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Stable Gene Selection from Microarray Data
via Sample Weighting
Lei Yu, Yue Han, and Michael E. Berens

Abstract—Feature selection from gene expression microarray data is a widely used technique for selecting candidate genes in various
cancer studies. Besides predictive ability of the selected genes, an important aspect in evaluating a selection method is the stability of
the selected genes. Experts instinctively have high confidence in the result of a selection method that selects similar sets of genes
under some variations to the samples. However, a common problem of existing feature selection methods for gene expression data is
that the selected genes by the same method often vary significantly with sample variations. In this work, we propose a general
framework of sample weighting to improve the stability of feature selection methods under sample variations. The framework first
weights each sample in a given training set according to its influence to the estimation of feature relevance, and then provides the
weighted training set to a feature selection method. We also develop an efficient margin-based sample weighting algorithm under this
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framework. Experiments on a set of microarray data sets show that the proposed algorithm significantly improves the stability of
representative feature selection algorithms such as SVM-RFE and ReliefF, without sacrificing their classification performance.
Moreover, the proposed algorithm also leads to more stable gene signatures than the state-of-the-art ensemble method, particularly for

small signature sizes.

Index Terms—Feature selection, gene selection, stability, classification, gene expression microarray.

1 INTRODUCTION

HE identification and validation of molecular biomar-

kers for cancer diagnosis, prognosis, and therapeutic
targets is an important problem in cancer genomics. Due to
the time-consuming, costly, and labor-intensive nature of
clinical and biological validation experiments, it is crucial to
select a list of high-potential biomarker candidates for
validation [27]. Gene expression microarray data [13] are
widely used for identifying candidate genes in various
cancer studies. From a machine learning viewpoint, the
selection of candidate genes in this context can be regarded
as a problem of feature selection from high-dimensional
labeled data, where the aim is to find a small subset of
features (genes) that best explain the difference between
samples of distinct phenotypes.

Many feature selection methods have been adopted for
gene selection from microarray data, and have shown good
classification performance of the selected genes [23], [31],
[36], [39]. However, a common problem with existing gene
selection methods is that the selected genes by the same
method often vary significantly with some variations of
the samples in the same data set [7], [10], [20]. To make the
matters worse, different methods or different parameter
settings of the same method may also result in largely
different subsets of genes for the same set of samples. The
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instability of the resulting gene signatures raises serious
doubts about the reliability of the selected genes as
biomarker candidates and hinders biologists from deciding
candidates for subsequent validations.

The stability issue of feature selection has recently
become a topic of strong interest in both the machine
learning and the bioinformatics communities. Several
studies have developed stability measures and assessed
the stability of existing feature selection methods [3], [7],
[19], [20], [21]. Others have employed ensemble (Ens.)
techniques to improve the stability of feature selection
results, including: Bayesian model averaging [22], [37],
aggregating the results of a collection of feature ranking
methods [9], [35], and aggregating the results of the same
feature selection method from bootstrapped subsets of
samples [1], [7], [8].

The stability of feature selection is a complicated issue,
inviting an abundance of approaches to improve the stability
of feature selection results. Several major factors affect the
stability of feature selection results: the mechanisms of
feature selection methods, the underlying data distribution,
and the sample size [11], [25]. It is important to note that
stability of feature selection methods should not be investi-
gated alone, but always together with the predictive
performance of the selected genes. Biologists will not be
interested in a strategy (e.g., arbitrarily selecting the same set
of genes regardless of the input samples) that yields very
stable gene signatures but bad predictive models.

In this work, we focus on the stability of feature selection
methods under sample variations. We propose a sample
weighting (SW) framework to improve the stability of
feature selection methods. The framework is motivated by
importance sampling, one of the commonly used variance
reduction techniques [30]. The main idea of this framework
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is to first weight each sample in a training set according to
its influence to the estimation of feature relevance, and then
provide the weighted training set to a feature selection
method. Intuitively, different samples in a training set could
have different influence on the feature selection result
according to their views (or local profiles) of the relevance
of each feature. If a sample shows a noticeably distinct local
profile from the other samples, its absence or presence in
the training data will substantially affect the feature
selection result. In order to improve stability, samples with
outlying local profiles need to be weighted differently from
the rest of the samples. To this end, we propose a margin-
based sample weighting algorithm which assigns a weight
to each sample according to the outlying degree of its local
profile of feature relevance compared with other samples.
The local profile of feature relevance at a given sample is
measured based on the hypothesis margin of the sample.

Our experiments on a set of public microarray data sets
show that the proposed sample weighting framework
significantly improves the stability of SVM-RFE [15] and
ReliefF [29] while maintaining their classification perfor-
mance. The sample weighting framework is also compared
with the bagging ensemble framework [1] based on SVM-
RFE and ReliefF. Experimental results show that the
improvement to the stability of both algorithms by sample
weighting is generally more significant than the improve-
ment by bagging ensemble, particularly for small signature
sizes (a few tens of genes).

The rest of the paper is organized as follows: Section 2
proposes a margin-based sample weighting algorithm under
the general framework of sample weighting. Section 3
describes experimental setup. Section 4 presents and
discusses experimental results. Section 5 provides conclud-
ing remarks and points out some future research directions.

