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Abstract—The MapReduce paradigm provides a scalable
model for large scale data-intensive computing and associated
fault-tolerance. With data production increasing daily due to ever
growing application needs, scientific endeavors, and consumption,
the MapReduce model and its implementations need to be fur-
ther evaluated, improved, and strengthened. Several MapReduce
frameworks with various degrees of conformance to the key tenets
of the model are available today, each, optimized for specific fea-
tures. HPC application and middleware developers must thus un-
derstand the complex dependencies between MapReduce features
and their application. We present a standard benchmark suite
for quantifying, comparing, and contrasting the performance of
MapReduce platforms under a wide range of representative use
cases. We report the performance of three different MapReduce
implementations on the benchmarks, and draw conclusions about
their current performance characteristics. The three platforms
we chose for evaluation are the widely used Apache Hadoop
implementation, Twister, which has been discussed in the litera-
ture, and LEMO-MR, our own implementation. The performance
analysis we perform also throws light on the available design
decisions for future implementations, and allows Grid researchers
to choose the MapReduce implementation that best suits their
application’s needs.

I. INTRODUCTION

MapReduce is inspired from functional programming prim-

itives ”map” and ”foldr”, whereby a programmer can apply

or ”map” a function to an input set, and in doing so obtain a

resulting output set reflecting the transformation applied, but

bearing the same length. The resulting set, as with ”foldr”

in Haskell, is then submitted to a reduce method whose role

is to apply the function to the ”map” output. In MapReduce,

this occurs in a distributed manner across a wide array of

machines, each holding a piece of a larger input file or

component. The model’s greatest appeal resides in the fact

that it hides parallelization and synchronization responsibilities

from the user. The map and reduce functions are as such

written as single node programs by the programmer, then

subsequently parallelized, and synchronized by the framework.

In comparison to MapReduce, while distributed programming

models such as MPI [1] can offer parallel data processing,

such models require the user to implement data splitting,

data management, parallelization, synchronization and fault-

tolerance with their applications, perhaps differently for each

particular application. MapReduce on the other hand takes all

the aforementioned responsibilities off the programmer’s slate

as the framework internally implements and maintains such

features.

Parallel and distributed applications place a wide range of

requirements on the communication substrate and data for-

mats. These requirements include turn around time, minimal

memory footprint for improved caching efficiency, handling of

CPU-intensive jobs, management of data-intensive jobs, and

fault tolerance when deployed on very large clusters. Such

requirements have led over time to a wide range of design and

implementation choices. A comprehensive benchmark suite

tailored for HPC applications can aid in determining the

MapReduce framework that has the most optimized imple-

mentation for the class of applications under consideration.

In this paper, we compare and study the performance of

Hadoop [2], Twister [3] and LEMO-MR [4] in various real-

world application usage scenarios, including data-intensive,

iterative, CPU-intensive, and memory-intensive loads. We not

only compare the chosen frameworks in several real-world

application scenarios, but also in real-world cluster scenarios,

including fault-prone clusters/applications, physically hetero-

geneous clusters and load-imbalanced clusters. This perfor-

mance study provides insight into the relative strengths and

weaknesses of different implementations under different usage

scenarios. We link the observed behavior of the frameworks

to the design and implementation choices of the particular

MapReduce platform being tested. Our test framework will

be made available to the grid community for researchers to

compare frameworks for their custom usage scenarios and data

sizes of interest.

II. CHOICE OF MAPREDUCE IMPLEMENTATIONS

The MapReduce model is anchored around three central

principles: data management, synchronization/parallelization

abstraction, and fault-tolerance. These principles led us in

the choice of Hadoop, Twister and LEMO-MR. While there

exists many ”MapReduce-like” implementations, very few of

them implement the principles highlighted above and as a

result were not selected. Octopy [5], Skynet [6] among others

are an example of such cases. Other similar implementations

only support very small datasets and interpreted languages,

and as such would not have been competitive choices in



the context and the test environment of this study. Twister

for its part does not feature a node specific fault-tolerance

mechanism, but was selected for its data management and syn-

chronization/parallelization abstraction features. Other known

MapReduce implementations like Amazon EMR [7], are an

adaptation of Apache Hadoop and as such were not included

here. Similarly, DELMA [8] being built ontop of LEMO-

MR, we did not choose to include it here as well. MapRe-

duce frameworks like MARS [9], CGL-MapReduce [10], and

FPMR [11] were also not part of this study, as they are

simply MapReduce API, and not implemented MapReduce

frameworks.

