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Abstract

Feature selection is frequently used in data pre-
processing for data mining. It decreases number of fea-
tures, removes irrelevant or noisy data, and increases
mining performance such as predictive accuracy and
comprehensibility. This work investigates active sam-
pling in feature selection in a filter model setting. Three
versions of active sampling are proposed and empiri-
cally evaluated: two employ class information and the
other utilizes feature variance. They are applied to a
widely used, efficient feature selection algorithm Relief.
In comparison with random sampling, we conduct ex-
tensive experiments with benchmark data sets.

1 Introduction

Feature selection is a frequently used technique in data
pre-processing for data mining. It is the process of
choosing a subset of original features by removing ir-
relevant and/or redundant ones. Feature selection has
shown its significant impact in dealing with large di-
mensionality with many irrelevant features [4, 10]. By
extracting as much information as possible from a given
data set while keeping the smallest number of features,
feature selection can remove irrelevant features, increase
efficiency of the learning task, improve learning perfor-
mance like predictive accuracy, and enhance compre-
hensibility of learned results [6, 15]. Many new fea-
ture selection algorithms are being developed to answer
challenging research issues: from handling a huge num-
ber of instances, large dimensionality (e.g., thousands
of features), to dealing with data without class labels.
This work tackles feature selection with a huge num-
ber of instances. Sampling is a common approach to
this problem. It is both random and blind. In this
work, we explore the possibility if we can improve the
performance of feature selection without increasing the
number of sampled data points.

We adopt the filter model of feature selection [7]
that relies on general characteristics of the training data
to select some features without involving any learning
algorithm. The other model is the wrapper model that
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requires one predetermined learning algorithm in fea-
ture selection and uses the performance of the learn-
ing algorithm to evaluate and determine which features
should be selected. As for each new subset of features,
the wrapper model needs to learn a hypothesis (or a
classifier), it tends to give superior performance as it
finds features better suited to the predetermined learn-
ing algorithm, but it also tends to be more computation-
ally expensive. When the number of instances becomes
very large, the filter model is usually a choice due to its
computational efficiency and neutral bias toward any
mining/learning algorithm.  Active sampling can in-
fluence what instances are used for feature selection by
exploiting some characteristics of the data. While ran-
dom sampling selects instances at random from a given
data set, active sampling chooses instances in two steps:
first, it partitions the data according to some homogene-
ity criterion; and second, it randomly selects instances
from these partitions. Therefore, active sampling boils
down to how we can partition the data to actively choose
useful instances for feature selection.

2 Active Sampling via Data Partitioning

In this work, we attempt to apply active sampling which
exploits data characteristics by sampling from subpop-
ulations. Each subpopulation is formed according to a
homogeneity criterion. Data used in data mining can
be generally categorized into two types: with or without
class labels. In general, the former are used for classifi-
cation and the latter used for clustering and association
mining. We are concerned about data with class labels.
Below, we examine ways of partitioning data into sub-
populations using various information.

2.1 Data partitioning based on class informa-
tion Intuitively, class information is important and can
be used to form subpopulations for active sampling. We
investigate two ways of using class information below.
Stratified sampling. In a typical stratified sam-
pling [5], the population of N instances is first divided
into L subpopulations of Ny, Ns,..., Ny instances, re-
spectively. These subpopulations are non-overlapping,
and together they comprise the whole of the population,
i.e., N1 + Ny + ...+ Ny, = N. If a simple random sam-
ple is taken in each stratum (NNV;), the whole procedure



is called stratified random sampling. One of the reasons
that stratification is a common technique is that stratifi-
cation may produce a gain in precision in the estimates
of characteristics of the whole population. It may be
possible to divide a heterogeneous population into sub-
populations, each of which is internally homogeneous. If
each stratum is homogeneous, a precise estimate of any
stratum statistics can be obtained from a small sample
in that stratum. These estimates can then be combined
into a precise estimate for the whole population.

In dealing with a data set with class information, a
straightforward way to form strata is to divide the data
according to their class labels. If there are j classes
(¢1,c¢2,-..,¢5), we can stratify the data into j strata of
sizes mi,n2,...,n;. That is, the number of strata is
determined by the number of classes. Each stratum
contains instances with the same class. There are only
two strata if j = 2. Time complexity of stratifying the
data into j classes is O(jN).

