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ABSTRACT
Metasearch engine, Comparison-shopping and Deep Web 
crawling applications need to extract search result records 
enwrapped in result pages returned from search engines in 
response to user queries. The search result records from a given 
search engine are usually formatted based on a template. Precisely 
identifying this template can greatly help extract and annotate the 
data units within each record correctly. In this paper, we propose 
a graph model to represent record template and develop a domain 
independent statistical method to automatically mine the record 
template for any search engine using sample search result records. 
Our approach can identify both template tags (HTML tags) and 
template texts (non-tag texts), and it also explicitly addresses the 
mismatches between the tag structures and the data structures of 
search result records. Our experimental results indicate that this 
approach is very effective.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Information 
Services – Commercial Services, Web-based Services.

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
Information extraction, wrapper generation, search engine.

1. INTRODUCTION
There are primarily two types of search engines, the first is text 
search engines that search web pages or other text documents and 
the second is Web databases that search structured data stored in 
database systems, including most e-commerce search engines. In 
this paper, we will uniformly call them as search engines. 

When a search engine returns results in response to a user query, 
the results are presented as search result records (SRRs). SRRs 
are usually enwrapped with HTML tags in dynamically generated 
web pages by script programs. Usually, each SRR contains 
information pertinent to a real world entity. For example, an SRR 
from a book search engine contains information about a book. 
Figure 1 shows two sample SRRs from two different search 
engines, the first from a text search engine and the second from a 
web database. To be user friendly, search engine designers make 

SRRs neatly arranged and clearly distinguishable from other 
content unrelated to the user query on result pages. 

Although search engines as well as the result pages they produce 
are designed for human users to consume, more and more web 
applications require automatic extraction of SRRs from search 
engine result pages, such as deep web crawlers [20], shopping 
agents, large-scale metasearch engines [18, 23], etc. 

An SRR usually consists of multiple data units with each having a 
particular meaning. For example, for the SRR in Figure 1a, its 
data units include the title of the web page, a short summary 
(snippet), the URL of the page, etc., and for the book SRR in 
Figure 1b, the data units include the book title, the author, the 
publisher, etc. In general, for SRRs returned from the same search 
engine, the data units in these SRRs are laid out and formatted 
similarly following a certain pattern. In other words, there exists 
an SRR template that is followed by all SRRs from the same 
search engine. Each SRR is an instance of the SRR template. 

In this paper, we use data units to represent the values of real 
world entities but not formatting and template information. For 
example, in Figure 1b, “Our Price” is part of the template and 
“$138.50” is a data unit. Sometimes, we use “attributes” to 
represent the meaning of a data unit or a set of data units. For 
instance, “Our Price” is the attribute of “$138.50”. 

Figure 1. Non-tabular formatted SRRs

In this paper we study the problem of how to automatically 
identify the SRR template for any given search engine. Based on 
our observation, we believe the following three factors make 
automatic SRR template extraction a difficult problem:

1. Data structure and tag structure mismatch. As part of a 
result page encoded in HTML, each SRR is also formatted 
using HTML tags. The structure of the tags for an SRR will 
be called the tag structure of the SRR (see section 3 for more 
details) while the composition of the data units in the SRR 
will be called the SRR’s data structure. Figure 2a shows the 
data structure of the SRR in Figure 1a, which basically 
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contains the data units in the order they appear in the SRR; 
Figure 2b and 2c show two different views of the tag 
structure of the SRR, one in tag tree (or tag forest) and the 
other in tag string. In general, the tag structure and the data 
structure of an SRR may not match in two possible ways: one 
data unit is encoded in multiple tags and multiple data units 
are encoded in one tag (a matching pair of starting and 
ending tags is considered as one tag here). These mismatches 
make using the tag structures to identify data units difficult.

2. Optional/disjunctive component. An SRR may contain 
optional components whose corresponding data units may be 
missing in some SRRs (e.g., some book SRR has a review 
link and some don’t) or disjunctive components that may 
have different types of data units in different SRRs (e.g., a 
book SRR from a search engine has either a regular price or a 
discount price). Unfortunately, in general, unlike the XML 
output generated by web services, no information about the 
optional/disjunctive components can be found from the 
HTML source code of each SRR.

3. Template tags and template text. The SRR template may 
contain both template tags and template text. The former is 
part of the tag structure of the SRR and the latter often 
mingles with data units. Due to the intermingling of template 
text and non-template text (data units), separating them 
accurately and automatically is not easy. Furthermore, not all 
tags are part of the real template and these tags need to be 
identified and removed to facilitate the identification of real 
template tags. 

{ “1 ”,
  “X X  O l y m p i c  W i n t e r  G a m e s  2 0 0 6  i n  T u r i n ”,
  “O f f i c i a l  s i t e  f o r  t h e  W i n t e r  O l y m p i c s  t o  b e  h e l d  F e b r u a r y  1 1 … ”,
  “2 0 0 6  W i n t e r  O l y m p i c s  – T u r i n ”,
  “w w w . t o r i n o 2 0 0 6 .o r g ”,
  “4 1 k ”}                                                                                             a
   < L I >
                < D IV >
                              < A >
                                            X X
                                            < B >
                                                          O l y m p i c  W i n t e r
                                            G a m e s  2 0 0 6  i n  T u r i n
                               < A >
                                            < IM G >
                                -
                               < A >
                                            T r a n s l a t e  t h i s  p a g e
                < D IV >
                               O f f i c i a l  s i t e  f o r  t h e
                               < B >
                                            W i n t e r  O l y m p i c s
                               t o  b e  h e l d  F e b r u a r y  1 1 - 2 6 ,  2 0 0 6 ,  i n  T u r i n ,  I t a l y …
                 < D IV >
                               C a t e g o r y :
                               < A >
                                                                                                         b
< L I> < D IV > < A > X X  < B > O l y m p i c  W i n t e r < / B >  G a m e s  2 0 0 6  i n  
T u r i n < / A >  < A > < IM G > < / IM G > < / A >  -  < A > T r a n s l a t e  t h i s  p a g e < / A >  
< / D IV > < D IV > O f f i c i a l  s i t e  f o r  t h e  < B > W i n t e r  O l y m p i c s < / B >  t o  b e  
h e l d  F e b r u a r y  1 1 . . .< / D IV > < D IV > C a t e g o r y :  < A > . . .                         c

Figure 2. The data structure and tag structure (tag tree and 
tag string) of an SRR

While there are several reported works on data extraction from 
web pages, including both data record (i.e., SRR) level and data 
unit level extraction, the current techniques are inadequate in 
precise and automatic template extraction (please see detailed 
comparison with related work in section 2). In this paper, we 
propose a novel solution to the automatic SRR template extraction 
problem that explicitly addresses the above factors.

