIIl describesour plans
for future work.

Il. RELATED WORK

Zahariaet al. [5] and Xie et al. [6] addressMapReduceob
schedulingin heterogeneouslusters.During speculatie ex-
ecution,Hadoops straggler mechanismnstartsduplicatetasks
whenit discovers slow nodes,but this stratey falls short of
solving the problemin clusterswith increasedperformance-
heterogeneityFadikaet al. [10] shov that Hadoops straggler
mitigation schemealso falls short in non-dedicatedclusters
with third-party load.

The LATE scheduler[5] allows Hadoopto speculatiely
executethe task that the framevork expectsto completefur-
thestinto the future. LATE relieson HDFSfor dataplacement
and therefore can not delay the binding of datato worker
processeghis restrictionlimits thetasksthatmaybene t from
speculatie execution.

Xie etal. [6] pro le clusternodecapabilitiesandskew data
partitioning accordingly; slov nodesreceve less work than
fastemodes.This staticpro ling suferswhen“surprise”third-
party loadsbegin or endin the middle of a MapReducgob,
therebyalteringa nodes ability to completework comparedo
the pro le-based prediction. Furthermore when fasternodes
receve morework andsubsequentlyail, the applicationstalls
for longerthanwhen slower nodesfail.

Ahmad et al. [11] notice that Hadoops speculatie execu-
tion favors local tasks over remote tasks, and speculatrely
executeremotetasksonly nearthe endof the mapphase.The
authors' Tarazu enhancemensuite re-distritutes speculatie
executionof remotetasksbasedon an awarenesof network
communication.Tarazu monitors this communicationto de-
termine whetherthe map phaseor the shufe phasecreates
the bottleneck.In contrast,our work delaysdistributing data
until just beforeworkers needit, insteadof making andthen

reconsideringoinding decisionsln addition, Tarazuconsiders
clusterswith two classesf hardware—wimpy (Atom) nodes
and brawvny (Xeon) nodes.We nd, as shavn by Nathuji et
al. [13], that clustersmore often have levels of hardware that
exhibit more closely-relatedperformancethan those consid-
ered for Tarazu.Our work analyzesthe scenariowhere the
differencebetweenworker nodesis a morerealistic depiction
of the datacenterupgradeprocessdescribedby Nathuji et al.

Our work studieshow well a delayedtask-to-vorker bind-
ing of application data to worker nodesallows a MapRe-
duce framewvork to make efcient use of performance-
heterogeneouslusters,and the extent to which the stratgy
introducesoverheadn homogeneouslusters.We believe this
paperto be uniquein varyingboththe granularityof datasplits
(andthereforethe numberof tasks),andalsothe performance-
heterogeneityf the underlyingcluster

I11. DEFERRED BINDING OF TASKS

This papercharacterizeshe performanceof delayedmapping
of dataandtasksto worker nodesin the MARLA MapReduce
framewvork.? This sectiondescribesimportant MARLA fea-
turesanddistinguishesMARLA from Hadoop,primarily with
respectto how the two frameworks operateon performance-
heterogeneouslusters.We have describedIARLA in more
detail elsavhere [9], including its performancemprovements
on load-imbalancedlusters.

Clusters whose nodes possessnon-uniform processing
capabilities—some nodes faster than others—undermine
Hadoops strategyy of partitioning data equally acrossnodes
andapplyingmap andreduce methodsuniformly. Workers
on fast nodes nish their work quickly but must wait for
straggler workers on slower nodes before the application
completes.

MARLA works directly with existing cluster le systems
instead of relying on the Hadoop Distributed File System
(HDFS) [12]. MARLA insteadfocusessolely on map and
reduce task managementMARLA usesa networked le
system (e.g. NFS) to decoupledata managemenfrom the
framework, allowing the framevork andthe le systemto ad-
dresstheir separateconcernsindependentlyMARLA specif-
ically tamgets high performancescienti c compute clusters,
suchasthoseat the NationalEnegy Researctscienti c Com-
puting (NERSC)Center[8]. To run HadoopandHDFS, these
HPC centerstypically partition their clusters and dedicate
sub-partsfor exclusive use by Hadoop [14]. MARLA can
insteadoperateon existing shared le systemssuchas NFS
or GPFS[15]. This featureincreasesthe number of nodes
available for MapReducegobs, removes the requirementthat
individual nodescontainsigni cant local storge, andenables
MARLA to supportscienti ¢ applicationsthat requirePOSIX
compliance.