Entropy-based partitioning. Having only j
classes, if one wishes to create more than j strata,
different approaches should be explored. The key to
stratification is to form homogeneous subpopulations.
To further divide the subpopulations determined by
j classes, we essentially want to form finer strata in
which instances are similar to each other in addition
to class labels. This can be achieved by measuring
each subpopulation’s entropy which is used frequently
in classification tasks [13]:

j
entropy(p1, pa, .., pj) = — »_ pilogp;
i=1

where p; is a fraction estimating the prior probability
of class ¢;- One can now form subpopulations (or
partitions) based on feature values. After using ¢
values of feature A; to divide the data into ¢ partitions,
the expected entropy is the sum of the weighted entropy
values of the partitions:
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where w, is the fraction of the data that fall into parti-
tion o. It can be shown that for a pure partition (or all
data points in the partition belong to one class), its en-
tropy value entropy,() is 0. Hence, achieving pure parti-
tions amounts to minimizing entropy 4,. This partition-
ing process can continue until all partitions are pure or
no further partitioning can be done. The formed parti-
tions are in theory better than simple stratification de-
scribed earlier because instances in the same partitions
share the same feature values determined by partition-
ing. In other words, entropy-based partitioning uses

feature values to partition taking into account of class
information. So, the instances in a partition are close to
each other besides having the same class value. It is also
reasonable to anticipate that this entropy-based parti-
tioning will result in more partitions than simple strat-
ification for non-trivial data sets. Given k, the number
of features in a data set, time complexity of entropy-
based partitioning is O(kN log N) which is more expen-
sive than that of stratified sampling (O(jN)).

2.2 Data partitioning based on feature variance
The above two methods rely on class information to
partition the data. The idea that active sampling may
work stems from the fact that instances are usually not
uniformly distributed and some instances are more rep-
resentative than others [1]. If one could find such rep-
resentative instances, only a small number of instances
will be needed for the same task.

As a departure from the two partitioning meth-
ods introduced earlier that attempt to put “similar”
instances together, we can separate instances based on
their dissimilarity. One data structure that implements
this idea is kd-trees [12]. It is a generalization of the
simple binary tree, which uses k features instead of
a single feature. In our building a kd-tree, a fea-
ture is chosen first if it can maximize the data variance
along that dimension. A median value of that feature
is used to split the instances into two equal-size parti-
tions. Theoretically, such a kd-tree is a balanced tree
and its leaf is called a bucket. The size of a bucket can
be determined a priori. Since instances in each bucket
are relatively close to each other, in active sampling,
one instance is randomly picked from each bucket. The
time complexity of building such an optimized kd-tree
is O(kNlog N). The kd-tree can be built once and for
all if necessary or dynamically when required [11].

With the above three methods for data partitioning,
we are now able to partition a given data set into
different partitions and then randomly sample from
these partitions for feature selection. The reason why
stratified sampling works (given in section 2.1) should
apply to all the three methods and we expect gains of
applying active sampling for feature selection.

3 Active Sampling for Feature Selection

Traditional feature selection methods perform dimen-
sionality reduction using whatever training data is given
to them. When the training data set is very large, ran-
dom sampling is commonly used to overcome the diffi-
culty. Active sampling improves random sampling and
is realized by partitioning the data first. The intuitive
idea is to select only instances with higher probabilities
to be informative in determining feature relevance.



When choosing a feature selection method to
demonstrate the concept of active sampling, efficiency
is a critical factor. We adopt a well received, efficient
algorithm Relief [8, 9] which can select statistically rel-
evant features in linear time in the number of features
and the number of instances. Below we illustrate how
active sampling can be applied to create new algorithms
of active feature selection.

3.1 Relief The key idea of Relief (given in Figure 1)
is to estimate the quality of features according to how
well their values distinguish between the instances of
the same and different classes that are near each other.
For this purpose, given a randomly selected instance X
from a data set S with k attributes, Relief searches the
data set for its two nearest neighbors: one from the same
class, called nearest hit H, and the other from a different
class, called nearest miss M. It updates the quality
estimation W[A4;] for all the features A; depending on
the difference dif f() on their values for X, M, and H.
The process is repeated for m times, where m is a
user-defined parameter [8, 9]. Normalization with m
in calculation of W[A;] guarantees that all weights are
in the interval of [-1,1].

Given m - number of sampled instances, and k - number
of features,

1. set all weights W[A4;] = 0.0;
2. for j =1 to m do begin
3. randomly select an instance X;

4. find nearest hit H and nearest miss M;
5. fori =1 to k do begin

6. WIA]= WIA] - dif f(A;, X, H)/m
7. end;

8. end;

Figure 1: Original Relief algorithm.

Time complexity of Relief for a data set with N in-
stances is O(mkN). Clearly, efficiency is one of the
major advantages of the Relief family over other algo-
rithms. In our experiments, we use ReliefF' [9, 17] which
extends Relief in many ways: it searches for several
nearest neighbors to be robust to noise, and handles
multiple classes. With m being a constant, the time
complexity becomes O(kN). However, since m is the
number of instances for approximating probabilities, a
larger m implies more reliable approximations. When
N is very large, it often requires that m <« N. The
m instances are chosen randomly in ReliefF. Given a
small m, we ask if by active sampling, we can improve

approximations to close to those using N instances.