A. Twister: Iterative MapReduce

Twister is an open-source, lightweight MapReduce frame-

work. Twister allows for data access via local disks, and offers

efficient support for iterative MapReduce computations [3].

Twister uses a publish/subscribe messaging infrastructure for

communication and data transfer. The framework does not

provide job specific fault-tolerance, but rather fault-tolerance

in certain stages. A task along the path of a job can be

restarted, but not rescued if one of the nodes performing

it fails. Although unique to Twister, the iterative nature of

the framework can be replicated in Hadoop or any other

framework closely following the MapReduce model through

scripting. We demonstrate such an approach and compare it

to Twister’s inherent iterative feature in section IV.

B. Hadoop MapReduce

Hadoop is an open-source MapReduce framework [2] an-

chored on its own file system: The Hadoop Distributed File

System (HDFS) [12], inspired from the Google File System

[13]. The HDFS sits as a layer of abstraction between Hadoop

and the native file system. Upon copy of the data file into the

Hadoop input directory, the HDFS automatically splits the file

into blocks [13]. The blocks are then replicated according to

a replication factor pertaining to Hadoop’s internal settings

and distributed among chosen nodes called DataNodes. As

cluster nodes fail, DataNodes are given the ability to repli-

cate their own file blocks. DataNodes also periodically send

updates and reports of block conditions, such as block usage

and integrity to the master node. Even though it is expensive,

especially for heavy computational loads, this organization is

necessary for fault-tolerance, because it is less expensive to

bring the computation to the data rather than bringing the data

to the computation [14].

C. LEMO-MR

LEMO-MR is a low overhead MapReduce implementa-

tion, optimized for in-memory and specially CPU-intensive

applications. As shown in [4], overhead prone MapReduce

implementations tend to perform poorly in CPU-intensive

contexts, as that overhead is exacerbated in such settings.

Cluster upkeep and fault-tolerance expectedly add overhead

costs. To tackle these problems, LEMO-MR adopts a ”node

independence” policy, whereby nodes are not tightly coupled

to their master, and as such do not require constant commu-

nication with it. Also, nodes do not ”own” the data they run

on and can be swiftly replaced upon failure, because their

failure does not involve the disappearance of their data or

the need to replicate such data. This allows the framework

to avoid running and maintaining resource hungry daemons,

keep constant pings between nodes, and execute performance

hampering redundancy checks not at the node level, but rather

at the master level. The master is in any case likely to be

idle while the nodes are performing, and can take on those

responsibilities. Leaving it to the nodes can impede on the

performance of the task they are processing.

D. Summary of Differences

Twister, as of version 0.90 does not feature a node-specific

fault-tolerance mechanism. The death of a node is not detected,

and the task the node was processing is not reassigned to

a healthy machine. In Twister’s case, a faulty job must be

restarted. This is akin to restarting a Hadoop or LEMO-MR job

from the beginning because a node died 99% through the job.

LEMO-MR and Hadoop are capable of detecting failures and

are also capable of replacing dead nodes with healthy ones,

in some cases with minimal impact on application runtime.

Hadoop uses the HDFS for this purpose. The HDFS sits on top

of the file system present on its nodes. It was mainly designed

for fault-tolerance, and with its replication policy, speculative

tasks policy, and need for constant node pinging, can cause

Hadoop to incur some performance degradation. LEMO-MR

features a low overhead approach, in that it reduces inter-node

communication to a minimum. The framework also features

a fault-tolerance mechanism completely independent of data

placement. Hadoop has a full-fledged load balancer service.

LEMO-MR however, much like Twister, does not feature a

load balancer, allowing for slow nodes to transfer parts of

their load to fast ones. Finally, Twister is iterative by nature, a

feature not available to Hadoop and LEMO-MR through their

framework, but rather, through elaborate user scripting.

