Course Syllabus
CS375: Design & Analysis of Algorithms
Spring 2014

Instructor and Teaching Assistants

Instructor: Lei Yu
Office: Q5, Engineering Building
Lecture hours: A0: 1:10pm-2:10pm (MWF); B1: 2:20pm-3:20pm (MWF)
Office hours: 3:30pm – 4:30pm, MW, or by appointment
Email: lyu@cs.binghamton.edu

Teaching assistant: Yi Zhang
Office: TBD, Engineering Building
Office hours: 12:00pm – 1:00pm, TTH, or by appointment
Lab section: A50, room: SW325, time: 1:15pm-2:40pm, TH
Email: "Yi Zhang" <yzhang25@binghamton.edu>

Teaching assistant: Yunli Tang
Office: TBD, Engineering Building
Office hours: 11:00am – 12:00pm, MW, or by appointment
Lab section: B51, room: AA G023, time: 2:50pm-4:15pm, TH
Email: "Yunli Tang" <ytang4@binghamton.edu>

Course Description

Analysis of common algorithms for processing strings, trees, graphs and networks. Comparison of sorting and searching algorithms. Algorithm design strategies: divide and conquer, dynamic, greedy, back tracking, branch and bound. Introduction to NP-completeness. Required activity includes student presentations. Prerequisites: CS 240 and MATH 314.

Prerequisites

CS 240: Data Structures and Algorithms
Math 314: Discrete Mathematics

CS375 assumes students have mastered:

1. A high level language such as Java, C or C++.
2. Basic data structures such as arrays, linked lists, trees, heaps, and graphs.
3. Basic mathematical concepts such as:
 a. Logarithms and exponents
 b. Arithmetic and geometric series
 c. Combinations and permutations
 d. Limits and derivatives
 e. Proof techniques such as induction, direct proof, proof by contradiction, etc.

Textbook

Reference Books

Main Topics

<table>
<thead>
<tr>
<th>No.</th>
<th>Topic</th>
<th>Cormen Textbook Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Time complexity, insertion sort and merge sort, asymptotic growth functions</td>
<td>Chapters 1, 2, 3</td>
</tr>
<tr>
<td>2</td>
<td>Solving recurrences, divide and conquer algorithms</td>
<td>Chapters 4</td>
</tr>
<tr>
<td>3</td>
<td>Heaps, heapsort, binary search trees</td>
<td>Chapters 6, 12</td>
</tr>
<tr>
<td>4</td>
<td>Sorts</td>
<td>Chapters 7, 8</td>
</tr>
<tr>
<td>5</td>
<td>Backtracking</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Hash functions</td>
<td>Chapter 11</td>
</tr>
<tr>
<td>7</td>
<td>Dynamic Programming</td>
<td>Chapter 15</td>
</tr>
<tr>
<td>8</td>
<td>Greedy method</td>
<td>Chapter 16</td>
</tr>
<tr>
<td>9</td>
<td>Amortized Analysis</td>
<td>Chapter 17</td>
</tr>
<tr>
<td>10</td>
<td>Graphs</td>
<td>Chapter 22</td>
</tr>
<tr>
<td>11</td>
<td>NP-Completeness</td>
<td>Chapter 34</td>
</tr>
</tbody>
</table>
Grades

1. Grading policy
 - Two exams 40% (Midterm 15%, Final 25%)
 - 7-8 short quizzes 10% (2% each, after dropping 2-3 lowest grades)
 - Two programming Assignments 20% (10% each)
 - Four theoretical assignments 20% (5% each)
 - Project and presentation 10%

 Please note that no makeup quiz or exam will be given.

 Late assignment submission may be accepted, but late penalty (20% per day) will apply.
 No submission late for more than 2 days will be accepted.

2. Grading disputes
 In this course, we commonly give partial credit to partially correct answers. Should you dispute a partial credit, please be aware that we will not re-grade a single question in a homework, quiz or exam. ALL partial credits of the work will be re-examined. The new grade may be higher, lower, or stay the same. This new grade will not be changed.