2 MARGIN-BASED SAMPLE WEIGHTING

In a recent study [16], Han and Yu proposed a theoretical
framework about stable feature selection which defines the
stability of feature selection from a sample variance
perspective and shows that the stability of feature selection
under training data variations can be improved by variance
reduction techniques. The sample weighting framework
proposed in this study is motivated by importance
sampling, one of the commonly used variance reduction
techniques [30]. The theory of importance sampling
suggests that in order to reduce the variance of a Monte
Carlo estimator (e.g., the estimate of feature relevance by a
feature weighting algorithm based on a training set),
instead of performing ii.d. sampling, we should increase
the number of samples taken from regions which contribute
more to the quantity of interest and decrease the number of
samples taken from other regions. When given only the
empirical distribution in a training set, although we cannot
redo the sampling process, we can simulate the effect of
importance sampling by increasing the weights of samples
taken from more important regions and decreasing the
weights of those from other regions. Therefore, the problem
of variance reduction for feature selection boils down to
finding an empirical solution to estimating the importance
of samples with respect to feature evaluation and weighting

samples accordingly. Section 2.1 provides some prelimin-
aries. Section 2.2 presents the main ideas of the proposed
sample weighting framework. Section 2.3 provides the
technical details of the margin-based sample weighting
algorithm developed under this framework.

2.1 Preliminaries

Let D ={(x;,y;)};_; denote a training set of n labeled
samples, where x; is a sample vector in the feature space !
defined by d features Xj,..., Xy, and y is the value of the
class variable Y. For gene selection, a gene expression
microarray data set, consisting of the expression levels of
d genes across n samples labeled by experimental condi-
tions, can be represented as a training set for feature
selection, with each gene represented by a feature.

Margins play an important role in modern machine
learning research, and have been used both for theoretical
generalization bounds and as guidelines for algorithm
design. They measure the confidence of a classifier with
respect to its decisions [5]. As described in [6], there are two
natural ways of defining the margin of a sample with
respect to a classifier. Sample margin measures the distance
between a sample and the decision boundary of a classifier.
Support Vector Machine (SVM) [5], for example, uses this
type of margin; it finds the separating hyperplane with the
largest sample margin for support vectors. An alternative
definition, hypothesis margin, measures the distance between
the hypothesis of a sample and the closest hypothesis that
assigns alternative label to the sample. Hypothesis margin
requires a distance measure between hypotheses (classi-
fiers). For example, AdaBoost [12] uses this type of margin
with the Li-norm as the distance measure between
hypotheses. Feature selection methods developed under
the large margin principles such as SVM-RFE [15] and
ReliefF [29] evaluate the relevance of features according to
their respective contributions to the margins.

For 1-Nearest Neighbor (INN) classifier, authors of [6]
proved that 1) the hypothesis margin lower bounds the
sample margin; and 2) the hypothesis margin of a sample x
with respect to a training set D can be computed by the
following formula:

1
O(x) = 5 (I — x| — x = x"]),

where x/ and x represent the nearest samples (called Hit
and Miss) to x in D with the same and opposite class labels,
respectively. Since hypothesis margin is easy to compute
and large hypothesis margin ensures large sample margin,
we focus on hypothesis margin in this paper.

2.2 Margin Vector Feature Space

In our framework of sample weighting for stable gene
selection, we employ the concept of hypothesis margin in a
novel way. By decomposing the margin of a sample along
each dimension, the sample in the original feature space can
be represented by a new vector (called margin vector) in the
margin vector feature space defined as follows:

Definition 1. Let x = (z1,...,2q) be a sample in the original
feature space R?, and x" and x™ represent the nearest samples
to x with the same and opposite class labels, respectively. For
each x € R¢, x can be mapped to x' = (z},...,2)) in a new
feature space R'* according to
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Fig. 1. An illustrative example for Margin Vector Feature Space. Each data point in the original feature space (left) is projected to the margin vector
feature space (right) according to its hypothesis margin in the original feature space. The class labels of data points are distinguished by triangles

and squares.
M H
ol = |vj — x| — |z; — x|, (1)
where x; is the jth coordinate of x' in the new feature space
R4, and x;, mé‘[, or xf] is the jth coordinate of x, x*, or x™ in
the original feature space R?, respectively. Vector x' is called
the margin vector of x, and R'* is called the margin vector
feature space.

In essence, x' captures the local profile of feature
relevance for all features at x. The larger the value of 2/,
the more feature X contributes to the margin of sample x.
Thus, the margin vector feature space captures local feature
relevance profiles (margin vectors) for all samples in the
original feature space.

Fig. 1 illustrates the idea of margin vector feature space
through a 2D example. Each labeled data point (triangle or
square) is a sample with two features. Each sample in the
original feature space (left) is projected into the margin
vector feature space (right) according to (1). We can clearly
see that samples labeled with triangles exhibit largely
different outlying degrees in the two feature spaces.
Specifically, those in the dashed ovals are evenly distrib-
uted within the proximity to the rest of the triangles (except
the outlier on the leftmost) in the original feature space, but
are clearly separated from the majority of the samples in the
margin vector feature space. The outlier triangle in
the original space becomes part of the majority group in
the margin vector feature space. To decide the overall
relevance of features X1 versus X2, one intuitive idea is to
take the average over all margin vectors, as adopted by the
well-known ReliefF algorithm [29]. However, since the
samples in the dashed oval exhibit largely distinct margin
vectors from the rest of the samples, the presence or absence
of these samples in the training set will affect the global
decision on which feature is more relevant.