The main contribution of this paper is the development and 
evaluation of a new SRR template mining algorithm for any given 
search engine. Our algorithm has the following novel features. 
First, we introduce a directed acyclic graph (DAG) template 

model to help solve the optional/disjunctive component problem. 
Second, we consider the identification of both template tags and 
template texts. Specifically, we develop a solution to identify 
decorative tags that are the main non-template tags; we also 
develop a technique to identify template texts so non-template 
texts can be extracted as data units. These solutions are domain 
independent and search engine independent, meaning that they 
can be applied to the SRRs from any search engine in any domain. 
Third, we explicitly study the mismatch problem between the tag 
structures and data structures of SRRs. We show that identifying 
decorative tags help solve the mismatch that one data unit is 
encoded in multiple tags and identify template texts help deal with 
the mismatch that multiple data units are encoded in one tag. 
Fourth, we also introduce a clustering and voting based method to 
generate SRR templates and this method tends to generate more 
robust SRR templates. This means that even when the input SRRs 
may contain false SRRs which may lead to outliner tags and texts, 
our method can still obtain the correct template. Fifth, our method 
is fully automatic except a one-time, domain independent and 
search engine independent training of the components for 
identifying decorative tags and template texts. We also evaluate 
our solution experimentally and the results indicate that our 
solution is quite effective. 

The rest of the paper is organized as follows. We review related 
works in section 2. In section 3, we present the template model 
and the overview of our method. Section 4 gives the major steps 
of our algorithm. Section 5 presents the experimental results. 
Finally section 6 concludes the paper.

2. RELATED WORKS
Information extraction from web pages is an active research area. 
Researchers have been developing various solutions from all 
kinds of perspectives. Readers may refer to [6, 13] for surveys 
about early and recent works in this area.

Many web information extraction systems [1, 3, 9, 10, 11, 12, 16, 
19, 26] rely on human users to provide marked samples so that the 
data extraction rules could be learned. Because of the supervised-
learning process, those semi-automatic systems usually have 
higher accuracy than fully automatic systems that have no human 
intervention. But semi-automatic methods are not suitable for 
large-scale web applications [18, 20, 23] that need to extract data 
from thousands of web sites. Also web sites tend to change their 
web page formats frequently, which will make the previous 
generated extraction rules invalid, further limiting the usability of 
semi-automatic methods. That’s why many more recent works [2, 
4, 5, 7, 8, 14, 15, 17, 21, 22, 25, 27, 28] focus on fully or nearly 
fully automatic solutions.

Web information extraction can be at the record level or data unit 
level. The former treat each data record as a single data unit while 
the latter go one step further to extract detailed data units within 
the data records. Record level extraction generally involves 
identifying data regions that contain all the records, and then 
partitioning the data regions into individual records. Since the 
records within a data region are usually highly homogeneous and 
the data regions are often constructed simply by a list of records, 
the record level extraction is easier than the data unit level 
extraction. Some recently proposed fully automatic extraction 
methods on record level extraction achieved satisfying 
performances [14, 21, 27]. On the other hand, the data unit level 
extraction is more complicated, and the performance of proposed 
fully automatic methods are not satisfactory. 



Omini [4], IEPAD [5], MDR [14], ViNTs [27] and the method in 
[8] are record-level data extraction tools incapable of performing 
general data unit level extraction. RoadRunner [7], EXALG [2], 
DeLa [22], DEPTA [25], NET [15], ViPER[21] and the method 
in [28] and [17] are more relevant to this paper, because they all 
have the ability to extract data at data unit level. DeLa and the 
method in [28] and [17] also studied the automatic data unit 
annotation problem.

RoadRunner extracts data template by comparing web page pairs. 
One page is considered as initial template, and the other page is 
compared with the template, which is updated when there are 
mismatches. The algorithm tries to produce a template that fits all 
input web pages. EXALG extracts template by analyzing 
equivalence classes, which are sets of tokens that have the same 
frequency of occurrence on all input web pages. Templates are 
generated from large and frequently occurring equivalence classes 
(LFEQs). DEPTA uses an edit distance based tree matching 
technique to align tag trees for data extraction. Tags are 
considered as templates while texts are data to be extracted.  NET 
extends DEPTA by supporting nested records extraction. Similar 
to IEPAD, DeLa builds suffix trees to detect patterns in web page 
string. DeLa’s multi-level pattern extraction algorithm enables it 
to extract data with nested schema on the web page. ViPER 
improves MDR by providing a better sub-tree comparing method 
that allows consecutive data records with various lengths. ViPER 
also introduces a multiple sequence alignment algorithm that 
aligns maximal unique matches at different levels to extract the 
template of data records. Instead of aligning template, the method 
in [17] aligns data text between template tokens directly by 
comparing the features like content, presentation style, type, etc. 
The method in [28] combines the record extraction and attribute 
labeling to let them benefit from each other.

Many works [7, 15, 21, 25] ignore the problem of mismatches 
between the data structures and the tag structures of SRRs by 
assuming that HTML tags are template tokens and text tokens are 
data items to be extracted. The method in [28] simply assumes 
that the visual elements (with the exception of “noise”) are data 
attributes to be labeled. The authors of EXALG noticed that 
HTML tags might appear in data while texts might contain 
template tokens. But their equivalence classes based method 
considers only tokens that have constant number of occurrences in 
different web pages as template tokens. Thus its ability to 
differentiate the different roles of tags and text tokens is limited. 

Our work reported in this paper does not deal with record-level 
extraction even though we mention SRRs frequently. Instead, our 
work takes already extracted SRRs as input and tries to find the 
SRR template based on the SRRs returned from a search engine. 
We build our system to work on the SRRs extracted by ViNTs 
[27], which is a fully automatic record-level extraction tool. 
However, we recognize that ViNTs is not perfect, and as a result, 
incorrect SRRs may be extracted by it and these SRRs may be part 
of the input to our algorithm.

In this paper, we focus on mining the SRR template. Even though 
extracting data units is not our direct objective as we try to tackle 
the more fundamental template extraction problem, by identifying 
the SRR template for the SRRs of a search engine, data units in 
these SRRs can be extracted easily. Therefore, this paper is 
closely related to data unit level extraction. Our method differs 
from other solutions as we deal with the three factors (i.e., data 
structure and tag structure mismatch, optional/disjunctive 
component, and template tags and template text) more explicitly 

than existing works. Also the performance of our system is 
significantly better than that of contemporary works. 

A fully automatic web information extraction tool should be 
robust to outlier inputs. Because it is not practical to simply 
assume that the inputs consist only of the desired data. Especially 
when we consider a working environment that is as complex as 
the World Wide Web. Our statistical method also has the 
advantage that is robust to outlier inputs which may be caused by 
the existence of false SRRs due to the use of an imperfect SRR 
extraction tool.

The authors of [24] showed that the problem of inferring 
unambiguous schemas (templates) for web data extraction is NP-
complete. Thus it is understandable that all current efficient web 
information extraction tools, including ours, are based on 
heuristic solutions.

3. FUNDAMENTALS AND OVERVIEW
3.1 Basic Concepts
An HTML web page mainly consists of two types of elements: 
HTML tags and texts. We use the term tag and HTML tag 
interchangeably in this paper because we only work with HTML 
encoded web pages. A tag refers the name of any HTML tag that 
is encompassed by special characters  ‘<’ and ‘>’ in the HTML 
source page, while the term text refers to characters that are not 
encompassed by ‘<’ and ‘>’. When we consider a web page as a 
string of tokens (tag tokens and text tokens), an SRR is a sub-
string of the token string of the entire web page that contains the 
SRR. The creation of the HTML code pieces of an SRR can be 
considered as using a template to enwrap the data units of an 
SRR. An SRR template consists of template strings and data slots 
that hold data units. Once we have the template, we can apply it to 
an SRR to identify the data units in the SRR.