III. PERFORMANCE TEST DESIGN

The tests Hadoop, Twister and LEMO-MR are subjected

to in this paper are meant to represent the characteristics

of possible problems solved using the MapReduce paradigm.

Depending on the nature of the application, be it data-

intensive, iterative, CPU-intensive, or fault-prone, different

design choices in a MapReduce framework can lead to either

good or dismal performance. Our goal with these tests is to

highlight the strength and weaknesses of the tested subjects

under a slew of possible domain problems they are expected

to face as MapReduce frameworks.

A. Data-Intensive Tests

In contrast to a data-Intensive application, the amount of

data produced by CPU or memory-intensive applications tends

to be small. For instance, searching through 1 TB of files for

a keyword would yield an output file with just a filename and

a line number, while sorting 1 TB of data would yield a 1 TB



output file. While the first example can be considered CPU-

intensive depending on the search algorithm, the latter case

is clearly data-intensive. In this paper, we qualify as data-

intensive, not only the processing of large input, but also the

production of large output. Such applications tend to involve

the reducer more than the mapper, and tend to be much slower

than the other classes of MapReduce applications because of

the constant I/O solicitations.

B. CPU-intensive Tests

CPU-intensive applications tend to involve the CPU for

longer cycles than data-intensive applications. While moni-

toring CPU usage on the worker nodes, with a CPU-intensive

program in MapReduce, all CPUs in a multicore case tend to

show very close to 100% of activity for the entire span of the

application. The same type of monitoring for a purely data-

intensive application, such as random number generation as we

will feature later, tends to keep the CPU usage around 5 to

10% on average. CPU-intensive applications may not process

very large input data, but will spend more time processing

each piece of data compared to a data-intensive application

which processes a lot of data, but may spend very little time

on processing each piece of it.

C. Memory-Intensive Tests

A memory intensive application in a MapReduce context

requires large memory space from each worker node as data

needs to be entirely loaded into memory, rather than processed

line by line, or in small feeds. The latter case is usually

common to CPU and data intensive applications. While a

CPU-intensive application might require each worker to read

in one integer, and subsequently find all of its factors, then

move to read another integer into the same variable to the

same end, a memory intensive application will require perhaps

a thousand integers be loaded into memory to determine their

common divisors. Memory-intensive applications can usually

not be run on single node systems because of their memory

limitations. Such limitations need however to be tested in

the MapReduce arena because of the differences in memory

footprints imposed by the implementations. While a worker

node has access to the same physical memory capacity before

Hadoop, Twister or LEMO-MR is run on it, the question is:

How much available memory is left for data processing on

the node once the MapReduce implementation has started?

The tests in this rubric are designed to answer the above

question, and will quantify the memory footprints of the

different implementations.

D. Cluster Heterogeneity Tests

Heterogeneity, as we define it for this benchmark, pertains to

the configuration of nodes in a cluster. In our tests, we setup a

cluster of 60 cores, composed of a 48 core computer, an 8 core

computer and a 4 core machine. Similarly, disk speed, memory

capacity and speed decrease with the machine class. The 48

core machine we feature has as such faster and more memory

than the 8 core machine, which similarly dominates our 4 core

machine. The goal of our heterogeneity test is to determine the

extent to which each MapReduce framework adapts to such

a diverse environment. The naive implementation approach

of MapReduce is to allocate equal work for all machines.

This common approach as shown in [15] [16], [17] works

rather flawlessly for homogeneous cluster, but presents dismal

performance in heterogeneous settings as the same references

put it. It is good to remember that MapReduce was first

presented as the ”framework” for commodity machines. Such

machines could be a mix of modern and ancient machines

randomly collected for the purpose of building a cluster. In

such settings, a MapReduce platform with strong heteroge-

neous cluster support could be preferred.