From the illustrative example, we can see that the margin
vector feature space captures the distance among samples
with respect to their margin vectors (instead of feature
values in the original space), and enables the detection of

samples that largely deviate from others in this respect. By
identifying and reducing the emphasis on these outlying
samples, more stable results can be produced from a feature
selection method. In the next section, we will further
discuss how to exploit such discrepancy to weight samples
in order to alleviate the affect of training data variations on
feature selection results.

2.3 Algorithm

The previous definition on margin vector feature space only
considers one nearest neighbor from each class. To reduce
the affect of noise or outliers in the training set on the
transformed feature space, multiple nearest neighbors from
each class can be used to compute the margin vector of a
sample. In this work, we consider all neighbors from each
class for a given sample. Equation (1) can then be extended to

m ’ h
:r;-:zmj—x?ﬂ —Z|a:j—mfl|, (2)
=1 =1

where xf’ or xju’ denotes the jth component of the Ith

neighbor to x with the same or opposite class label,
respectively. m or h represents the total number of Misses
or Hits (m + h equals the total number of samples in the
training set excluding x).

Once the margin vector feature space is generated, the
next task is to exploit the discrepancy of margin vectors in
this space to weight samples in the original space. To
quantitatively evaluate the outlying degree of each margin
vector x’, we measure the average distance of x’ to all other
margin vectors; greater average distance indicates higher
outlying degree. As illustrated in Fig. 1, the global decision
of feature relevance is more sensitive to samples that largely
deviate from the rest of the samples in the margin vector
feature space than to samples that have low outlying
degrees. To improve the stability of a feature selection
method under training data variations, we assign lower
weights to samples with higher outlying degrees. This
decision is consistent with the intuition behind importance
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TABLE 1
Summary of Microarray Data Sets
Name # Features  # Samples  Source
Colon 2000 62 [2]
Leukemia 7129 72 [13]
Prostate 6034 102 [32]
Lung 12533 181 [14]

sampling introduced earlier. Specifically, the weight for a
sample x in the original feature space is given by

1/dist(x)

W) =S 3 s

®3)

where

n—1

Z dist( x x

i=1,x/#x

dzst

n—l

Algorithm 1 outlines the key steps of the margin-based
sample weighting algorithm. Both feature space transfor-
mation and sample weighting involve distance computation
along all features for all pairs of samples: the former in the
original feature space, and the latter in the margin vector
feature space. Since these computations dominate the time
complexity of the algorithm, the overall time complexity of
the algorithm is O(n? * d), where n is the sample size and d
is the number of features (genes). Therefore, the algorithm
is very efficient for microarray data with small sample size
(ie., n < d).

Algorithm 1. Margin Based Sample Weighting
Input: data D = {x;}_;
Output: weight vector w for all samples in D
// Feature Space Transformation
for i =1ton do
for j=1to ddo
For x;, compute z; ; according to Eq. (2)
end for
end for
// Sample Weighting
Calculate and store pair-wise distances among all margin
vectors X,
fori=1ton do
For x;, compute its weight according to Eq. (3)
end for

3 EXPERIMENTAL SETUP

Before we present experimental results in the next section,
we describe microarray data sets used, methods in compar-
ison, evaluation measures, and experimental procedures.

3.1 Microarray Data

We experimented with four frequently studied public gene
expression microarray data sets summarized in Table 1. The
Colon cancer data set [2] has been frequently used in
previous studies in gene selection and classification. It
consists of the gene expression profiles of 2,000 genes for
62 tissue samples among which 40 are colon cancer tissues

and 22 are normal tissues. The Leukemia data set [13] is
another widely used benchmark data set. It consists of gene
expression profiles of two classes of leukemia: acute
lymphoblastic leukemia (ALL) and acute myeloblastic
leukemia (AML). The data set consists of 7,129 genes and
72 samples (47 ALL and 25 AML). The Prostate data set [32]
consists of gene expression profiles of 6,034 genes for
52 prostate tumor samples and 50 normal samples. The
Lung cancer data set [14] consists of gene expression
profiles of 12,533 genes for 181 lung tissue samples among
which 31 are of malignant pleural mesothelioma (MPM)
and 150 are of adenocarcinoma (ADCA).

3.2 Methods in Comparison

We choose SVM-RFE and ReliefF as the baseline algorithms
for experimental study. We evaluate the effectiveness of the
proposed sample weighting framework for these two
algorithms. Furthermore, we compare the sample weight-
ing framework with a recently proposed ensemble frame-
work using SVM-RFE and ReliefF as the base algorithms.

3.2.1 Baseline Algorithms: SVM-RFE and ReliefF

Although much simpler feature selection methods are
available [24], SVM-RFE is chosen as a baseline because it
is known to provide state-of-the-art classification perfor-
mance and widely used in microarray data. Recently, the
original algorithm has been improved by several studies
such as bootstrapped SVM-RFE [8], two-stage SVM-RFE
[33], and SVM-RFE combined with MRMR filter [26]. SVM-
REFE is intrinsically a multivariate feature selection method
in the sense that it considers feature interaction while
evaluating the relevance of features.

The main process of SVM-RFE is to recursively eliminate
features of low weights, using SVM to determine feature
weights. Starting from the full set of features, at each
iteration, the algorithm trains a linear SVM classifier based
on the remaining set of features, ranks features according to
the squared values of feature weights in the optimal
hyperplane, and eliminates one or more features with the
lowest weights. This recursive feature elimination (RFE)
process stops until all features have been removed or a
desired number of features is reached. Our implementation
of SVM-RFE is based on Weka’s [34] implementation of
soft-margin SVM using linear kernel and default C
parameter. As suggested by the authors of SVM-RFE,
10 percent of the remaining features are eliminated at each
iteration to speed up the RFE process.