The MARLA Splitter managedrameawork 1/O. Frame-
work con guration parameterdrive and determinethe divi-
sion of applicationinput into chunks.Differentcon guration

2MARLA standsfor “MApReduce with adaptve Load balancing for
heterogeneouand Load imbalAncedclusters.



parameterspecify(i) the numberof tasks,and(ii) the number
of cores on eachworker node. Workers requesttasks and
receve all associateihput chunkdata.To facilitateprocessing
in a heterogeneousrvironment, MARLA allows the userto
con gure a numberof tasksfor the datato be split into. This
parametede nes how mary datachunksthe input shouldbe
divided into, which allows the userto adopta bag-of-tasks
approachto combatingheterogeneityAfter the Splitter
divides the tasksinto input datachunks,it sub-dvides those
chunksinto as mary sub-tasksas there are coreson each
worker node,a valuede ned by a framevork parameterThis
is doneto facilitate multi-threadng on worker nodes.When
a worker noderequestsa task, the le handlegetspassedas
anamgument,andthe le systemensureghatthe worker node
canaccesshe le.

Hadoopinsteadsplits and replicatesdata basedon block
size, and placesit basedon node storagecapacity among
other factors.Data placementin uences the nodeson which
workerscompletetasks,oftenwell beforethe applicationruns.
Although taskscan migrate from one nodeto anotherat the
requestof the Master the systems implicit preferencaoward
local tasksmalesit dif cult for Hadoops stragglemitigation
techniqueto keepup with the non-uniform processingcapa-
bility of the clusternodeswhen only portions of the cluster
have beenupgraded11] [6].

MARLA's TaskController , or Master , makes the
users map andreduce codeavailableto workers,andstarts
andstopsMapReducgobs. TheTaskController monitors
task progresson behalfof worker nodes,andresubmitsfailed
tasksto theFaultTracker . TheFaultTracker = monitors
tasks for failure, issuing a “strike” against ary node that
fails on a task that a worker on anothernode successfully
completesThreestrikesrelegate a worker to a blacklist ,
precludingit from further participationin the job.

Originally, the slovestMapReducdasks—straggletasks—
limited and determinedhe turnaroundtime of larger MapRe-
ducejobs. Causeof stragglertasksincludelesscapablenode
hardware, externalload, and variancesin input chunk data—
somemay require more processingthan others.To adaptto
thesechallengeswithout making assumptiondasedon static
pro ling, MARLA supportsthe bag-of-tasksnodelto combat
both static and dynamicheterogeneity

In this paper we characterizethe performanceof this
bag-of-tasksapproachwithin a MapReduceframevork. We
identify bene cial framavork con gurations for adapting
to performance-heterogeneouabisters.Assigning increasing
numbers of tasks per node allows framewvorks to divide
data and tasksto better match node capabilities,but invites
overhead.

IV. EXPERIMENTAL SETUP AND OVERVIEW
Our experimentsrun on the BinghamtonUniversity Grid and
Cloud ComputingResearch.aboratoryexperimentalresearch
cluster which comprisesthe following components:
1 Master node running a 4 core Intel Xeon 5150 @
2.66GHzand 8 GB RAM

24 Baselinenodes- 4 coreIntel Xeon 5150 @ 2.66GHz
and8 GB RAM

24 Faster nodes- 8 core Intel Xeon E545 @ 2.33GHz
and8 GB RAM

12 Fastestnodes- 32 core Intel Xeon E5-2670 @
2.60GHzand 126 GB RAM

Eachnoderuns64-bit Linux 2.6.32andsharesan NFS sener.
To emulate clustersthat evolve as describedby Nathuji et
al. [13]—who reportthatdatacenterperformpartialupgrades
of their compute and storageinfrastructuresapproximately
every two years—wemodelincrementalipgradesy enabling
differentportionsof the clustercontainingdifferentcombina-
tions of the threeclassesf machines.