The embedding nature of tags enables a well-formed HTML 
document to be converted to a tree structure, which contains two 
types of nodes: tag nodes and text nodes. We use the term tag tree 
to represent the tree structure of an HTML document in this 
paper. With the tag tree view of a web page, an SRR is part of a 
tag tree. In general, an SRR corresponds to a sub-forest located in 
a tag tree under a specific tag node.

Due to the loose HTML grammar, many web pages on the web are 
not well formed. However, a good browser can still “correctly” 
build the tag trees for a majority of ill-formed web pages. Note 
that by a pre-order traversal of the tag tree, we can always get a 
well-formed HTML document, which is equivalent to the tag tree. 
We use the term tag string to refer to the well-formed HTML 
code generated by tag tree traversal. Thus an SRR also 
corresponds to a tag string that is equivalent to its tag forest. We 
call an SRR’s tag forest (or the equivalent tag string) the tag 
structure of the SRR, while the composition of the data units in 
the SRR the SRR’s data structure. 

In the tag string, HTML tags partition the texts in an SRR into 
small text fragments. Thus one may be tempted to extract data 
units based on this partition. Such a naïve method may work ok 
for search engines that arrange their SRRs in a tabular manner, 
e.g. each row represents an SRR and each column corresponds to 
a data unit. But based on our observation, most search engines do 
not arrange their SRRs in tabular format and in these cases the 
text fragments are often different from the data units.  

Because HTML is a language for data presentation, although the 
tag structure of an SRR is generated according to the data 



structure of the SRR, the tag structure of an SRR is often 
considerably different from that of the SRR’s data structure. 
Figure 2a and 2b&2c show such an example. There is no direct 
mapping between a node on the tag tree and a data unit: on the 
one hand, multiple nodes may match to one data unit, and on the 
other hand, one node may correspond to multiple data units.

3.2 Template Model
An SRR represents an instance of the SRR template on a web 
page. There are two types of strings in the HTML code of an 
SRR: the template strings and data strings. To generate an SRR, 
the search engine’s script program enwraps data strings using 
template strings, which are token strings that are not content of 
any data units in an SRR. We introduce the concept of data slots, 
which are the carriers of the data units of SRRs. We define the 
SRR template based on data slots. An SRR template actually 
represents the relationships between data slots.

Definition 1 (Data Slot). A data slot is a triple <lt, ds, rt>, where 
ds represents the space that holds a data unit of an SRR (note that 
ds is not the data unit itself), lt (rt) is a template string that bounds 
ds on the left (right) side. We call lt (rt) as the data slot’s left 
(right) bound. A data slot may have empty left or right bounds.

In Figure 2, the data slot that holds the data string “XX Olympic 
Winter Games 2006 in Turin” has a template string 
“<LI><DIV><A>” as left bound, and a template string “</A> 
<A><IMG></IMG></A> -… ” as right bound. 

When data slots DSi = <lti, dsi, rti> occurs immediately before 
data slot DSj = <ltj, dsj, rtj>, the right bound of DSi is the same as 
the left bound of DSj, i.e. rti = ltj. In general, every SRR can be 
represented as a sequence of data slots and we use dss(SRR) to 
denote this sequence.

Definition 2 (SRR template). For a given search engine S, its SRR 
template, denoted SRRT(S), is a directed acyclic graph (DAG), 
called a template graph, denoted TG(S), where each node in the 
graph represents a data slot and an edge from data slot ds1 to data 
slot ds2 indicates that there exists a valid SRR produced by S in 
which ds1 appears right before ds2. In addition, for any valid SRR 
produced by S, there is a full directed path in TG(S) that is the 
same as dss(SRR), where a full directed path starts with an origin 
node (which has no incoming edges) and ends with a destination 
node (which has no outgoing edges). In general, we also require 
the template graph to be minimum (in terms of the number of 
nodes and edges) which means identical nodes and edges have 
been merged.

A
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a b
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C D
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F H
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Figure 3. Sample template graphs

In general, TG(S) may have multiple origin nodes and multiple 
destination nodes. If the template graph of a search engine has just 
one full path, this means the SRRs of the search engine have a 
rigid layout format and every SRR has the same sequence of data 
slots. If there is an optional data slot that some SRRs have and 
some SRRs don’t have, then the template graph will have a fork. 
Figure 3a shows an optional data slot B between data slot A and 

data slot C. Figure 3b illustrates two disjunctive data slots, B and 
C, between A and D, i.e., after A, either B or C, but not both, may 
follow, and both of them will be followed by D. Figure 3c shows 
a template graph with 4 full paths.

The method we present in this paper can automatically generate 
the graph representation of SRR template from a set of result 
pages that contain SRRs returned by a search engine.

3.3 Handling Mismatches
To correctly restore the SRR’s data structure from its tag 
structure, we must be able to solve the problem of the mismatches 
between the data structure and the tag structure. There exist two 
major types of mismatches: a single data unit matches multiple 
nodes in the tag structure, and multiple data units match a single 
node in the tag structure. Figure 1a shows an example of a Type 1 
mismatch. The text “XX Olympic Winter Games 2006 in Turin” 
is a single data unit, but it corresponds to four nodes in the SRR’s 
tag structure: text “XX”, text “Games 2006 in Turin”, tag “B” and 
its child text “Olympic Winter” (see the tag structure in Figure 
2b). Figure 1b shows an example of a Type 2 mismatch: the text 
string “McGraw-Hill, Published 1997, ISBN 0070428077” 
contains three data units corresponding to the name of a publisher, 
the year the book was published and the ISBN number of the 
book, respectively, but the entire text string is contained in a 
single text node in this SRR’s tag structure. 

3.3.1 Type 1 Mismatch
Let’s examine the example in Figure 1a and Figure 2 more 
closely. It is the HTML tag “B” that splits the single text string 
into three pieces. Highlighting certain words in an SRR is actually 
a general phenomenon because Web page designers often use 
special HTML tags to embellish certain pieces of information to 
make them special. For example, they may want to highlight the 
query terms, use hyperlink to indicate further information is 
available, or, insert a small picture to make the web page more 
lively, etc. We call such kind of HTML tags Decorative Tags.

For the purpose of data extraction, we don’t consider the tags that 
embellish a complete data unit as decorative tags, because these 
tags actually facilitate the data extraction. We are interested in 
those tags that embellish a portion of a data unit. By identifying 
and removing them, we would be able to restore the wholeness of 
the data units.

Definition 3 (Decorative Tag). A decorative tag is an HTML tag 
that appears within a single data unit of an SRR and is designed to 
embellish a portion of the data unit. In other words, a decorative 
tag has the effect of dividing a single data unit into multiple text 
fragments with each corresponding to a different node in the tag 
structure of the SRR. 

