
Towards Automatic Incorporation of Search engines into a
Large-Scale Metasearch Engine

Zonghuan Wu, Vijay Raghavan
Hua Qian, Vuyyuru Rama K

CACS, Univ. of Louisiana at Lafayette
{zwu,raghavan}@cacs.louisiana.edu

Weiyi Meng, Hai He
Dept. of Computer Science

SUNY at Binghamton
meng@binghamton.edu

Clement Yu
Dept. of Computer Science
Univ. of Illinois at Chicago

yu@cs.uic.edu

Abstract

A metasearch engine supports unified access to multiple
component search engines. To build a very large-scale
metasearch engine that can access up to hundreds of
thousands of component search engines, one major
challenge is to incorporate large numbers of autonomous
search engines in a highly effective manner. To solve this
problem, we propose automatic search engine discovery,
automatic search engine connection, and automatic search
engine result extraction techniques. Experiments indicate
that these techniques are highly effective and efficient.

Keywords: Metasearch Engine; Web Data Extraction

1. Introduction

In the context of a metasearch engine, the process of
incorporating search engines consists the process of
discovering search engine interfaces, connecting to them
and extracting result documents from search engine
returned webpages.

A significant problem in building a very large-scale
metasearch engine that supports unified access to
hundreds of thousands of search engines [10] [13] is the
impracticality of manually incorporating these search
engines. Even if this were possible, maintenance would be
a nightmare. Changes to search engines take place from
time to time, often leaving a search engine unusable for
metasearch unless corresponding changes are made in the
metasearch engine. Manual maintenance therefore is
hardly practical. We believe that the entire process of
search engine incorporation should be automated, to
enable construction and maintenance of very large-scale
metasearch engines.

The three major components that are essential to achieve
automation are:

1. Automatic search engine discovery. Discover
(identify) search engines from millions of websites on the
Web.
2. Automatic search engine connection. Automatically
connect to each discovered search engine so that user

queries submitted to the metasearch engine are forwarded
to search engines and search results from search engines
are returned to the metasearch engine.
3. Automatic search result extraction. Automatically
analyze each result page returned from a search engine for
a query, extract useful information, such as the number of
retrieved documents for the queries, URLs of result
documents and so on from the page.

The state of the art large-scale metasearch engines, like
profusion, can manage metasearch over around 1,000
search engines but not more. In this paper, through
experiments on the initial implementation of the proposed
three-component search engine incorporation framework,
we demonstrate the potential capability for a metasearch
engine to handle much more search engines, even in terms
of hundreds of thousands.

The rest of the paper is organized as follows. Brief
background information is provided in Section 2. Related
works are reviewed in Section 3. Crawler-based search
engine discovery, search engine connection and automatic
search engine result extraction are discussed respectively
in sections 4.1, 4.2 and 4.3. Experimental statistics are
presented and analyzed in Section 5. Finally, in Section 6,
conclusions of the paper are highlighted with a brief
discussion of future work.

2. Background Information

2.1. Web Search Engines

In this work, both the traditional crawler-based
“Surface Web” search engines and “Deep Web” databases
that have Web search interfaces are regarded as Web
search engines. Please refer to [2] to for detailed
discussion of Surface Web and Deep Web. Also, in [10]
and [13], we described in detail issues that arise due to the
largeness of the number of search engines that we are
aiming to metasearch.

We call a webpage from which users can type in
queries a search engine interface, or a search engine page.

2.2. Search Engine Form

On the search engine interface, there is at least one
HTML form, allowing users to submit queries. To identify
such forms is of crucial importance in discovery. Please
refer to [12] to learn more about HTML forms.

2.3. Search Engine Result Page

After a query is sent to a search engine, a result page is
returned. Usually, retrieved documents are listed on the
page, with their descriptions and URLs. Some other
important information about the search (such as the number
of retrieved documents for a query) may be present. A
metasearch engine needs to extract result document URLs
and other information from result pages returned from all
metasearched search engines to formulate its own result
pages to return to metasearch engine users.

3. Related Work

3.1. Search Engine Discovery

Most metasearch engines assume that component search
engines are discovered manually. Search engine directory
services such as Completeplanet and InvisibleWeb that
focus on organizing Deep Web databases claim to have
developed techniques to identify/discover search engines
automatically or semi-automatically [2] [6]. However,
technical details are proprietary and not publicly
available.

3.2. Automatic Search Engine Connection

For a metasearch engine with a large number of
component search engines, connection automation is an
essential requirement since manual analysis is time-
consuming and unfeasible, not to mention the difficulty in
tracking occasional search engine interface changes.
Metasearch engines and search engine Directory Services
such as Profusion, CompletePlanet and InvisibleWeb all
claim that they have technologies to connect to search
engines automatically or semi-automatically.
Unfortunately, not much detailed information is available
in open literature.