3. Missing grades
 Your grades will be posted on Blackboard. Please check your status on blackboard periodically and make sure that there are no missing grades or errors. A missing grade at the end of the semester will indicate that the work has NOT been done.

4. Extra credit
 Homework assignments may contain extra credit questions that may add up to 10% to your overall grade (enabling an overall grade higher than 100%). These problems are usually more difficult to solve. Students striving for a grade of A are encouraged to work on these problems.

5. Quizzes
 Some of the quizzes are pop up quizzes, while others are pre-announced with a scheduled date.

6. Exams
 Students MUST take all exams on the scheduled date and time. There will NOT be makeup exams.

7. Academic honesty expectations
 Please review the academic honesty document and make sure that you understand it! The link is: http://www2.binghamton.edu/watson/advising/pdfs/honesty-policy.pdf
 Cheating and copying will NOT be tolerated.
 - Each programming or theoretical assignment should start with the following statement:
 “I have done this assignment completely on my own. I have not copied it, nor have I given my solution to anyone else. I understand that if I am involved in plagiarism I will have to sign an official form that I have cheated and that this form will be stored in my student’s records. I also understand that I will receive a grade of 0 for all programming and theoretical assignments so that my maximum grade will be 60%.”
• Each exam and quiz will have a first page with the following statement:

 “I understand that if I am caught copying, or talking during the exam/quiz I will have to sign an
 official form that I have cheated and that this form will be stored in my student’s records. I also
 understand that I will receive a grade of 0 for the exam/quiz”

Your homework assignment, quiz or exam will not be graded unless the statement above is followed by
your signature.

8. Reading Assignments and review questions

You will be given a reading assignment for each unit. It may also include material that will not be
covered in class but will be included in homework assignments. For some units you will also be provided
with some "review questions".

Reading the text in this course is time consuming. To understand the material you may need to read the
material more than once. After you read the material try to answer the review questions.

9. Homework assignments

• Much of what one learns in this course comes from solving problems.
• Start working on the homework early.
• Most questions require both knowledge of the material and problem solving ability.
• If you don't know how to solve a problem, don't give up.
• Make sure that you understand the questions.
• See if you can solve a problem for some simple cases, and then try to find a general solution.
• Try again on the next day.

All solutions of theoretical assignments must be typed (no handwritten solutions) and submitted in hard copy.
Advance electronic submission to the TA is acceptable if the student is expected to miss the class on the due date.

Please make an effort to make your programs easy to understand and grade. Grading all assignments in
this course is very time consuming! All programming assignments should have:

1. For the program (in a README file):
 • Step-by-step instructions on how to compile and run the program.
 • The data structures used by the program and how they are implemented.
 • Some analysis or discussion of its computation time.
 • The classes used and their interaction.

2. For each class in your program
 • An explanation of the purpose of the class, and the methods it includes.

3. For each method (function)
 • A description of the purpose of each function and an explanation of how it works.
 • A description of the purpose, and the assumptions made about each parameter of a function.
 • A comment for every variable declaration.

Program grades

• You will get a grade of at most 10% if your code does not compile.
• If the program compiles but it has runtime errors or bugs, your grade will be based on the
 severity of the bugs.
• Please note that the TA or instructor will not look at or debug your code before submission.
• You may find it helpful to use tools such as gdb, valgrind, and IDE debuggers. These will help you figure out why your program does not work properly and save you a lot of time. Google is a good standby when you get errors you have not seen before.

10. Programming Language

Programs must be written in Java, C++, or C. Make sure a program compiles on harvey.cc.binghamton.edu and runs correctly.

Class and Labs Attendance

Attendance is required. Some of the quizzes are pop quizzes. If you regularly miss classes or labs, your overall quiz score will be negatively affected.

Computers and Other Electronic Devices

You are not allowed to use your laptop/notebook/tablet computers during class except during a project presentation. Cell phones must be turned off or in vibrate alert mode during class.

Office Hours

We encourage you to take advantage of the office hours.