E. Load-Balancing Tests

Load-balancing here pertains to how well a MapReduce

implementation adapts to a homogeneous cluster turned het-

erogeneous with one or more of its members under load or

stress. While a static load balancing strategy like advertised in

LEMO-MR can help with a physically heterogeneous cluster, a

homogeneous cluster prone to change due to load imbalance

can offer it an unsolvable challenge. This condition is ever

more popular in community owned clusters and research

laboratory settings, perhaps with users running different types

of applications on the same nodes. This as we will show can

negatively impact the performance of a MapReduce framework

devoid of an on-the-fly load re-adjustment strategy.

F. Iterative Application Tests

Iterative applications typically require multiple passes on

the same data to achieve a desirable or a required output. In

Hadoop and LEMO-MR cases, this would require constantly

serializing and de-serializing such data, as the data needs to

be loaded from disk to memory, then back to disk, as many

times as there are iterations. Twister however, benefits from

memory transfers between iterations, allowing more efficient

iterative application processing.

G. Fault-Tolerance Tests

Fault tolerance is a key component for users of the MapRe-

duce model, as faced with a cluster of hundreds and thousands

of nodes, the probability of a faulty machine is simply height-

ened. The prospect of total job failure and time loss because

of a single node failure is simply unacceptable. Fault-tolerance

can however be realized in different ways, with performance

critical consequences. Twister, being devoid of a node specific

fault-tolerance mechanism, it is not capable of salvaging a

job which has lost a certain number of its nodes. For this

benchmark category, we solely test Hadoop and LEMO-MR

for fault response and application runtime under increasingly

dying nodes. We start of with a cluster of 50 nodes, 200 cores

total, and progressively kill 1, 2, 3, 4 and 8 nodes, then record

application slowdown in the face of those failures.



IV. DISTRIBUTED LARGE-SCALE DATA PROCESSING

In this section, we effectively test Hadoop, Twister and

LEMO-MR with data-intensive, CPU-intensive, iterative, and

memory-intensive applications. We subsequently test our three

MapReduce frameworks in a physically heterogeneous cluster

and a load-imbalanced homogeneous cluster. We used for

testing purposes Apache Hadoop 0.20, Twister 0.90 and our

only and LEMO-MR presented in [4]. In all the experiments

showcased, we ran Twister and LEMO-MR along side Hadoop

using identical nodes, identical node counts, identical input

data and similar user source code. Among the applications

selected, were:

• A random floating point number generator for our data-

intensive tests, where between 100GB and 1TB of float-

ing point random numbers are generated.

• Matrix multiplication for our CPU-intensive rubric.

• PigeonHole sort for our memory-intensive tests. This

test loads large unsorted sets into memory from an

already space-demanding algorithm. Memory exhaustion

is caught and recorded for the sizes for which it occurs.

• Distributed Grep for cluster heterogeneity tests, Iterative,

and Load-balancing tests.

• Wordcount from Hadoop’s own package for fault-

tolerance.

V. PERFORMANCE RESULTS

Grid and Cloud Computing Research Lab Cluster at Bingham-

ton University

• Dual core – One desktop-class machine, which has a

single 2.4Ghz Intel Core 6600 with 2 GB of ECC RAM,

running Linux 2.6.24.

• Quad core – 1U nodes in a cluster, each of which has

two 2.6Ghz Intel Xeon CPUs, 8 GB of RAM 4 cores,

and run a 64 bit version of Linux 2.6.15

• 8 core – 1U nodes in a cluster, each of which has two

2.6Ghz Intel Xeon CPUs, 8 GB of RAM 8 cores, and

run a 64 bit version of Linux 2.6.15.

• 48 core – 1U nodes in a cluster, each of which has two

2.6Ghz Intel Xeon CPUs, 16 GB of RAM 48 cores, and

run a 64 bit version of Linux 2.6.15.