Because decorative tags only embellish a portion of a data unit, 
their occurrences would accompany the occurrences of the 
information that is being embellished. For example, the 
occurrences of query terms in the SRRs are embellished (Figure 
1a.). In general, we observed that decorative tags tend to have 
random occurring patterns because the texts to be decorated may 
appear randomly in an SRR, while non-decorative tags tend to 
have more regular occurrence patterns. This property enables us to 
employ a machine learning approach to identify the decorative 
tags. We will introduce our neural network based decorative tag 
detector in section 4.1.



3.3.2 Type 2 Mismatch
To help users correctly understand the data in an SRR, there 
usually exist some special text tokens in the text that contains 
multiple data units to separate these data units. For example, the 
string “, Published” and “, ISBN” in Figure 1b are the text tokens 
that separate the text into three data units “McGraw-Hill”, “1997” 
and “0070428077”. Note that “Published” and “ISBN” actually 
correspond to semantic labels (or attribute names using database 
terminology) that give meanings to data units. We call text tokens 
that separate different data units in a string as Template Texts. 
Note that a template text can be as simple as a punctuation symbol 
like a comma or a semi-colon.

Definition 4 (Template Text). A template text is a non-tag token 
that is not (part of) any data unit (or attribute values) in the SRR 
that contains the token.

The problem of template text detection is to differentiate template 
texts from non-template texts. A significant characteristic of 
template texts is their high occurring frequency because they tend 
to appear in almost all (with the exception of optional data units) 
SRRs that are returned by the same search engine. But some non-
template may also have high occurring frequencies, like 
punctuations, and words like “the” and “a”. Further observation 
indicates that the template texts and non-template high frequency 
texts have different occurring patterns: the latter tend to have 
random occurring patterns while the former have more regular 
occurring patterns. Our solution will explore these special 
features. We introduce our neural network based template text 
detector in section 4.3.

3.4 Method Overview
Our SRR template mining algorithm includes two neural network 
classifiers: the decorative tag detector (DTD) and the template text 
detector (TTD). Their design and training details will be given in 
sections 4.1 and 4.3, respectively. Once we have the DTD and the 
TTD, we can plug them into the SRR template mining algorithm.

Result
Pages

(ViNTs) SRR 
extracting

DTD

TTD 
Training

Data String 
Clustering

DTD 
Training

TTD

Cluster 
Refining

Template Graph 
Generating

SRR Template Graph

Figure 4. Method overview

Figure 4 shows the main steps of our algorithm. The decorative 
tag detector (DTD) and template text detector (TTD) will be 
trained in advance. The algorithm works as follows. The input is a 
set of sample result pages that contain SRRs returned by a search 
engine. First we apply ViNTs [27] on these sample pages to 
extract the SRR at the record level. Then we apply DTD on the 
tag forests of the SRRs to detect and remove decorative tags from 
the tag forests. We transfer the SRRs’ tag forests into equivalent 
tag strings and extract data strings from them. The data strings are 
considered as candidate data units of the data slots in the SRR 
template and a candidate data unit may contain multiple real data 
units due to the existence of template texts in it. Next we apply a 
hierarchical clustering algorithm to cluster candidate data units 
extracted from all input SRRs. The next step is to apply TTD to 

each candidate data unit cluster to identify the template texts for 
this cluster. Then we use a refining step to separate the candidate 
data units in each cluster into data units using the newly identified 
template texts. This effectively creates multiple (including just 
one) data unit clusters out of each candidate data unit clusters. 
The last step is to build the SRR template graph. We map each 
data unit cluster to a vertex (a data slot) on the SRR template 
graph, and then use all SRRs to vote for the edges on the graph. 
We delete edges and vertices (data slots) with very small supports 
so that the final SRR template graph is robust and reliable.

4. TEMPLATE MINING ALGORITHM
As mentioned in section 3.4, we apply ViNTs [27] to the input 
result pages that are to be used to mine the SRR template. The 
output of ViNTs is a set of SRRs represented by their tag forests. 
ViNTs is a fully automatic but it does not guarantee that the SRRs 
extracted by this tool are 100% correct. The existence of incorrect 
SRRs brings some noise to the SRR template extraction process. 

The following sub-sections presents all modules described in 
Figure 4 other than the SRR extractor.

4.1 Decorative Tag Detector (DTD)
The existence of decorative tags in the tag structure (Tag tree) 
causes the Type 1 mismatch problem. To solve the problem, we 
introduce a DTD, which is a neural network classifier, to identify 
the decorative tags, so that they could be removed from the tag 
structure of SRRs. 

4.1.1 Tags on tag forests
DTD takes a tag, which is represented by its statistical features, in 
SRRs’ tag forests as input. The output is a number indicating if 
the input tag is a decorative tag or not. An input tag is not merely 
a tag in the tag forest of a single SRR, it represents the same tag 
name that occurs in the similar locations of all SRRs returned by 
the same search engine. It is advisable to combine SRRs on 
different result pages of a search engine to extract a tag’s features. 

Every HTML tag has a tag name, for example, <TABLE>, <A>, 
<B>, etc. It is possible that one occurrence of a tag is a decorative 
tag while another occurrence of the same named tag is not a 
decorative tag. In other words, different occurrences of the same 
named tag may play different roles in SRRs. Because the tag 
forests of SRRs returned by the same search engine have similar 
structures, tags with the same name and appearing in the same 
specific locations of the tag structures of different SRRs are very 
likely to play the same role. 

We use Tag Path [27] to specify the location of a tag on the tag 
forest. A tag path consists of a sequence of path nodes. Each path 
node pn consists of two components, the tag name (i.e., a tag 
node) and the direction, which indicates whether the next node 
following pn on the path is the next sibling of pn (indicated by 
“S”, called S node) or the first child of pn (indicated by “C”, 
called C node). Since we need to compare the tag locations on 
SRRs, we don’t need the absolute tag paths that start from the tag 
tree root <HTML>. We work on relative tag paths that start from 
the root nodes of SRRs. As an example, the (relative) tag path of 
the first tag <B> of the tag structure in Figure 2 is: 
<LI>C<DIV>C<A>C<#TEXT>S.

The tag structures of different SRRs returned by the same search 
engine generally are not exactly the same. As a result, the tag 
paths of different occurrences of a node that plays the same role in 
different SRRs are likely to be different. We convert a tag’s tag 
path into compact format following the method reported in [27], 



which is equivalent to the original tag path for locating a tag. By 
removing unimportant “noise” path nodes, a compact tag path can 
be more robust to represent a location on the tag forest of SRR 
than the original tag path. Thus a tag in the tag forest of an SRR is 
represented as <n, p>, while n is the tag name, p is the compact 
tag path of this tag on the tag forest of the SRR.

4.1.2 Decorative tag detector design
We discussed that one important property of decorative tags is 
that they have a random occurring patterns. A careful analysis 
reveals more: decorative tags are designed to embellish texts, 
which are leaf nodes on the tag structure. Thus the decorative tags 
tend to be located close to leaf nodes. Mostly they are the direct 
parents of the text nodes embellished by them. Also certain types 
of tags are likely to be used as decorative tags than others, for 
example, <B>, <I> are more likely than <TABLE>. 