ReliefF [29] is chosen as another representative algorithm
for margin-based feature selection. It is a simple and
efficient feature weighting algorithm which considers all
features together in evaluating the relevance of features.
The main idea of ReliefF is to weight features according to
how well their values distinguish between samples that are
similar to each other. Specifically, for a two-class problem,
the weight for each feature X; is determined as follows:

n
|
])_nKZZ ‘x“ 711

=1 I=

|wij — i), (4)

M,
where z; ;, ”’,

or xHJ’ denotes the jth component of sample
x;, its Ith closest Miss x”

, or its Ith closest Hit le
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respectively. n is the total number of samples, and K is the
number of Hits or Misses considered for each sample. We
used Weka’s implementation of ReliefF with the default
setting K = 10.

ReliefF appears similar to our proposed sample weight-
ing algorithm since both algorithms involve distance
calculation between a sample and its Hits or Misses along
each feature for all samples. However, the two algorithms
are intrinsically different. ReliefF is a feature weighting
algorithm; it produces feature weights according to (4) which
does not explicitly construct the margin vector for each
sample but takes an average of the margins over all samples.
Our sample weighting algorithm produces sample weights
by explicitly projecting each sample to its margin vector in
the margin vector feature space (based on (2)) and a
successive sample weighting procedure in the margin vector
feature space. Our sample weighting algorithm can be used
as a preprocessing step for any feature selection algorithms
which can be extended to incorporate sample weights.

3.2.2 Sample Weighting SVM-RFE and Sample
Weighting ReliefF

Given a training set, SVM-RFE and ReliefF select features
based on the original training set where every sample is
equally weighted. They can be extended to work on a
weighted training set produced by the proposed sample
weighting algorithm. We refer to this version of SVM-RFE
or ReliefF as sample weighting SVM-RFE or sample
weighting ReliefF, respectively. We next explain how
sample weights are incorporated into each algorithm.

For SVM-REFE, feature weights are determined based on
the final chosen hyperplane of soft-margin SVM which is
decided by the trade-off between maximizing the margin
and minimizing the training error [5]. With a sample weight
w; > 0 assigned to each sample, the original objective
function of soft-margin SVM is extended as follows:

. 1 n
min - |wi* +C;wi@:, (5)

where the first component is the opposite of the margin,
and ¢&; (value of the slack variable) and C in the second
component, respectively, capture the error of each sample
caused by the hyperplane and the error penalty. For
samples with & > 0, increased or decreased sample weight
influences the error term (and hence the chosen hyperplane)
by amplifying or reducing the effect of &. When all samples
have equal weight, (5) becomes the original objective
function of soft-margin SVM.

For ReliefF, feature weights are determined based on the
weighting function in (4). With a sample weight w; >0
assigned to each sample, the original weighting function is
extended as follows:

n K
M, M bir bl
w(X;) = Z“” Z (w;"wij — i} | = wi @iy — aij]),  (6)
=1 =1
where w;, wf”‘, or wiH’ denotes the weight of sample x;, its
Ith closest Miss x.", or its Ith closest Hit x.", respectively.
Intuitively, samples with higher weights will have bigger
influence on deciding the feature weights, and vice versa.
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Equation (6) becomes the original weighting function (4)
when all samples have equal weight 1/n, and all Hits and
Misses have equal weight 1/K.

3.2.3 Ensemble SVM-RFE and Ensemble ReliefF

As mentioned in the Introduction, several ensemble
methods have been developed to improve the stability of
feature selection methods. We choose a most recent bagging
ensemble framework [1] to compare with our proposed
sample weighting framework. Given a training set, the
bagging ensemble framework first generates a number of
bootstrapped training sets (by random sampling with
replacement), and then repeatedly applies a base feature
selection method (e.g., SVM-RFE or ReliefF) on each of the
newly created training sets to generate a number of feature
rankings. To aggregate the different rankings into a final
consensus ranking, the complete linear aggregation scheme
used in [1] decides the consensus ranking by summing the
ranks of a feature decided based on all bootstrapped
training sets. We refer to the ensemble version of SVM-
RFE or ReliefF as ensemble SVM-RFE or ensemble ReliefF,
respectively. In our implementation, we use 40 boot-
strapped training sets to construct each ensemble, as
suggested by Abeel et al. [1].

3.3 Evaluation Measures

3.3.1 Stability Measures

Following [1] and [20], we take a similarity-based approach
where the stability of a feature selection method is
measured by the average over all pairwise similarity
comparisons among all feature subsets (gene signatures)
obtained by the same method from different subsamplings
of a data set. Let D = {D;} | be a set of subsamplings of a
data set of the same size, and r; be the feature subset
selected by a feature selection method F on the subsam-
pling D;. The stability of F over D is given by

~1
5 23700 > imin S(rir))
pF = ’
a(q—1)

where S(r;,r;) represents a similarity measure between
subsets r; and r;.