3.2 Relief with active sampling The three parti-
tioning methods described in Section 2 constitute three
versions of active sampling for Relief:

1. ReliefC - strata are first formed based on class
values, then m instances are randomly sampled from
the strata, and the rest remains the same as in ReliefF;

2. ReliefE - data is first partitioned using entropy
minimization, then m instances are randomly sampled
from the partitions, and the rest remains the same as in
ReliefF; and

3. ReliefS - a kd-tree is first built, then m instances
are randomly sampled from the buckets, and the rest
remains the same as in ReliefF.

Given p% - percentage of N data for ReliefC and
ReliefE, t - bucket size for ReliefS, and &£ - number of
features,

1. set all weights W[A;] = 0.0;

2. do one of the following:
a.stratified sampling; // for ReliefC
b.entropy-based partitioning; // for ReliefE
c.buildKDTree(t); // for ReliefS

3. corresponding to 2a, 2b, and 2c,
a.m = ) (sample p% data from each stratum);
b.m = )" (sample p% data from each partition);
c.m =Y (1 instance sampled from each of

m buckets of size t);

4. for j =1 to m do begin

5. pick instance Xj;

6. find nearest hit H and nearest miss M;

7. fori=1to k do begin

8. WIA;] = W[A;] — dif f(Ai, X5, H) /m
+dif f(Ai X, M) [m;

9. end;

10. end;

Figure 2: Algorithms ReliefC, ReliefE, ReliefS with
active sampling.

The three versions of Relief with active sampling
are summarized in Figure 2. ReliefC in Line 3a of Fig-
ure 2 uses p% instances randomly sampled from the
strata of different classes, and ReliefE in Line 3b selects
p% instances randomly sampled from the partitions de-
termined by entropy minimization when splitting data
along feature values, where p% =~ m/N. Each partition
has a distinct signature consisting of a combination of
different feature values. The length of a signature is in
the order of log N. This property can be used to speed
up the finding of nearest hits. It is clear that the re-



sulting number of partitions in ReliefE is usually larger
than the number of strata in ReliefC. ReliefS involves
kd-tree building (buildKDTree(t)). The kd-tree di-
vides the sample space into buckets so that m instances
can be selected from these buckets.

4 Evaluation

We compare ReliefC, ReliefE, and ReliefS with ReliefF'
and evaluate their gains in selecting m instances. Since
m is the number of instances used to approximating
probabilities (seen in Figure 1), a larger m implies more
reliable approximations. To compare the performance
of both ReliefF and ReliefY with different sizes of m, let
F be the original ReliefF, Y one of {C,E,S}, and we
can define a performance measure P (T, R) where R can
be either Sg, or Sy, with varying size m, and T is
the target set by ReliefF' with m = N. We use three
measures for P() suggested in [11]. Precision: It is
computed as the number of features in T that are also
in R, normalized by dividing the number of features in
R. Distance Measure: The distance of a feature
between two sets is the difference of their positions in
the ranking. Raw Distance: It calculats the sum of
the difference of weights for each of the same feature in
the optimal sequence Sg,n and the sequence S'.

4.1 Data and experimental procedures All to-
gether 12 data sets from the UC Irvine machine learn-
ing data repository [3] and the UCI KDD Archive [2]
are used in experiments. All have numeric features with
varied number of instances (from 569 to 145000), num-
ber of features (from 4 to 85), and number of classes
(from 2 to 7).

The experiments are conducted using Weka’s imple-
mentation of ReliefF [17]. ReliefC, ReliefE and ReliefS
are our versions of active sampling for feature selection
and also implemented in the Weka environment. We use
increasing percentages of data with these four versions
of Relief and have ReliefF with m = N as their perfor-
mance reference point. Each experiment is conducted
as follows: For each data set,

1. Run ReliefF using all the instances, and obtain the
ranked list of features according to their weights,
i.e., Spn. The parameter for k-nearest neighbor
search is set to 5 (neighbors). This parameter
remains the same for all the experiments.

2. Run ReliefS with different bucket sizes t; corre-
sponding to five percentage values P; where 1 <
1 < 5. For example, t5 = 2 approximately corre-
sponds to Ps =~ 50% (P is 100% with ¢ = 1) in
experiments. At each P;, ReliefS is repeated 30
times to calculate average performance values for

Precision, Distance, and Raw Distance.