We extract the 9 features (in Table 1) of an HTML tag that 
appears in the tag forest of SRRs. Features 1 and 2 capture the 
randomness of a tag’s distances to its leaf descendants. Feature 2 
is the estimated standard deviation of the distances of the tag (in 
occurrences on different SRRs) to its leaf.

Features 3, 4, 5, 6, 7 and 8 capture the randomness of a tag’s 
occurring patterns under its direct parents. The feature 4, 6 and 8 
are all standard deviations. All appearances of a tag directly under 
a common parent node together are considered as an occurring 
pattern. Feature 9 is the prior-probability of the tag name as 
decorative tags. 

The DTD is a three layer backpropagation neural network 
classifier, with an input layer that consisting of 9 units, a hidden 
layer consisting of 4 units, and an output layer consisting of 1 
unit. A tag is considered as decorative tag if the output has a value 
greater than 0.5.

Table 1. HTML tag features

Feature # Description
1 Average distance to leaves
2 Deviation of distance to leaves
3 Average occurring number
4 Deviation of occurring number
5 Average first occurring position from left
6 Deviation of first occurring position from left
7 Average first occurring position from right
8 Deviation of first occurring position from right
9 Prior-probability of being a decorative tag

To collect sample tags for a search engine, we collect N result 
pages returned by the search engine. Then we use an automatic 
SRR extraction tool to extract the SRRs from the N result pages. 
Let’s assume n SRRs are extracted. 

We extract all HTML tags from the tag forest of each SRR. Note 
that a tag is represented as a tag name and tag path pair. By 
extracting the occurrence pattern of each tag in each SRR, we can 
get the statistics features (1-8). 

At training stage, feature 9 is obtained by human users by 
manually marking the samples. Then we store the prior-
probability values in a hash table, so that we can find the prior-
probability of a tag quickly when the trained DTD is applied to 
detecting decorative tags. 

We should point out that to train the DTD, we should collect 
sample tags (both positive and negative) from many search 
engines in different domains so that more varieties are taken into 

consideration. However, the training uses all the collected sample 
tags and is done only once. There is no separate training for each 
individual search engine. In other words, the training is domain-
independent and search engine independent, and the trained DTD 
is also domain-independent and search engine independent. As a 
result, once the DTD is trained, it can be applied to any search 
engine to identify the decorative tags in its SRRs.

We should also note that when the trained DTD is applied to 
classifying the tags to extract the SRR template for a particular 
search engine, we need to collect sample tags from that search 
engine (see section 4.1.3 for more details about this). 

4.1.3 Removing decorative tags
Once the DTD is trained, we are ready to use it in the SRR 
template mining algorithm. After we applied the SRR extraction 
tool on the sample pages returned by a search engine, we have a 
collection of SRRs. We check all SRRs to collect HTML tags and 
their occurring pattern statistics from the SRRs’ tag forests. Thus 
we can calculate the features 1 – 8 for each tag (a <n, p> pair). We 
already have a prior-probability table for tag names obtained from 
DTD training. The feature 9 of a tag can be obtained by a simple 
table looking-up. A neutral 0.5 is assigned to tags that do not exist 
in the prior-probability table.

We feed the statistical features of each tag into DTD. An output 
greater than 0.5 indicates the input is a decorative tag. Once all 
decorative tags are identified. We traverse the tag forests of all 
SRRs again to remove the decorative tags from them. To remove a 
node from a tag forest, we simply take its immediate children to 
replace the node itself in the tag forest. Figure 5 shows an 
example. The node C in the tag tree in Figure 5a is a decorative 
tag. After it is removed, the tag tree becomes the one in Figure 5b.

4.2 Data String Clustering
After the decorative tags are removed from the tag forest of an 
SRR, we pre-order traverse the tag forest to generate the tag string 
(Figure 2c shows part of a tag string). We partition the tag string 
into segments by the alternatively occurring tags and texts, such 
that no segment contains mixture of tag and text, and, each 
segment is maximized. Since decorative tags have been removed, 
the segments that consist of tags are considered as template 
strings, while the segments that consist of texts are considered as 
initial data strings (data units). Let d represent a data string, t
represent a template string, and ts = {t1, d2, t3, … , ti-1, di, ti+1, … , 
tn} be a tag string.
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Figure 5. Removing Decorative Tag

Because of the existence of possible Type 2 mismatch, there 
might be template texts in di. Thus a general data string may be a 
combination of multiple data units plus template texts that bound 
them. Before we can detect the template texts, we need to group 
the data strings that are data units of the same semantic meaning 
(e.g., values of the attribute) in different SRRs, so that we can 
exploit the statistical properties of template texts.

Previous works [2, 5, 15, 21, 22, 25] developed sophisticated 
alignment techniques to group data strings. One problem of 



alignment-based techniques is that they are too sensitive to 
outliers. The existence of data that are extracted from false-SRRs 
(due to the imperfect nature of the SRR extraction tool used) will 
significantly degrade the quality of the outcome. Since we cannot 
guarantee that the SRRs we have are 100% correct when using a 
fully automatic tool, more robust method for grouping 
semantically related data strings is necessary. Our method uses a 
hierarchical clustering algorithm to group the data strings. 

Generally, a data string is bounded by two template strings on a 
tag string. Thus a data string can be represented as D = <tL, d, tR>, 
While d represents the data string itself, tL and tR represent its left 
and right bounding template strings respectively. Note that tL and 
tR might be empty. Ideally, a data string with left and right bounds 
is an instance of a data slot in the SRR template. But at this point, 
we need further processing to get more reliable results.

A data string d is a text string, which might be a hyper link, a date 
value, a numeric value, etc. We define several text types of data 
strings to capture the different nature of text strings. Current 
prototype system defines the following 5 text types: NUMBER, 
DATE, HYPER LINK, PRICE and TEXT. The type “TEXT” 
refers to the text that can’t be recognized as any of other types.

Let length(d) = 1 and length(t) = 1. Thus the length of a tag string 
ts is: length(ts����� ���™��length(d���������™��length(t). The position of di in 
ts is defined as pos(di) =  i / length(ts). 

Let DT(ti, tj) represent the distance between template strings ti and 
tj, let DTP(di, dj) represent the type distance (a predefined distance 
matrix of types is used) between di and dj, and let DP(di, dj) = 
|pos(di) - pos(dj)|. Let DD(Di, Dj) represent the distance between 
two data strings: Di = <tLi, di, tRi> and Dj = <tLj, dj, tRj>. To avoid 
one cluster contains two data strings from the same SRR, DD(Di, 
Dj���� � �� �’�� �L�I��Di and Dj are from the same SRR, otherwise, the 
following formula is used:

DD(Di, Dj) = 
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We apply a bottom-up hierarchical clustering algorithm on all 
data strings extracted from all SRRs of the same search engine. 
The distance between two clusters is computed by single link. A 
distance threshold is set up to terminate the clustering process.