The stability of a feature selection method depends on
the specific choice of the similarity measure S(r;,r;). Simple
measures such as the percentage of overlap or Jaccard index
can be applied as in [20]. These measures tend to produce
higher values for larger subsets due to the increased bias of
selecting overlapping features by chance. To correct this
bias, Kuncheva suggested the use of the Kuncheva index
[21], defined as follows:

(7)

r— (k/d)

S(ri,r;) S ho(R/d)’ (8)

where d denotes the total number of features in a data set,
k = |r;] = |r;] denotes the size of the selected subsets, and
r=|r;Nr;| is the number of common features in both
subsets. The Kuncheva index takes values in [—1, 1], with
larger value indicating larger number of common features
in both subsets. The k%/d term in the index corrects a bias
due to the chance of selecting common features between



YU ET AL.: STABLE GENE SELECTION FROM MICROARRAY DATA VIA SAMPLE WEIGHTING 267

two randomly chosen subsets. An index close to zero
reflects that the overlap between two subsets is mostly due
to chance.

The Kuncheva index only considers overlapping genes
between two gene subsets, without taking into account
nonoverlapping but highly correlated genes which may
correspond to coordinated molecular changes. To address
this issue, Zhang et al. proposed a measure called
percentage of overlapping genes-related, POGR, defined
as follows [38]:

r—4 07]

POGR(I‘“I']) = L 5

(9)

where k; = |r;| denotes the size of the gene subset r;, r =
|r; Nr;| denotes the number of overlapping genes, and O; ;
denotes the number of genes in r; which are not shared but
significantly positively correlated with at least one gene in
r;. To normalize the bias effect of subset size, nNPOGR, the
normalized POGR, is defined as

r—+ Oj‘]‘ — E(T) — E(O”)

nPOGR(rY) = ey " E0,)

(10)

where E(r) is the expected number of overlapping genes,
and E(O; ) is the expected number of genes in r; which are
not shared but significantly positively correlated with at
least one gene in rj, for two gene subsets (with sizes |r;| and
Ir;|) randomly extracted from a given data set. The term
E(r) or E(O, ), respectively, corrects the bias due to the
chance of selecting common genes or selecting significantly
correlated genes between two randomly chosen gene
subsets. Both definitions of POGR and nPOGR are
nonsymmetric because it is possible that |r;| # |r;| and/or
O;; # Oj;.

In our stability study, since we are interested in pairwise
similarity between a number of gene subsets of equal size,
we extend the original nPOGR measure into a symmetric
measure by combining nPOGR(r;,r;) and nPOGR(rj,r;)
as follows:

r+ O — E(r) — E(O)
B0 -E0) W

where O = (0;; + 0;;)/2, and E(O) is the expected number
of genes in one gene subset which are not shared but
significantly positively correlated with at least one gene in
the other subset, for any pair of gene subsets (with the same
size) randomly extracted from a given data set. Note that
this measure becomes the Kuncheva index if the two terms
O and E(O) about significantly correlated genes are
removed. According to Zhang et al. [38], E(O) is estimated
based on 10,000 randomly generated pairs of gene subsets.
Significantly correlated genes are determined based on
Pearson correlation with 0.1 percent FDR control.

HPOGR(I'“I‘]) =

3.3.2 Classification Performance Measure

Since the data sets used in this study contain imbalanced
class distributions (in particular, the lung cancer data set),
we adopt a commonly used measure in this context, the
area under the receiver operating characteristic (ROC) curve
(denoted as AUC), to compare the classification perfor-
mance of different methods. AUC is a function of two class-
specific measures: sensitivity and specificity, defined as the

proportions of correctly classified samples in the positive
and the negative classes, respectively.

3.4 Experimental Procedures

For each data set used in the study, the entire data set was
randomly split into the training set and the test set, with 2/3
of all the samples of each class in the training set, and the rest
in the test set. The conventional, ensemble, and sample
weighting versions of a baseline algorithm (SVM-RFE or
ReliefF) were applied on the training set to select subsets of
genes at various sizes (signature sizes as in Fig. 2 and Table 2).
For each selected subset, both a linear SVM classifier (with
default C' parameter in Weka) and a K-nearest neighbor
classifier (K = 1) were trained based on the selected genes
and the training set, and then tested on the corresponding test
set. For each data set, the above procedures were repeated
100 times. The stability of a selection method was measured
over the 100 subsamplings of the data set according to (7).
The classification performance of the method was measured
by the average AUC over the 100 random training/test splits.

4 REeSuLTS

4.1 Stability Performance

Fig. 2 reports the stability performance of the conventional,
ensemble, and sample weighting versions of the SVM-RFE
and ReliefF algorithms based on the Kuncheva index and
nPOGR measures for the four microarray data sets used in
our study. The result discussion below starts with a
comparison among the three versions of SVM-RFE based
on the Kuncheva index, and then expands to the alternative
nPOGR measure and ReliefF algorithm.

From the four subgraphs in column (A), we can observe
the following three major trends. First, the stability of SVM-
REFE is very low for all of the four data sets. For example, at
signature size 100 for the Colon data, the pairwise similarity
between two gene signatures, on average (over the
100 generated gene signatures), is only 0.3 by the Kuncheva
index, indicating on average roughly 30 percent overlap
between any pair of gene signatures. Second, sample
weighting consistently improves the stability of the gene
signatures selected by SVM-REFE for all data sets at various
signature sizes. In particular, the improvement becomes
more significant as the signature size gets smaller. This is
important because biologists usually focus on a few tens of
most relevant genes to identify biomarker candidates for
validation. Third, sample weighting is in general more
effective than ensemble at improving the stability of SVM-
RFE, especially at small signature sizes.