The top plot of Figure 1 shows Hadoop, Twister and

LEMO-MR each running 64-core clusters with identical nodes,

producing identical output sizes, and using similar source code

in doing so. Twister operates map to reduce transfers through

memory. This allows Twister to start stronger than Hadoop

with 40 and 50 MB of generated random numbers. Twister

then quickly slows down as its memory gets progressively

consumed, and finally exhausted at the 93 MB mark. LEMO-

MR uses a hybrid approach capable of starting with a memory-

based transfer scheme between map and reduce, then progres-

sively dump its memory content to file, making it capable to

use its memory longer, and as such run efficiently as the figure

shows. Hadoop uses solely a file-based approach. Twister’s

design can be fast and efficient with jobs requiring much

map side data processing and very limited reduce side data

40 50 60 70 80 90

0
5
0

1
0
0

1
5
0

Output data size (MB)

P
ro

ce
ss

in
g
 t
im

e
 (

s)

64 core Twister Cluster

64 core Hadoop Cluster

64 core LEMO−MR Cluster

0.5 1.0 1.5

2
0

4
0

6
0

8
0

Ouput data size (TeraBytes)

P
ro

ce
ss

in
g
 t
im

e
 (

M
in

)

64 core Hadoop Cluster

64 core LEMO−MR Cluster

Fig. 1: 64-core Hadoop, Twister and LEMO-MR clusters each producing from 40 MB

to 1.5 TB of random floating point numbers. The maximum output scale of the top

graph is very small with 90 MB of data for a data-intensive experiment, because, per our

research and experiments, Twister is not capable of passing more than 93 MB of data

from its mapper to its reducer, as the transfer is memory-based, rather than file-based

like Hadoop and memory/file-based like LEMO-MR.

processing, such as CPU and memory-intensive jobs. In the

realm of data intensity however, any processing necessitating

more than 93 MB of data to be transferred from the mappers

to the reducers would result in memory insufficiency errors

on Twister’s part. It should be noted that as we studied

Twister’s source code, we noticed memory threshold increase

instructions, preceding job starting instructions. The 93 MB

limit we observed here could be raised with RAM upgrades

on the worker nodes, and higher memory allocations in the

Twister source code itself. However, despite all the mitigating

measures laid out above, Twister will ultimately be limited

in data-intensive applications by the physical memory size

of its nodes. LEMO-MR and Hadoop can however process

terabytes, if not petabytes of data from their mappers to their

reducers, if the disk-space capacity on the worker nodes allows

it. In the bottom plot of Figure 1 , Hadoop and LEMO-MR

generate random number filed output files from 100 GB up to

1.6 TB. Hadoop uses ”shuffling” for passage of intermediate

data from mapper to reducers [18], [19]. Shuffling consists of

providing each datanode with the intermediate result of every

other datanode [19]. This mechanism provides fault-tolerance

support for failure occurring during the transitional phase, but

pays a performance penalty for growing data sizes, as the

overhead incurred by the method is exacerbated.

In Figure 2, CPU-intensity is tested. This job is CPU-

intensive as the frameworks in presence here perform little

data reading and witting operations, but rather lengthy loops

and floating point multiplications, one matrix after another. For

this experiment, all cores in the cluster were recorded with an

average of 93% utilization throughout the length of each run,

with the exception of Hadoop with a lower mark at 89%. This

condition is explained in [19] where Hadoop is shown to lose

CPU cycles due to skipped cycle meant for processing data, to

the benefit of cluster maintenance. Contrarily to our previous

data-intensive tests, and even though millions of matrices are

read in and multiplied, a single resulting matrix is passed from

mapper to reducer from each mapper. The cumulus of data
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Fig. 2: 64-core Hadoop, Twister and LEMO-MR clusters, each multiplying from 2 to

120 million 33 x 33 matrices.
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Fig. 3: 5 million 33 x 33 matrices processed by an increasing number of cores ranging

from 2 to 64. This graph shows how much processing time is reduced as each framework

gets more processing power added to its ranks.

passed from mapper to reducer being very small, Twister can

be seen here to thrive. In fact, LEMO-MR and Twister have

similar performance, even as Twister shows slightly faster runs

than LEMO-MR. Hadoop, here proves to be slower in this

CPU-intensive scenario. Hadoop uses a number of overhead-

prone operations such as data chunk replication, constant

worker node pings along with speculative and redundant jobs,

mainly for fault-tolerance reasons [20]. These measures can

however impede performance in any application setting [3]

However, in [4] this situation is shown to be further aggravated

in CPU-intensive scenarios where the pre-dominance of CPU

operations and the long processing nature of tasks make

duplicating tasks and speculative jobs launched by Hadoop

more costly than in data-intensive or memory-intensive cases.