4.3 Template Text Detector (TTD)
TTD is designed to identify template texts from data string 
clusters. For each cluster, we first identify high frequency texts. 
Intuitively, a template text tends to have a high occurring 
frequency, but not all texts that occur frequently are template 
texts. Some common tokens, like “the”, “of” and punctuations, 
also tend to have high frequencies in most text strings. 

The TTD is a neural network classifier that classifies high 
frequency text strings into two categories: template texts and non-
template texts. Before introducing the TTD design, we would like 
to describe how to extract high frequency texts from a cluster first.

4.3.1 Extracting high-frequency texts
Suppose we have a data string cluster c, which contains n data 
strings. The high-frequency texts are sub-strings of data strings in 
c that occur in many other data strings in c. Because a template 
text tends to occur in a relatively fixed position in data strings, we 
do not use the simple term frequency. Instead, we introduce a 
position-weighted voting algorithm to find out the high-frequency 

texts. The basic idea is that the same token occurring at the same 
position in different data strings is more likely to be a template 
text. Figure 6 shows the algorithm for extracting high-frequency 
texts from a data string cluster. 

A data string d of length m consists of m tokens d = {tki | 1���”��i���”��
m}. Each token tki has a relative position, which is defined as Ptki

= i/m. Thus the position distance between two tokens can be 
computed as DPT(tki, tkj) = | Ptki –Ptkj |. 

We pick up k data strings by randomly sampling the data strings 
in C as seeds. For each seed data string, we take its tokens as the 
seed tokens. All seed tokens have an initial weight of 0. Then 
tokens in every other data strings in C are used to vote for seed 
tokens. E.g.,  if a token tk in d is the same as a seed token tks, the 
weight of tks is updated as W’(tks) = W(tks) + (1- DPT(tki, tkj)). 

After the voting, for each seed data string, we group maximum 
consecutive tokens that have a weight higher than a threshold as 
the high-frequency texts. We take all high-frequency texts 
extracted from the k seed data strings as the samples for TTD. 

Algorithm High_Freq_Text(C) 
    H �m �-��
    S �m sampling data strings in C;
    for s �• S do
        for tks �• s do
            W(tks) �m 0;
        for d  �• C and d �z s do
            for tks �• s, tkd �• d do
                if tks = tkd

                     W(tks) �m W(tks) + (1-DPT(tks, tkd));
            end for;
        end for;
        identify ��  max sub-string ss �•  s and W(tk) > T for �� tk �• ss;
        put �� ss into H;
    end for;
    return H;

Figure 6. Extracting High-frequency Texts

4.3.2 TTD design
Similar to DTD, TTD is also a neural network classifier, which 
can identify template texts from high-frequency texts extracted 
from a data string cluster. The inputs of TTD are the statistical 
features of high-frequency texts. Table 2 shows the 7 features 
used in current TTD.

Table 2. High-frequency text features

Feature # Description
1 Average occurring number
2 Deviation of occurring number
3 Average first occurring position from left
4 Deviation of first occurring position from left
5 Average first occurring position from right
6 Deviation of first occurring position from right
7 Prior-probability of being a template text

Features in Table 2 have the similar meanings as their 
counterparts in Table 1. Features 1-6 are used to capture the 
randomness of the occurring patterns of a high-frequency text in 
data strings. Feature 7 is the highest value of the prior-
probabilities of the tokens in the high-frequency text to be a
template text.



The TTD is a three-layer backpropagation neural network 
classifier, with an input layer consisting of 7 units, a hidden layer 
with 3 units and an output layer with 1 unit. We use the training 
samples extracted from the same result page set that is used to 
train DTD to train TTD. The sample high-frequency texts are 
collected as follow: after SRRs are extracted from result pages, 
apply DTD to detect and remove decorative tags, and then cluster 
data strings and collect high-frequency texts and their features 
from the clusters as the samples for TTD.

Similar to DTD, TTD also needs to be trained only once and the 
trained TTD is domain-independent and search engine 
independent so it can be applied to any search engines. 

4.3.3 Identifying template texts and refining data 
string clusters
We perform the data string clustering to group data units of the 
semantic type together. To reduce the effect of outliers (false-
SRRs), small clusters with their numbers of members smaller than 
a threshold are discarded. We extract high-frequency text strings 
from every cluster using the method in section 4.3.1. Then the 
occurrences of each high-frequency text in every data string in the 
cluster are checked to collect the statistical features (1-6). The 
prior-probability of the high-frequency text is obtained by a table 
look-up. The highest prior-probability of all tokens in the high-
frequency text is used as the prior-probability of the text. A 
neutral 0.5 is assigned if no token in the text exists in the prior-
probability table.

Each high-frequency text is fed into TTD. An output larger than 
0.5 indicates the input is a template text. All identified template 
texts are used to further partition the data strings. The template 
texts on the left and right boundaries are merged into their 
template string neighbors.

We cluster the newly generated data strings again using the 
method described in section 4.2. After removing the small 
clusters, all kept data strings are used to generate template graph.

4.4 Generating Template Graph
A data string cluster of size N contains N data strings from N
different SRRs. An SRR, on the other hand, contains M data 
strings that belong to M different clusters. Ideally, each data string 
cluster represents a data slot in the SRR template. Note that the 
order of data strings in an SRR represents the relationship of the 
data slots corresponding to the clusters that contain the data 
strings in the SRR.

Consider an SRR r consisting of data strings <d1, d2, … , di, di+1, 
… , dm>, while each data string belongs to cluster c1, c2, … , ci, ci+1, 
… , cm respectively. Let’s further assume the ideal case that each 
cluster ci���� ���� �”�� �L�� �”�� �P���� �U�H�S�U�H�V�H�Q�W�V�� �D�� �G�D�W�D�� �V�O�R�W��dsi���� ���� �”�� �L�� �”�� �P���� �L�Q�� �W�K�H��
SRR’s template graph. Thus any adjacent data string pair <di, 
di+1> in r implies that there exists an edge between dsi and dsi+1 in 
the SRR’s template graph. The SRR r implies that there is a path 
ds1, ds2, … , dsi, ds+1, … , dsm in the template graph.

Due to the optional and disjunctive data units, a single SRR can 
only provide a partial view of the template graph. However, the 
combination of multiple SRRs with all possible unit variations 
can provide the complete view of the SRR template graph.

Because of the existence of false SRRs (outliers), errors in the 
DTD, TTD and the data string clustering algorithm, not all SRRs 
provide the correct information about the template. We design an 
algorithm to let SRRs vote for the template graph. The idea is that 

as long as a majority of SRRs provide correct information, the 
algorithm will generate the correct template graph. Figure 7 shows 
an example of the voting process.
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Figure 7. Two SRRs vote for template graph

Figure 8 shows the template graph voting algorithm. A vertex in a 
template graph represents a data slot in the SRR template. We 
consider each data string cluster as a data slots initially, and then 
let all SRRs vote for the relationships between the data slots. In 
essence, an SRR template graph represents the data slots and their 
relationship in SRRs. 