We now examine the stability performance of the three
versions of SVM-RFE based on the nPOGR measure which
takes into account significantly correlated genes in addition
to overlapping genes between two gene signatures. From
the four subgraphs in column (B), we can observe the same
three trends discussed above for the three versions of SVM-
REFE, since the stability curves measured by the nPOGR (in
column (B)) are in general very close to those measured by
the Kuncheva index (in column (A)) for the same algorithm
and the same data set. Interestingly, considering signifi-
cantly correlated genes does not improve the stability
performance at our experimental settings. A close examina-
tion of the calculation of the nPOGR formula in (11) showed
that usually a number of significantly correlated genes were
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Fig. 2. Stability of the conventional, Ensemble, and Sample Weighting versions of SVM-RFE and ReliefF at increasing gene signature sizes.
Subgraphs in column (A) based on the Kuncheva index and SVM-RFE; column (B) based on the nPOGR and SVM-RFE; column (C) based on the
Kuncheva index and ReliefF; and column (D) based on the nPOGR and ReliefF.

identified in each case (i.e., term O < 0), but this number
was often offset by the term E(O), the expected number of
significantly correlated genes from random selection. A few
exceptions happened at small signature sizes for the Lung
data, which led to noticeable increases of stability based on
the nPOGR measure.

The above observations verify the effectiveness of
sample weighting at improving the stability of SVM-RFE.
We now examine its effectiveness for ReliefF. Subgraphs in
columns (C) and (D) report the stability of the three versions
of ReliefF based on the Kuncheva index and nPOGR
measures, respectively. We can observe that the stability
of ReliefF is consistently higher than SVM-RFE under either
measure. Although ReliefF shows relatively more stable
results, sample weighting still consistently improves its
stability for all data sets except the Prostate data where

ReliefF and SW ReliefF perform nearly the same. It is worth
mentioning that for the Lung data, SW ReliefF exhibits
almost perfect stability based on either measure. In contrast
to sample weighting, the ensemble method exhibits a
negative effect on the stability of ReliefF.

Overall, results from Fig. 2 verify that the proposed
sample weighting framework is an effective approach to
improving the stability of representative feature selection
algorithms such as SVM-RFE and ReliefF. Compared with
bagging-based ensemble, sample weighing is in general
more effective. Although the stability appearance of a
feature selection algorithm depends on the choice of
stability measures, results from Fig. 2 suggest that con-
sidering significantly correlated genes in a stability measure
does not dismiss the instability problem for existing feature
selection algorithms under training data variations.
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TABLE 2
Classification Performance Measured by the AUC (Average Value + Standard Deviation) of the Linear SVM for the Conventional,
Ensemble, and Sample Weighting Versions of SVM-RFE and ReliefF at Increasing Gene Signature Sizes

Gene Signature Size
Data Selection Method 10 50 100 150 200
Colon SVM-RFE 76.4+9.5 | 775482 | 79.248.7 79.448.5 80.1£8.7
Ens. SVM-RFE 80.3+£7.9 | 79.449.0 78.6+8.3 78.6+9.1 79.44+8.7
SW SVM-RFE 79.549.1 | 81.2+84 | 78.44+10.0 | 76.2+10.0 76.2+9.5
ReliefF 78.8+£8.8 | 80.1£8.8 | 78.5+8.7 77.5+8.9 76.1£8.5
Ens. ReliefF 789489 | 80.24+9.9 791494 77.3+9.6 76.11+9.0
SW ReliefF 78.3+8.2 | 79.64+9.4 78.11+9.4 76.4+10.0 | 75.44+10.0
Leukemia | SVM-RFE 92.84+5.8 | 96.3+3.8 | 96.9+3.3 96.84+3.5 97.0+3.4
Ens. SVM-RFE 929454 | 96.44+3.9 97.243.1 97.0+3.4 96.7+£3.5
SW SVM-RFE 91.245.6 | 96.24+3.9 96.4+3.3 96.5+3.4 96.8+3.5
ReliefF 915453 | 95.2+4.7 | 95.9+4.1 96.1+3.9 96.4+3.4
Ens. ReliefF 91.3+£5.5 | 94.74+4.3 95.7+4.0 96.3+3.7 96.2+3.8
SW ReliefF 91.245.6 | 94.54+5.2 95.7+4.7 95.2+4.9 95.3+5.0
Prostate SVM-RFE 89.8+£5.1 | 91.3+4.1 92.1+£3.8 92.1+4.3 92.2+3.9
Ens. SVM-RFE 929441 | 92.04+4.5 | 92.0+4.6 92.6+4.0 92.74+4.3
SW SVM-RFE 93.4+3.6 | 91.3+4.5 90.0+4.8 90.7+4.9 91.2+4.7
ReliefF 93.3£3.8 | 93.0+4.1 914+44 91.4+4.2 91.7+4.2
Ens. ReliefF 934435 | 92.444.0 | 91.4+4.1 91.0+4.4 91.94+4.2
SW ReliefF 93.3+£3.8 | 92.74+3.8 91.4+4.1 91.3+4.7 91.4+4.1
Lung SVM-RFE 95.8+4.3 | 96.8+3.1 96.9+3.1 96.8+3.1 96.8+3.1
Ens. SVM-RFE 96.3+3.5 | 96.94+3.2 | 96.9+3.1 97.0+3.1 96.943.1
SW SVM-RFE 94.7+4.7 | 96.943.1 96.943.1 97.3+3.1 97.243.1
ReliefF 96.2+4.2 | 96.71+3.2 96.7£3.3 97.0+3.3 97.4+3.0
Ens. ReliefF 97.043.0 | 97.043.1 | 97.1+£3.1 97.243.2 97.543.0
SW ReliefF 96.8+4.7 | 96.74+4.0 98.6+£2.4 98.4+2.4 98.8+£2.2
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4.2 Classification Performance