In Figure 3, we show how and at what pace each MapRe-

duce framework is capable of reducing runtime with the

addition of more processing cores. The trends noticed in

Figure 2 hold true here as well. Twister is faster than LEMO-

MR in this context, while Hadoop shows to be slowest overall.

Figure 4, next, shows the speedup of all three frameworks.

In Figure 4, Twister shows better scalability than LEMO-

MR and Hadoop. Even as the advantage is minimal versus

LEMO-MR, it displays better CPU usage. Further more, the

use of a brokering medium in Twister’s case with NaradaBro-
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Fig. 4: Speed-up computed from Twister, Hadoop and LEMO-MR clusters processing 5

million 33 x 33 matrices, with diverse cluster sizes ranging from 2 to 64 cores. Speed-up

is computed as
T1

Tp
and represents how fast each cluster performs relative to a single

node system. Twister runs and scales slightly better than LEMO-MR, and much better

than Hadoop for this CPU-intensive test.
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Fig. 5: Shows how much memory Twister, Hadoop and LEMO-MR make available for

similar user programs on each node. Hadoop shows at 100 MB memory limit, while

Twister shows 500 MB, and LEMO-MR, a 520 MB limit, before causing a memory

exhaustion error.

kering or Active MQ [21] [22] allows the framework to decou-

ple communication from processing, making processing more

efficient. Heavily communicating nodes need to spare some

of their cycles to that end, thus reducing the overall amount

of cycles available for user data processing. This condition

worsens further in CPU-intensive cases. With LEMO-MR,

communication is kept at a minimum, but is not brokered

like with Twister, thus causing worker nodes to still ”burden”

themselves with it.

Figure 5 tests the memory footprint of each MapReduce

implementation. Should an input file need to be completely

loaded into memory at once in order to be efficiently pro-

cessed, a single node would not be a good candidate, if the

file’s size sits beyond its memory limits. In such a case, the

file might need to be broken down, and sequentially processed.

With a cluster of machines, the break down still occurs, but in

smaller sizes, and the processing in this case is in parallel. This

case however implies that the MapReduce framework involved

leaves enough space in memory after its own maintenance

operations for user data to reside in memory. As Figure

5 shows, Hadoop leaves 100MB per node, Twister leaves
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Fig. 6: Hadoop, Twister and LEMO-MR running on performance equivalent 60 core

homogeneous and heterogeneous clusters. The application tested here is distributed grep

for 36 billion words. Hadoop shows a bigger disparity and loss of performance between

its homogeneous and heterogeneous runs.

500MB per node, and LEMO-MR, 520MB per node. In our

previous data-intensive test, in Figure 1, Twister was shown

to default with 93 MB of data sent to its reducer. The limit

shown in that experiment pertains to how much data each node

is capable of passing from mapper to reducer, and not how

much memory space each mapper or worker node disposes of

for ”mapping” as this particular experiment shows.

Figure 6: [15], [16] and [17] have shown Hadoop to

perform rather slowly in heterogeneous environments. Cluster

Heterogeneity in our tests pertains to the diverse processor and

memory configurations of cluster nodes. The cumulus of cores

however in both clusters (homogeneous and heterogeneous)

is the same. This condition, as it was previously shown

[15] [16], [17], can greatly impact MapReduce performance

if mitigating design decisions are not effectively taken in

a given MapReduce implementation. While it would stand

to intuition for embarrassingly parallel applications, that a

60 core cluster composed of a 4 core machine, an 8 core

machine and a 48 core machine would perform equally as

a 60 core cluster with 3 20 core machines, previous work,

and tests in figure 6 show otherwise. In brief, the uniformity

of MapReduce input chunk, and task definitions, cause the

MapReduce model to be slower on heterogeneous clusters.

This test simply shows how slower each framework tested is.