Algorithm Build_Temp_Graph(SSRR)
    G (V , E) �m �- ��
    for r �• SSRR do
        for <d i, d i+1> �• r do
            c i �m the cluster d i belongs to;
            c i+1 �m the cluster d i+1 belongs to;
            v i �m the template node corresponding to ci;
            If v i  = null 
                Create vi and add vi to V  ;
            v i+1 �m the cluster v i+1 belongs to c i+1;
            if vi+1  = null 
                Create vi+1 and add v i+1 to V;
            e �m the edge from v i to v i+1;
            if e  = null 
                Create e and add e to E;
            W (e) �m W (e) + 1;
        end for;
    end for;
    for e �• E  do
        if W (e) < T e

            remove e from E ;
    end for;
    for v �• V  do
        if W (v) < Tv

            remove v from V ;
    end for;
    break cycles in G  by removing edges with lowest weight in
        cycles;
    return G ;

 Figure 8. Template Graph Voting Algorithm

At first we have an empty template graph. Then for each SRR, we 
check its consecutive data string pairs di and di+1. The clustering 
algorithm in section 4.2 ensures that two data string pairs belong 
to two different clusters. We get the data string clusters ci and ci+1 

that di and di+1 belong to. The next step is to ensure that there are 
vertexes vi and vi+1 in the template graph that correspond to the 
two data clusters, and the weight of the edge from vi to vi+1 is 
increased by 1.

After all SRRs voted for the template graph, we check the graph 
to remove low weight edges and vertexes. They are considered as 
false because of their low supports. In some cases there might be 



cycles in the generated template graph, which is contradictory to 
the assumption that a template graph is a DAG. We break the 
detected cycles by removing the edges with the lowest weights in 
them. The outcome is the SRR template graph.

5. EXPERIMENTS
We implemented a prototype SRR template mining system based 
on the proposed method. The system contains a DTD trainer, a 
TTD trainer and an SRR template builder. The DTD trainer and 
TTD trainer are used to train the neural network based Decorative 
Tag Detector and the Template Text Detector. As introduced in 
section 3.3, The SRR template builder consists of an SRR 
extraction module, a DTD, a data string clustering module, a TTD 
and a template generating module. With pre-trained DTD and 
TTD, the SRR template builder is a fully automatic template 
building system. It takes a set of result pages that contain SRRs as 
input; the output is a template graph that can be used to extract the 
detailed data units from the SRRs. The prototype system shows 
that the proposed method is both effective and efficient. On a 
laptop with a Pentium M 1.3G processor, it can build the SRR 
template from a set of 10 result pages within 5 to 30 seconds.

We present the experimental results in two parts. Section 5.1 
presents the performance of DTD and TTD as neural network 
classifiers; section 5.2 presents the performance of the SRR 
template builder with the DTD and TTD embedded. Accordingly, 
the testbed consists of two parts: part 1 consists of sample result 
pages downloaded from 57 search engines, while part 2 consists 
of sample pages downloaded from 50 search engines. These two 
sets of search engines are disjoint. For each search engine, we 
collect 5 to 10 sample result pages by manually submitting probe 
queries. Since a typical search engine result page contains 10 or 
more SRRs, we usually have more than 50 SRRs to collect 
statistic features for tags and high-frequency texts for DTD and 
TTD. We use the first 57 search engines to train DTD and TTD.

5.1 Testing of DTD and TTD
We implement the DTD and TTD based on Joone engine 1.2.1 
[29]. Both DTD and TTD consist of three sigmoid layers. 
Training samples for DTD are HTML tags extracted from the tag 
forests of SRRs. We use the method introduced in section 4.1.2 to 
collect the sample tags and their features. A total of 923 sample 
tags are collected from the 57 search engines in testbed part 1. 
The training samples for TTD are high-frequency texts. They are 
collected by the method introduced in section 4.3.1. From the 
result pages of the 57 search engines, a total of 943 high-
frequency texts are collected as the training samples for TTD.

We use 5-fold cross validation to measure the performance of 
DTD and TTD. The results Table 3 show that the proposed 
features and the design of the neural network classifiers can 
effectively identify the decorative tags as well as template texts.

Table 3. Performances of DTD and TTD
Fold 1 2 3 4 5 Average
DTD 0.913 0.983 0.978 0.951 0.962 0.957
TTD 0.936 0.958 0.973 0.941 0.936 0.949

5.2 Testing of SRR Template Builder
Before we test the SRR template builder on testbed part 2, we 
train the DTD and TTD on all samples collected from testbed part 
1. The testing of SRR template builder on each search engine is 
fully automatic, without any human involvement.

The 50 search engines in testbed part 2 consist of a wide variety 
of search engines: 20 e-commerce search engines, which are 
usually Web databases that search structured data, 15 news search 
engines, 10 medical search engines and 5 others. Among the 50 
search engines, only three arrange their results in tabular format.

We use a method similar to EXALG [2] to measure the 
performance of the SRR template builder. We first manually 
check the SRRs of each search engine to identify the data units in 
the SRRs. Then the data slots in the generated template graph are 
checked against the manually identified data units. We count the 
numbers of data slots that match and mismatch the data units. 
Finally the recall and precision of data units are used to measure 
the performance of the SRR template builder. 

The manual identification of data units from semi-structured SRR 
is a somewhat subjective process. We follow the following basic 
guidelines in doing the identification. First we do not extract data 
that is presented in the attributes of HTML tags, such as the 
HREF attribute of a hyper link. Thus the functional links like 
“Cached” and “Similar pages” are considered as templates instead 
of data. Second, a date is considered as a single data unit instead 
of a composition of month, day and year. Third, a complete hyper 
link is considered as a single data unit, etc. Another thing worth 
noting is that we don’t differentiate the optional and disjunctive 
data units from other data units when computing the statistics.  

Table 4. Performance of SRR Template Builder
Category Actual Extracted Correct Recall Precision
E-com. 133 134 120 0.902 0.896
News 61 69 59 0.967 0.855

Medical 43 43 39 0.907 0.907
Misc. 24 27 22 0.917 0.815
Total 261 273 240 0.920 0.889

Table 4 shows the summary of the test of the SRR template 
builder. The column with header Category lists the search engine 
categories. The column with header Actual, Extracted and Correct 
list the actually number of data units in the SRRs for each search 
engine, the number of data slots in the generated SRR template 
for each search engine, and the number of data slots in SRR 
template that match the corresponding data units for each search 
engine, respectively. The last two columns list the recall and 
precision. Each row presents the performance of the SRR template 
builder on a search engine category, except for the last row, which 
presents the performance over all 50 search engines.

We can see that the proposed method is generally effective, with a 
recall of 92% and precision of 88.9%. We compare our 
performance with EXALG [2], which is currently the best 
automatic web data template extraction tool in the literature. 
EXALG correctly extracted 80% of data units from a collection of 
45 web sites. Our recall is significantly higher although different 
datasets are used in these experiments. EXALG didn’t report its 
precision.

The fairly even performance among the search engines in the four 
categories shows the proposed method works almost equally well 
on a wide varieties of web databases and search engines.  