We do not include performancedatafor Hadoopasit does
not supportdeferredbinding of tasks.In our earlier work,
we comparedHadoopwith our MARLA framework for load
imbalancedandfault-tolerancescenariog9]. The comparison
shaws that MARLA and Hadoophad a similar performance
pro le for processingoating point datain a homogeneous
cluster However, in 75-nodeclusterwith 600 cores,in which
75% of the nodeshave third-party CPU and memory loads,
MARLA takes 33% less time than Hadoopto process300
million matrices.For the widely usedMapReduceébenchmark
of processinga 0.6TB le for word frequeny count,Hadoop
andMARLA weretestedfor fault toleranceln this test,a 32-
nodeclusterprogressiely lost 6, 8,10, 12, 14,and16 nodes.
TheresultsshavedthatMARLA consistentlyperformedbetter
than Hadoopwhen facedwith loss of nodes.

In this paper our experimentsmultiply matricescontaining
random oating point values. The CPU-intensity of matrix
multiplication emulatesthe characteristicsand requirements
of mary Big DataapplicationsThe differencesetweerBase-
line, Faster andFasteshodedie primarily in processospeeds
andthe numberof coresitherefore CPU-intensie applications
highlight this difference most effectively. We report (i) the
averagetime for ten runs of each experiment,and (ii) the
numberof 33 33 matricesthat are multiplied.

We designand run experimentson a clusterthat utilizes a
centralizedle system(NFS)We limit the scopeof this paper
to therealmof NFSfor two reasonsThe rst is basedon our
prior work MARIANE [14], in which we discusshow it is
often the casethat HPC ervironmentsare unableto utilize
the MapReduceparadigm becauseof the burdensimposed
by HDFS. The MARLA frameavork utilizes the samecode-
baseas MARIANE as it was also designedwith suchHPC
ervironmentsin mind. A comparisorof how the useof HDFS
hasan effect on the performanceof a MapReducdramenork
in suchan ewironmentwaspreviously consideredn [14] and
is omitted here due to spaceconstraints.The secondreason
we restrict our experimentsto useof a centralizeddatastore
is becauseof evidencethat suggeststhat mary companies,
like FacebookuseNFSalongsideHDFSwhenprocessindig
Data[16]. SinceHDFS doesnot supportlate-bindingof tasks
to workers, andthat is the aspectof this framenork we wish
to study we limit our studyto an NFS-basedernvironment.



A. Clustes with Two Levels of Nodes

The rst setof experimentsvariesthe cluster con guration,
the split granularity(thatis, the numberof tasks-pemodeinto
which the framework splits the problem),and the input data
size. In particular we run testsfor all combinationsof the
following:
Clustercon guration: 16-nodeclusterswith someBase-
line nodesand some Fasternodes,varying the percent-
agesof eachin incrementsof four nodes,or 25% of the
clusternodes®
Split granularity: We vary the numberof tasksper node
from one to four. To utilize the upgradednodes most
effectively, thenumberof coresparametenf the MARLA
framework is de ned aseight. Recallthat this parameter
de nes how mary sub-taskdo attribute to eachtask.
Problem size We use input matrices of size 33 33
randomly generated oating point values, multiplying
500K, 750K,1M, 1.25M, 1.5M, 1.75M, 2M, and2.25M
matricesduring executionof thevariousMapReducgobs.

SectionV containsresultsfor this setof experiments.

B. Clustes with Three Levels of Nodes

The secondsetof experimentsstudiesthe effect of introducing
the third classof Fastestnodes.We vary a 24-nodecluster
to containall Baselinenodes,and then a variety of upgrade
combinations.In particular we vary the number of Faster
nodesfrom zero to twenty-four in incrementsof two. We
simultaneouslyary the numberof Fastesthodesfrom zeroto
twelve, in incrementstwo. We usetuple notation< b;f;t >

to indicatethe numberof nodesat the < b= Baseline; f =

Fast;t = Fastest > levels. We run testsfor all tuples
< b;f;t > in thefollowing set:f< b;f;t > j b2 [0; 24]f 2

[0;24]t 2 [0;12]; 2b;2f ;2t 2 N; b+ f + t = 24g.