3.3. Search Engine Result Extraction

Early manual approaches of wrapping webpages (i.e.
extracting important information from webpages) [1] [5]
[11] have many recognized shortcomings, mainly due to
the difficulty in wrapper construction and maintenance.
Recently, however, many semi-automatic or automatic
tools have been proposed for wrapper building. A few well-

known examples include the ARANEUS project,
developed at University of Basilicata and University
“Roma Tre” in Italy [9], XWrap/XWrap Elite Project,
developed at Georgia Institute of Technology [8]. Progress
has been made lately in the RoadRunner project at
University of Basilicata and University “Roma Tre” in
designing a highly automatic data extraction approach by
comparing HTML structures of two (or more) given sample
pages that share a similar representation pattern. The layout
schema is then generated [3]. A survey of recent wrapper
developing techniques can be found in [7].

Search engine result extraction is a special case of Web
data extraction. Again, no detailed information is disclosed
regarding the data extraction technology employed by
current commercial metasearch engines.

4. Proposed Techniques

4.1. Automatic Search Engine Discovery

We propose a two-step process (crawling and filtering)
to discover search engines.

Step 1. Crawling. A special Web crawler is created to
fetch webpages. Each webpage is regarded as a potential
search engine interface page.

Step 2. Filtering. A set of recognition rules is then
applied to determine if the page has a search engine
interface. The following are the main filtering rules in the
current implementation:

(1) The HTML source file of a search engine
interface page should contain at least one HTML
form.

(2) The form must also have a text input control for
query input.

(3) At least one of a set of keywords such as “search,”
“query” or “find” appears either in the form tag or
in the text immediately preceding or following the
“<form>” tag.

4.2. Automatic Search Engine Connection

Automatic search engine connection involves four steps.

1. Parse HTML source code of a candidate webpage
into a tree structure of HTML tags. For the sake of
illustration, Figure 1 is a tree structure
presentation for the following simple HTML page:

<html>
 <head>
 <title>example</title>
 </head>
 <body>

 <form>…</form>
 </body>
</html>

Figure 1

2. Extract form parameters and attributes from the
FORM sub-tree and save them into an XML
formatted file, which we call the search engine
description file of the search engine.

3. Read the form information from the search engine
description file and re-construct a test query
string.

4. Send the test query to check connection
correctness. If some http error code is returned,
showing connection failure, further manual
analysis may be needed to handle the exception.

4.3. Search Engine Result Extraction

The two pieces of information extracted from the

returned page are: (1) The URLs and/or snippets of
retrieved webpages. (2) The total number of retrieved
documents, as described in Section 2.

There are two steps in automatic result extraction.

Step 1. A so-called “impossible query” (a query
consisting of a non-existent term) is sent. All URLs on the
result page are useless in terms of document retrieval. They
are recorded and easily excluded from result pages for
other queries. The layout pattern of the “Result Not Found”
page is also recorded for future reference.

Step 2. A number of program-generated queries are sent.
The result pages are compared against each other and all
the common URLs are marked as useless. Two tasks are
yet to be undertaken:

1. Find the URLs of returned result documents:

The patterns of result document URLs on the same result
page are very similar. We use a unique feature, called “Tag
Prefix,” to represent the layout pattern.

The Tag Prefix of a URL is a sequence of HTML tags
that appear before a URL and typically on the same line as
the URL.

For example, a section of HTML code may look like
this:

<table> <tr> <td> url1
 Caption </td> </tr> … </table>

The tag prefix of the URL http://url1.html is
“<tr><td>” since the tag “<tr>” implies change of a
line. Other tags indicating such a change include “<p>”,
“
”, “<table>”, “<hr>”, “”, and so on.

2 Find the number of matched documents

This information usually appears either at the
beginning or at the bottom of a result page on a text line,
which may be set apart by some specific features, such as
the presence of numeric numbers, or special keywords
(e.g. found, returned, matches, results, etc.), or the “of”
pattern (e.g. 1-20 of 200), or the query terms. We call this
line “document hits line”. It needs to be automatically
extracted.

5. Experimental Results

Following experiments are conducted to evaluate the
performance of these major components.

5.1. The Experiment on Search Engine Discovery

We carried out the experiment as follows:
1. The RDF dump from http://dmoz.org, is

downloaded. It is said to be the largest human-
edited directories, containing multi-million
Webpages. A total of 519 webpages are collected,
each having at least one form, as a result of
random selection for the purpose of keeping the
generality of the experiment.

2. Manual check reveals that 307 pages contain at
least one search engine form. (Report A).

3. The discovery program reports 286 search pages
from the same collection of webpages (Report B).

4. There are 286 URLs appearing in both reports,
i.e., all of them are correctly identified. A total of
21 URLs are listed only in Report A, meaning that
our search engine discovery component missed 21
search engines. There is no misclassification. The
discovery correctness is 93% (286/307).