We missed 8% of data units during the test. The major reason is 
that some data units have almost exactly the same values in all 
SRRs on result pages of some search engines (for example, there 
are two sets of data units in the SRRs of officedepot.com, one set 
is for “units” and the other is for “availability”; on all result pages 
we collected, the value of “units” is always “each”, and the value 



of “availability” is always “In Stock”). Thus those data units were 
incorrectly identified as templates by the system. Another reason 
is the failure of TTD, which sometimes incorrectly put two or 
more data units into a single data slot. Some false data slots are 
also generated, which prevented a higher precision. This is mostly 
caused by the failure of DTD, which may sometimes incorrectly 
split a data slot into more data slots. This seems to imply that the 
57 search engines that were used to train DTD cannot represent 
the 50 search engines in part 2 very well. In fact, the majority of 
search engines in testbed part 1 are Google like document search 
engines, while the search engines in part 2 have a wider variety. 
We expect a larger training set would improve the performance.

6. CONCLUSION AND FUTURE WORK
Knowing the precise template of SRRs can greatly help 
applications that need to interact with search engines. For 
example, the template can help extract data units from the SRRs, 
which is a critical step in SRR annotation. In this paper, we 
proposed a new technique to extract the precise SRR template for 
any search engine automatically. As mentioned in the introduction 
section, this solution has quite a few novel features. For the first 
time, we systematically identified the factors that make the 
extraction of SRR template difficult and proposed novel solutions 
to address them explicitly and specifically. Even though our 
solution involves training in order to build the decorative tag 
detector and the template text detector, the training only needs to 
be carried out once and the trained detectors can be applied to any 
search engines, including those that are not used in the training. 
Our experimental results indicate that our solution is significantly 
more accurate than an existing state-of-the-art solution.

Our experiment revealed that our statistics-based solution does 
have an inherent weakness in dealing with attributes that have the 
same or nearly the same values (data units) in all SRRs. These 
data units will be mistakenly recognized as template texts. We 
plan to investigate how to overcome this weakness. One idea is to 
supplement our solution with a different solution. For example, 
one phenomenon we observed about these data units is that they 
often have their annotation labels next to them (usually in front of 
them) in the SRRs. In this case, these labels in all SRRs are also 
identical, and if the data units are not completely identical, these 
labels (they are template texts) can be recognized as the labels for 
the data units following them by the common prefix annotator 
proposed in [17, 22] and consequently the data units are also 
recognized correctly. But this still does not solve the problem 
when all the data units are identical so new solutions are still 
needed. 

7. ACKNOWLEDGMENTS
This work is supported in part by the following NSF grants: IIS-
0414981, IIS-0414939 and CNS-0454298.

8. REFERENCES
[1] B. Adelberg. NoDoSE – A Tool for Semi-Automatically 

Extracting Structured and Semistructured Data from Text 
Documents. ACM SIGMOD Conference, 1998.

[2] A. Arasu, H. Garcia-Molina. Extracting Structured Data from 
Web Pages. ACM SIGMOD Conference, 2003.

[3] R. Baumgartner, S. Flesca and G. Gottlob. Visual Web 
Information Extraction with Lixto. VLDB Conference, 2001.

[4] D. Buttler, L. Liu, C. Pu. A Fully Automated Object 
Extraction System for the World Wide Web. ICDCS 2001.

[5] C. Chang, S. Lui. IEPAD: Information Extraction based on 
Pattern Discovery. WWW Conference, 2001.

[6] C. Chang, M. Kayed, M. R. Girgis and K. F. Shaalan. A 
Survey of Web Information Extraction Systems. IEEE 
TKDE, Vol 18, No. 10, Oct. 2006.

[7] V. Crescenzi, G. Mecca, P. Merialdo. RoadRunner: Towards 
Automatic Data Extraction from Large Web Sites. VLDB 
Conference, 2001.

[8] D. Embley, Y. Jiang, Y. Ng. Record-Boundary Discovery in 
Web Documents. ACM SIGMOD Conference, 1999.

[9] A. Hogue and D. Karger. Thresher: Automating the 
Unwrapping of Semantic Content from the World Wide 
Web. WWW Conference, 2005.

[10] C. Hsu and M. Dung. Generating Finite-State Transducers 
for Semi-structured Data Extraction from the Web. 
Information Systems. 23(8): 521-538, 1998.

[11] U. Irmak, and T. Suel. Interactive Wrapper Generation with 
Minimal User Effort. WWW Conference, 2006.

[12] N. Kushmerick, D. Weld, R. Doorenbos. Wrapper Induction 
for Information Extraction. Int’l Joint Conf. on AI, 1997.

[13] A. Laender, B. Ribeiro-Neto, A. da Silva, J. Teixeira. A Brief 
Survey of Web Data Extraction Tools. ACM SIGMOD 
Record, 31(2), 2002.

[14] B. Liu, R. Grossman and Y. Zhai. Mining Data Records in 
Web Pages. ACM SIGKDD Conference, 2003.

[15] B. Liu and Y. Zhai. NET – A System for Extracting Web 
Data from Flat and Nested Data Records. WISE Conference, 
2005.

[16] L. Liu, C. Pu and W. Han. XWRAP: An XML-Enabled 
Wrapper Construction System for Web Information Sources. 
IEEE ICDE, 2000.

[17] Y. Lu, H. He, H. Zhao, W. Meng, C. Yu. Annotating 
Structured Data of the Deep Web. IEEE ICDE, 2007.

[18] W. Meng, C. Yu, K. Liu. Building Efficient and Effective 
Metasearch Engines. ACM Compu. Surv., 34(1), 2002.

[19] I. Muslea, S. Minton, C. Knoblock. A Hierarchical Approach 
to Wrapper Induction. Int’l Conf. on Auton. Agents, 1999.

[20] S. Raghavan, H. Garcia-Molina. Crawling the Hidden Web. 
VLDB Conference, Italy, 2001.

[21] K. Simon, and G. Lausen. ViPER: Augmenting Automatic 
Information Extraction with Visual Perceptions. ACM 
CIKM 2005.

[22] J. Wang, F. Lochovsky. Data Extraction and Label 
Assignment for Web Databases. WWW Conference, 2003.

[23] Z. Wu, V. Raghavan et al. Towards Automatic Incorporation 
of Search Engines into a Large-Scale Metasearch Engine. 
IEEE/WIC WI-2003 Conference, 2003.

[24] G. Yang, I. V. Ramakrishnan and M. Kifer. On the 
Complexity of Schema Inference from Web Pages in the
Presence of Nullable Data Attributes. ACM CIKM, 2003.

[25] Y. Zhai, B. Liu. Web Data Extraction Based on Partial Tree 
Alignment. WWW Conference, 2005.

[26] Y. Zhai, B. Liu. Extracting Web Data Using Instance-Based 
Learning. WISE Conference, 2005.

[27] H. Zhao, W. Meng, Z. Wu, V. Raghavan, C. Yu. Fully 
Automatic Wrapper Generation for Search Engines. WWW 
Conference, 2005.

[28] J. Zhu, Z. Nie, J. Wen, B. Zhang, W. Ma. Simultaneous 
Record Detection and Attribute Labeling in Web Data 
Extraction. ACM SIGKDD Conference, 2006.

[29] http://www.jooneworld.com/.