In this con guration, we alsovary the numberof coresper
worker alongsidethe numberof tasks. This is doneto identify
what happensvhenthe numberof coresin the con guration

le is notre ective of the actualnumberof coreson the most
powerful of the nodes.To do this we considerspitting the
tasksinto 8 sub-tasksaswe did for the previous experiments;
we also considersplitting the tasksinto 32 sub-tasksin an
effort to take full advantageof the Fastestnodes.As with the
previous setof experiments,we alo vary the numberof tasks.
We vary this parametein the samemannerasthe previous set
of experimentsfrom oneto four timesthe numberof nodes
in the cluster SectionVI containsresultsfor this third setof
experiments.

V. VARIABLE DATA SIZE THROUGH UPGRADE

This sectiondescribesresultsfrom teststhat vary three dif-
ferent aspectsof a MapReducematrix multiply application
runningover MARLA. In particular:
Increasingthe split granularity—the numberof tasksper
worker node into which the original datasetis split—
provides more opportunity for Faster nodesto receve

3We do not usethe Fastesinodecon guration for this setof experiments.

and completemore work in smallerchunksthan slowver
nodes.In a 16 nodecluster resultsdescribesetsof runs
with datasplit into 16 tasks(1 pernode),32 tasks(2 per
node),48 tasks(3 per node),and 64 tasks(4 per node).
Altering the performance-hetegeneityof the clusterin-
uencesthe degreeto which the systemrequiresstraggler
mitigation. Resultsdescribesetsof runs on a homoge-
neoussystemof all Baselinenodes(labeled“0% Faster”
in gures), a systemwith 25% of the systemupgradedo
Fasternodes,systemswith 50% and 75% Fasternodes,
and a homogeneousystemof 100% Fasternodes.
Varying the problem size ensuresthat trends exist as
computationalrequirementsof the applicationincrease.
Experimentssetthe size of matricesat 33 33 oating
point numbers,and set the numberof such matricesin
the input dataat 500K, 750K,1M, 1.25M, 1.5M, 1.75M,
2M, and 2.25M matrices.

Four split granularities, ve performance-heterogeneitgvels,
andeightinput setsizestranslateo 160differenttests.Graphs
depict theaveragesof ten runsof eachtest. We plot portions
of the datain several different ways to explore trendsand
highlight resultsthat provide insight.

A. Traditional Coarse-Gained Splits

Figure 1 plots only the datafor the most coarsegrain split
granularityof onetaskperworker node This split mirrorsthe
default behaior in Hadoopand explicitly disallows straggler
mitigation becauseall nhodes(no mater their capability) re-
ceive exactly one task at the outsetof the application.Each
group of ve bars correspondgto a different problem size
alongthe x-axis, the y-axisre ects executiontime, and each
bar correspondgo a different performance-heterogeneifpr
upgradelevel). Larger problem sizestake longer to nish,
and clusterswith 75% and 100% upgradednodesoutperform
less capableclusters.However, a homogeneougluster with
all Baselinenodes,and clusterswith 25% and 50% upgraded
nodesall performthe same.

To understandhis behaior, consideran example.Suppose
we have N worker nodesandwe assignN + 1 approximately
equal sizedtasksto eachof them. In order for this running
time to be comparableto the casewhere we have N tasks
for N nodes,we would needa clustercon gured in sucha
way thatthe fastestnodeis nearlytwice asfastasthe slowest
node.In this scenariothe fastesnodetakestwo tasksof equal
size, and the slowest node takes one task of that samesize.
This implies that the executiontime of the job is not related
simply to the speedof the slovest node,but to the speedof
the fastestnoderelative to the slovestnode.

Expanding this example shows us that in order for our
clusterto be ableto achiere aperformanceémprovementwith
3N tasksperworker, the fastesnodewould have to beableto
computeat leastone of the slowestnodes tasks;meaningthat
the fastesthodewould have to completethreetasksbeforethe
slowestnodecould nish two tasks.Note that the turnaround
time in this casewill thendependon the ability of the fastest
nodeto completefour tasks but thatit is sufcient to complete