Hadoop implements speculative execution for load-balancing

purposes. Load-balancing is however not akin to heterogeneity

in Hadoop’s context because in the former, the homogeneous

nature of the cluster makes lackluster performance on a node’s

part easily detected, and as a result, load is transferred. Not

having a homogeneous lineup means not being able to set a

standard as to what ”slow” is. Slow for a 48 core machine

might means very fast for a 4 core machine. As a result, load

transfer in a heterogeneous cluster under Hadoop is bound

to occur excessively and counter-productively, thus negatively

impacting performance as shown here.

Figure 7 shows load balancing tests whereas, homogeneous

machines operate first freely, followed by tests in which

one node, node1 here is put under extreme stress. Hadoop
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Fig. 7: Shows two graphs. The first, on top, portrays a homogeneous cluster of 3 nodes

for Hadoop, Twister and LEMO-MR. All 3 nodes operate freely and are under no external

load. Hadoop shows a slight load disparity between nodes, even as they operate freely.

The bottom graph however depicts the same cluster, but this time with node1 under

immense stress. Hadoop here, because of its speculative algorithm, can be seen shifting

load to less stressed machines. Nearly 4.2 billion words in Hadoop case are shifted from

the overloaded machine, to the ”free” machines.
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Fig. 8: This graph shows how each framework represented slowed down faced with

CPU stressful conditions applied to node1 in Figure 7. All four cores on node1, the

candidate node, were stressed to 99%-100%.

implements speculative execution, and as such benefits here

from the duplicate tasks running on the ”free” machines.

The framework then discards the late arrivals from the slow

node, and moves onto reducing, thus completing its run faster,

relative to its previous run. LEMO-MR, and Twister do not

feature active mechanisms to deal with this condition and find

themselves outstaged by Hadoop. Hadoop merely shifts 4.2

billion words to both node2 and node3 from node1, allowing it

to perform better in homogeneous imbalanced clusters. In this

test, conditions imposed on node1 can however be considered

extreme, as all 4 cores were made busy to 99%-100%. In

less intense scenarios, as might be the generic case, the

disparity might be less severe between Hadoop, LEMO-MR

and Twister. As Figure 8 shows, Hadoop was slowed down

by only 5% relative to its free run, versus 94% for Twister,

and 98% for LEMO-MR. It is however worth mentioning that

Twister and LEMO-MR still ran much faster in their free

and stressed runs than Hadoop in both, even considering its

mitigating algorithm. Relative to its free run, however, Hadoop

performed overwhelmingly better in its stressed run vis-a-vis
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Fig. 9: Hadoop, LEMO-MR and Twister performing distributed grep in an iterative

manner. Twister here benefits from its iterative nature, and departs further from Hadoop

and LEMO-MR as the number of iterations applied increases.
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Fig. 10: This graph shows how Hadoop and LEMO-MR behave faced with defaulting

or dying nodes. Both clusters start with 200 cores, and progressively, in separate runs

lose 4, 8, 16, and 32 cores. Hadoop slows down much faster than LEMO-MR.

LEMO-MR and Twister.

In Figure 9, despite the clear advantage exhibited by

Twister, it is good to note that for much larger datasets, Twister

would require constantly increasing number of nodes to offset

the memory limit observed in Figure 1.

Figure 10 shows fault-tolerance tests between Hadoop and

LEMO-MR. The absence of Twister in these tests is due to

the fact that Twister does not feature a node specific fault-

tolerance mechanism [3], and as such killing nodes mid-

processing would leave the framework to hang, as the master

would wait indefinitely for the dead node to send its output

for the job to be reduced and completed. In these tests,

LEMO-MR takes the upper hand over Hadoop as its fault-

tolerance mechanism is independent of file chunk location

but rather, node availability [4]. The overhead involved for

Hadoop in replicating chunks from node failures and verifying

the integrity of its input structure is leading to its demise in this

particular case. Note however that LEMO-MR’s advantage is

sanctioned by overhead incurred in providing the rescuer nodes

with the input chunk processed by the faulty nodes. This one

time penalty is however almost constant throughout the entire

experiment.