Table 2 reports the classification performance (by the AUC)
of the linear SVM classifier for the conventional, ensemble,
and sample weighting versions of SVM-RFE and ReliefF at
increasing gene signature sizes for the four microarray data
sets. We can observe that the three versions of SVM-RFE (or
ReliefF) in general perform very similar under each
signature size. Although there are some marginal differ-
ences among the three versions in terms of the average
AUC values at places, the differences are not statistically
significant, given the large standard deviation values
caused by the small sample size of the test sets. These
observations, together with those from the stability graphs
in Fig. 2, suggest that different feature selection algorithms
can lead to similarly good classification performance, while
their stability can largely vary. Moreover, the increased
stability to the baseline algorithms (SVM-RFE or ReliefF)
resulted from the sample weighting process is not at the
price of classification performance. Results based on 1NN
classifier are very similar to those reported in Table 2, and
thus excluded for conciseness of presentation.

4.3 Consensus Gene Signatures

We further demonstrate the effect of improved stability on
constructing consensus gene signatures, using SVM-RFE as
an example. Specifically, we compare the three versions of
SVM-RFE by examining the selection frequency of each
gene across the 100 random training/test splits of a given
data set for each selection method. Given a data set, a
selection method, and a gene signature size (e.g., 50), some
genes are more consistently represented across the 100 gen-
erated gene signatures than others. A consensus gene
signature can be constructed by extracting those genes
frequently selected over many samplings. From a majority
voting perspective, a gene is retained in the consensus gene

signature (hence called a consensus gene), if it is repre-
sented in more than 50 percent of all gene signatures
generated by the same method. The threshold 50 percent
may be increased to shorten the consensus signatures while
increasing the confidence on the consensus genes.

Fig. 3 shows the selection frequency curves of the three
versions of SVM-RFE for the Colon data. Each curve shows
the selection frequencies of all features selected by a
corresponding version at signature size 50 (features occur-
ring in none of the 100 signatures not shown). As a
reference, the frequency curve for perfect stability (i.e., the
same 50 genes appearing in all of the 100 signatures) is also
shown. The area under the curve of each selection method
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Fig. 3. Selection frequency plots of the conventional, Ensemble, and
Sample Weighting versions of SVM-RFE for the Colon data. Each plot
shows how many genes occur in at least how many of the 100 gene
signatures of size 50 selected by each method. The area under the
curve of each method equals the area under the perfect stability curve
(100 x 50). The more overlap between the two areas, the more stable
the method is.



270 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.9, NO. 1,

T T T

SVM-RFE ]
Ens. SVM-RFE
SW SVM-RFE --+-eeeee-
Perfect Stability s

._.
O O
S O

T

o
T

38
o
©70
8 60 -
L 50
[y
O 40 r
§ 30
(O] L
$ 20

10

0 r 1 1 1 1 1 1 | | ) | .

0 10 20 30 40 50 60 70 80 90 100
Number of Genes
(a) Colon
100 | Mmoot 'SVM-RFE ——— |
90 r Ens. SVM-RFE -===----: |
SW SVM-RFE

S
T

Perfect Stability

(=)
T T

Selection Frequency
N W A X
o O O O
T T T T

—
=)
T

o
T
1

0O 10 20 30 40 50 60 70 80 90 100
Number of Genes

(c) Prostate

JANUARY/FEBRUARY 2012

T T T
SVM-RFE 7

100

90 Ens. SVM-RFE _
> SW SVM-RFE --eeeeee
© 80 Perfect Stability T
270
g 60 -
L 50 +
[y
940 r
§ 30
(O] L
%] 20

10 + 9

0 C 1 1 1 1 1 1 1 1 1 1 1
0O 10 20 30 40 50 60 70 80 90 100
Number of Genes
(b) Leukemia

100 B T II“. T T T T ISVM_IRFEI T ]

90 - ' Ens. SYM-RFE ------=-- i
- SW SVM-RFE
280 Perfect Stability 1
S 70 -
560 -
L 50 -
C
940 r
330
(O] L
] 20

10

O C 1 1 1 1 1 1 1 1 1 1 7

0O 10 20 30 40 50 60 70 80 90 100
Number of Genes

(d) Lung

Fig. 4. Selection frequency plots of the conventional, Ensemble, and Sample Weighting versions of SVM-RFE for four data sets. Each plot shows
how many genes occur in at least how many of the 100 gene signatures of size 50 selected by each version. Only the top 100 most frequently
selected genes are included. (a) Colon provides a “zoomed in” view of Fig. 3.

equals the area under the perfect stability curve (i.e., the size
of the 100 x 50 gene signature matrix). The more overlap
between the area under the curve of a selection method and
the area under the perfect stability curve, the more stable the
selection method is. Comparing the curves of the three
versions, we can observe that the sample weighting version
is more stable than the other two versions; its curve is closer
to the perfect stability curve (on the left side of the perfect
stability curve) and has a much shorter tail (on the right size
of the perfect stability curve).