3. Run ReliefE, ReliefC, and ReliefF with each P;
determined in Step 2 for comparison purpose. For
each P;, run each algorithm 30 times and calculate
Precision, Distance, and Raw Distance each time,
and obtain their average values after 30 runs.

4.2 Results and discussions Experimental results
on benchmark data sets are reported in Table 1. We
can still observe the general trend P(RS) > P(RE) >
P(RC) > P(RF) from Table 1. 'We observe the follow-
ing: (1) the more instances are used in all four versions
of Relief, the better the performance of feature selec-
tion; (2) More gains are observed when samples are
small (close to 10%); (3) ReliefS can significantly im-
prove the performance of feature selection with actively
selected data points in most cases; and (4) ReliefE does
not show significant improvement over the performance
of ReliefC. We also observe steady superiority of Re-
liefE over ReliefC, and of ReliefC over ReliefF. This is
because class-based partition method works better for
most benchmark data sets with more than two classes.
We name this observation as an issue of class-sensitivity
in different versions of active learning. ReliefE and Re-
liefC can usually gain more for data sets with more
classes. This is consistent with our intuition as both
versions of active sampling rely on class information to
stratify or partition the data. But ReliefS is insensitive
to the number of classes as building a kd-tree does not
require any class information.

5 Concluding Remarks

Inspired by active learning, active sampling for feature
selection is proposed, implemented, and experimentally
evaluated using a widely used feature selection algo-
rithm Relief. Active sampling exploits the data char-
acteristics to first partition data, and then randomly
sample data from the partitions. Three versions of ac-
tive sampling for feature selection are investigated: (a)
ReliefC - stratification using class labels, (b) ReliefE
- entropy-based partition, and (c) ReliefS - partition
based on the kd-tree. Version (a) only uses class infor-
mation, version (b) splits data according to feature val-
ues while minimizing each split’s entropy, and version
(c) divides data using dissimilarity - feature variance.
The empirical study suggests that (1) active sampling
can be realized by sampling from partitions, and the
theory of stratified sampling in Statistics offers expla-
nations why it works; (2) active sampling helps improve
feature selection performance - the same performance
can be achieved with much fewer instances; (3) among
the three versions, ReliefS performs best in all three



Precision Distance Raw Distance
RS RE RC RF RS RE RC RF RS RE RC RF
WDBC 0.994 | 0.992 | 0.990 | 0.991 || 0.103 | 0.137 | 0.136 | 0.139 || 0.068 | 0.105 | 0.111 | 0.111
Balance 0.940 | 0.891 | 0.884 | 0.864 || 0.247 | 0.317 0.398 | 0.468 || 0.018 | 0.030 | 0.032 | 0.037
Pima-Indian || 0.930 | 0.919 | 0.914 | 0.906 || 0.209 | 0.249 | 0.249 | 0.248 || 0.016 | 0.019 | 0.020 | 0.019
Vehicle 1.0 0.998 | 0.999 | 0.996 || 0.105 | 0.150 0.183 | 0.206 || 0.026 | 0.041 | 0.048 | 0.052
German 0.920 | 0.906 | 0.907 | 0.898 || 0.309 | 0.345 0.352 | 0.360 || 0.125 | 0.146 | 0.149 | 0.154
Segment 1.0 1.0 1.0 1.0 0.029 | 0.040 | 0.036 | 0.074 || 0.020 | 0.025 | 0.027 | 0.054
Abalone 0.971 | 0.956 | 0.953 | 0.947 || 0.176 | 0.251 | 0.277 | 0.257 || 0.001 | 0.002 | 0.003 | 0.003
Satimage 1.0 1.0 1.0 0.998 || 0.047 | 0.064 0.073 | 0.088 || 0.022 | 0.039 | 0.042 | 0.065
Waveform 1.0 1.0 1.0 1.0 0.056 | 0.070 0.072 | 0.080 || 0.036 | 0.043 | 0.045 | 0.047
Page-Blocks 1.0 1.0 1.0 1.0 0.043 | 0.214 | 0.220 | 0.202 || 0.003 | 0.006 | 0.006 | 0.006
CoIL2000 1.0 1.0 1.0 1.0 0.041 | 0.054 0.056 | 0.060 || 0.074 | 0.102 | 0.106 | 0.110
Shuttle 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.001 | 0.002 | 0.002 | 0.003
Loss 0 2 1 N/A 0 4 3 N/A 0 0 1 N/A

Table 1: Average values of Precision, Distance, Raw Distance results: applying ReliefS (RS), ReliefE (RE),
ReliefC (RC) and ReliefF (RF) to feature selection on benchmark data sets.

measures (Precision, Distance, and Raw Distance).
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