VI. RELATED WORK

MRBench [23] is a benchmarking tool implemented for the

comparison Hadoop to relational database systems. MRBench

is based on TPC-H which is used to evaluate database systems

that have realistically complex queries. TPC-H queries are

converted into MapReduce jobs and each job includes multiple

steps of MapReduce. The output produced from each step

becomes the input for the next step except for the last step

which basically collects the result of the operation. [24]

compares MapReduce with parallel SQL DBMS’s in terms of

performance and development complexity. The authors show

that tested parallel DBMS’s out-perform Hadoop on data-

intensive analysis benchmarks while recognizing the ease of

use and advanced fault-tolerance that Hadoop provides over

the DBMS’s. In Cogset [25], data storage is distributed over

the cluster through partitioning and replications, while data

access is done through traversals. In [19], Cogset is compared

with Apache Hadoop and shown to be outperforming Hadoop

with database specific operations. The authors highlight the

reasons for their results and offer some minor modifications

to Hadoop on the causes of the performance gap.

VII. CONCLUSIONS AND FUTURE WORK

In this study, we identified six applications and cluster

categories pertinent to MapReduce performance and tested

them with three well known MapReduce variants: Hadoop

[2], Twister [3] and LEMO-MR [4]. We not only provide

performance relevant design details of three MapReduce im-

plementations, but also highlight throughout our tests, the

best current choice of the three frameworks for a given HPC

application scenario.

• Twister is efficient for jobs requiring significant map

side data processing and very limited reduce side data

processing, such as CPU and memory-intensive jobs. For

our test infrastructure, Twister was better than Apache

Hadoop when data transfer between the Mapper and Re-

ducer was less than 93 MB, because it uses memory based

transfers as opposed to the file based transfers used by

Hadoop. The 93 MB threshold can be increased slightly

by allocating more memory to the worker processes, but

is still limited by the maximum memory footprint of a

Java process on a given node.

• Hadoop is designed to make use of the maximum disk

space available to each node and hence is known to scale

seamlessly for very large data sizes. LEMO-MR uses a

hybrid approach starting with a memory-based transfer

scheme between Map and Reduce, then progressively

changing to the Hadoop model for larger data sizes.

• Twister and LEMO-MR are optimized for CPU-intensive

Map and Reduce jobs compared to Hadoop, which spends

extra CPU cycles on high overhead prone fault tolerance

related tasks. For the matrix multiplication experiment,

the CPU utilization for Twister and LEMO-MR was 93%

while it was 89% for Hadoop.

• As the processing power is increased for a given applica-

tion, Twister’s performance improvement is best, closely



followed by LEMO-MR. Hadoop has the highest over-

head per node, and as such, when nodes were increased

from 8 to 64 nodes, Twister’s speedup improvement was

by a factor of 7.5, LEMO-MR’s was 7, and Hadoop’s

was by a factor of 4.

• LEMO-MR has the least memory footprint allowing for

520MB of data to be processed per node, closely followed

by Twister which allowed 500 MB of data to be loaded

in to memory for processing, per node. Hadoop has the

highest memory footprint and it allowed only 100 MB of

data to be processed per node, before throwing an out of

memory error.

• The uniformity of input chunk to each node renders

Hadoop unable to make efficient use of a heterogeneous

cluster. It is unable to determine what ”slow” means

for tasks mapped to nodes with different memory and

processor configurations, and as a result load transfer

operations occur excessively and inefficiently.

• In a homogeneous cluster, Hadoop’s load management

significantly outperforms both LEMO-MR and Twister.

When random nodes experience stress, induced by our

tests, Hadoop benefits from its speculative execution

model which duplicates tasks and is not affected by the

slow nodes.

• For applications requiring multiple iterations, Twister

showed to be best. Apart from its ease in running itera-

tive applications, compared to Hadoop and LEMO-MR,

Twister also offers significant performance advantages to

such applications. This is illustrated with Twister being

from 2 up to 5 times faster than Hadoop and LEMO-MR.

In future work, we will release the scripts, data, and code

associated with this benchmark project, and maintain an up-

dated website including performance data for new MapReduce

implementations as they become available.
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