Fig. 4a provides a “zoomed in” view of the frequency
plots in Fig. 3 by focusing on the top 100 most frequently
selected genes for the Colon data. Clearly, the sample
weighting version consistently selects more consensus
genes than the other two versions at various frequency
threshold levels from 50 to 100 percent. For example, at the
50 percent threshold level, the conventional, ensemble, and
sample weighting versions, respectively, select 18, 25, and
36 consensus genes. If the threshold level is increased to
85 percent, the consensus gene signature sizes for the three
versions will shrink to 1, 7, and 16, respectively. These
numbers are also reported in Table 3.

We performed the same analysis as above for all the four
data sets used in this study. For the sake of conciseness of
presentation, figures showing the full view of the frequency
plots (as Fig. 3) for the Leukemia, Prostate, and Lung data

TABLE 3
The Numbers of Genes above Certain Selection Frequencies
across 100 Gene Signatures of Size 50 Selected by the
Conventional, Ensemble, and Sample Weighting
Versions of SVM-RFE

Frequency Intervals
Data Selection Method | [1,100] | (50,100] | (85,100]
Colon SVM-RFE 642 18 1
Ens. SVM-RFE 512 25 7
SW SVM-RFE 350 36 16
Leukemia | SVM-RFE 688 18 4
Ens. SVM-RFE 397 30 13
SW SVM-RFE 469 28 14
Prostate SVM-RFE 722 18 4
Ens. SVM-RFE 371 32 13
SW SVM-RFE 262 37 15
Lung SVM-RFE 558 22 6
Ens. SVM-RFE 308 34 12
SW SVM-RFE 246 42 22
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are not included. The “zoomed in” view of the frequency
plots for each data set is provided in Fig. 4. Furthermore,
Table 3 precisely reports the total numbers of genes that are
selected in at least one of the 100 generated gene signatures
as well as the numbers of consensus genes with frequency
over 50 and 85 for each version on each data set.

From Fig. 4 and Table 3, we can observe that for all the
four data sets used in our study, sample weighting
significantly improves the stability of SVM-RFE. Comparing
sample weighting with ensemble, the former clearly out-
performs the latter for the Colon, Prostate, and Lung data.
For the Leukemia data, the two methods perform very
similar, with ensemble being slightly better. Such observa-
tions are consistent with those from Fig. 2 in Section 4.1,
where the stability performance is measured with respect to
pairwise gene signature similarity at various signature
sizes. Fig. 4 and Table 3 in this section provide a more
detailed view about the stability of the three versions of
SVM-REFE at signature size 50 for each data set as shown in
column (A) of Fig. 2. The analysis on consensus gene
signatures also demonstrates the potential impact of the
stability improvement by sample weighing. Sample weight-
ing enables SVM-RFE to consistently select much fewer
genes of low frequency and produce much bigger con-
sensus gene signatures. Compared to unstable gene
signatures, such consensus gene signatures may lead to
higher confidence of biologists in selecting gene candidates
for further examination and validation.

5 CONCLUSIONS

This paper studies the stability of feature selection from
gene expression microarray data sets. The first contribution
of this paper is a general framework of sample weighting to
improve the stability of existing feature selection methods.
The framework weights each sample in a training set
according to its influence to the estimation of feature
relevance, and then provides the weighted training set to a
feature selection method. Various concrete sample weight-
ing algorithms can be developed under this framework. The
second contribution of this paper is the margin-based
sample weighting algorithm developed under the general
framework. The algorithm assigns a weight to each sample
according to the outlying degree of its local profile of
feature relevance (margin vector) compared with other
samples. Our empirical study based on gene expression
data sets has shown that the margin-based sample weight-
ing algorithm is effective at improving the stability of
representative SVM-RFE and ReliefF algorithms without
sacrificing their predictive performance. The results suggest
that the general framework of sample weighting is a
promising approach to improving the stability of feature
selection methods for gene selection. It is worth noting that
the framework is not limited to feature selection from gene
expression microarray data. It can be applied as a
preprocessing step to feature selection from other types of
high-throughput data such as protein mass spectrometry
(MS) [28] and single nucleotide polymorphism (SNP)
microarrays [4].

In the future work, we plan to develop additional sample
weighting algorithms under the general framework and

investigate their effectiveness on different feature selection
methods. Since the sample weighting framework is not
limited to work with a particular selection method, it is
reasonable to expect that this framework could improve the
stability of other selection methods as well. To apply the
sample weighting framework to other selection methods,
these selection methods need to be extended to take
weighted samples as input and consider sample weights
in feature evaluation.

Our empirical study also compared the sample weight-
ing framework with the bagging ensemble framework.
Although the former is in general more effective at
improving the stability of the SVM-RFE method for the
data sets used in this paper, it is not always the case. It
would be interesting to study the effect of the two
frameworks combined together on the stability of a feature
selection method. It is worth noting that the sample
weighting framework is computationally more efficient
than the ensemble framework. The former applies an
efficient sample weighting algorithm to a training set only
once before feature selection, while the latter has to apply a
base selection method to a training set a number of times.

As mentioned in the Introduction, stability of feature
selection is an important and complicated issue; therefore, it
would be worthwhile to develop additional frameworks to
improve the stability of feature selection methods. Recent
results show that incorporation of prior knowledge about
feature relevance into the feature selection process [18] or
feature selection based on several related data sets through
transfer learning [17] is worth investigating.
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