In almost all the 21 cases, it is the failure to locate
“search”, “find” or other keywords within the search engine
forms that give rise to the problem. In one case, however,
the form is written in Flash instead of regular HTML.

These experimental results indicate that our Search
Engine Discovery Logic is simple yet highly effective. By
crawling the Web, 9 out of 10 search engine forms can be
automatically discovered by our discovery component.
Thus, this process makes it feasible to locate hundreds of

<html>
<head>

<title> example

<body>

<form>

…

thousands of surface web and deep web search engines on
the surface Web and in the deep Web.

5.2. The Experiment on Search Engine Connection

In this experiment,
1. The search engine connection program is used on

the previously discovered 286 search engine pages
and reports a total of 326 search engine forms
identified (note that one page may contain more
than one search engine form).

2. A sample query is sent to each search engine, both
through search engine connection program and
through Web browser (i.e.. manually).

3. The result pages retrieved by program and through
the browser are compared. If they are the same,
connection is successful.

Result shows that 242 Search engine forms are
successfully connected. There are 18 search engines not
working properly. Additionally, 9 search engine forms
using Google’s processing agent only allows access via a
browser. Any effort to connect using a program is
effectively denied. As a result, connection success is over
80% (242/(326-9-18)).

Among the 57 cases of unsuccessful connection, most
forms either adopt Javascript or are poorly coded
grammatically in HTML, both of which prevent the
program from correct parsing. In a few cases, there are site
redirections that the program fails to track.

This experiment shows that the automate connection
process is quite effective in general. But the loose HTML
grammar regulations and a few Web technologies, such as
JavaScript, bring complications to the process.

5.3. The Experiment on Search Engine Result

Extraction

Small-scale experiments have been done and showing

encouraging results. We are still in the process of refining
result extraction algorithms. Systematical experiment will
be carried out in the near future.

6. Conclusions and Future Work

In this paper, we have proposed a framework

consisting of three-component techniques to automate
incorporating search engines into metasearch engines,
which is essential to the automation of the process of
building, maintaining, and running a large-scale
metasearch engine. Initial experiments indicate that the
proposed search engine discovery and search engine
connection techniques are very effective and feasible.

The future work includes fine-tuning, extending and
integrating the search engine discovery, connection and
result extraction techniques.

7. References

[1] Atzeni , P. and Mecca, G., “Cut and Paste,” In PODS’97.

[2] Bergman M., “The Deep Web: Surfacing the Hidden Value,”
www.completeplanet.com/Tutorials/DeepWeb/index.asp,
BrightPlanet, 2000.

[3] Crescenzi, V., Mecca, G., And Merialdo, P., “RoadRunner:
Towards automatic data extraction from large Web sites,” In
Proceedings of the 26th International Conference on Very Large
Data Bases (Rome, Italy, 2001), pp. 109-118.

[4] Robert B. Doorenbos, Oren Etzioni and Daniel S. Weld, “A
scalable comparison-shopping agent for the World-Wide Web,”
The first International Conference on Autonomous Agents Feb 5-
8, 1997.

 [5] Huck, G., Frankhauser, P., Aberer, K., and Neuhold E. J.,
“Jedi: Extracting and synthesizing information from the web,” In
CoopIS’98.

[6] FAQ from www.InvisibleWeb.com

[7] Alberto H. F. Laender, Berthier A. Ribeiro-Neto, Altigran S.
da Silva and Juliana S. Teixeira, “A Brief Survey of Web Data
Extraction Tools,” SIGMOD Record, pp. 84-93, June 2002.

[8] Liu, L., Pu, C., and Han, W., “XWRAP: An XML-enabled
wrapper construction system for Web information sources,” In
Proceedings of the 15th International Conference on Data
Engineering (San Diego, CA, 20000), pp. 611-621

[9] Mecca, G., Atzeni, P., Masci, A., Merialdo, P., and Sindoni,
G., “The Araneus Web-Base Management System,” In
Proceedings of the ACM SIGMOD International Conference on
Management of Data (Seattle, WA, 1998), pp. 544-546

[10] Meng, W., Wu, Z., Yu, C., Li, Z., “A Highly-Scalable and
Effective Method for Metasearch,” ACM Transcactions on
Information Systems, Vol. 19, No. 3, pp. 310-335, July 2001.

[11] Sahuguet A. and Azavant, F., “Web ecology: Recycling
HTML pages as XML documents using W4F,” In WebDB’99.

[12] http://www.w3.org/TR/REC-html40/interact/forms.html,
HTML 4.01 Specification, W3C Recommendation 24 December
1999

[13] Wu, Z., Meng, W., Yu, C., and Li, Z., “Towards a Highly-
Scalable and Effective Metasearch Engine,” Proc. Of Tenth World
Wide Web Conference (www10), Hongkong, May 2001.

