Active Feature Selection Using Classes

Huan Liu!, Lei Yu', Manoranjan Dash?, and Hiroshi Motoda?

! Department of Computer Science & Engineering
Arizona State University, Tempe, AZ 85287-5406
{hliu,leiyu}@asu.edu
? Department of Elec. & Computer Engineering
Northwestern University, Evanston, IL 60201-3118
manoranj@ece.northwestern.edu
8 Institute of Scientific & Industrial Research
Osaka University, Ibaraki, Osaka 567-0047, Japan
motoda@sanken.osaka-u.ac. jp

Abstract. Feature selection is frequently used in data pre-processing
for data mining. When the training data set is too large, sampling is
commonly used to overcome the difficulty. This work investigates the
applicability of active sampling in feature selection in a filter model set-
ting. Our objective is to partition data by taking advantage of class
information so as to achieve the same or better performance for feature
selection with fewer but more relevant instances than random sampling.
Two versions of active feature selection that employ class information are
proposed and empirically evaluated. In comparison with random sam-
pling, we conduct extensive experiments with benchmark data sets, and
analyze reasons why class-based active feature selection works in the way
it does. The results will help us deal with large data sets and provide
ideas to scale up other feature selection algorithms.

1 Introduction

Feature selection is a frequently used technique in data pre-processing for data
mining. It is the process of choosing a subset of original features by removing
irrelevant and/or redundant ones. Feature selection has shown its significant
impact in dealing with large dimensionality with many irrelevant features [1,
2] in data mining. By extracting as much information as possible from a given
data set while keeping the smallest number of features, feature selection can
remove irrelevant features, reduce potential hypothesis space, increase efficiency
of the mining task, improve predictive accuracy, and enhance comprehensibility
of mining results [3,4]. Different feature selection methods broadly fall into the
filter model [5] and the wrapper model [6]. The filter model relies on general
characteristics of the training data to select some features without involving
any learning algorithm. The wrapper model requires one predetermined learning
algorithm and uses the performance of the learning algorithm to evaluate and
determine which features should be selected. The wrapper model tends to give
superior performance as it finds features better suited to the predetermined

learning algorithm, but it also tends to be computationally more expensive [7].
When the training data becomes very large, the filter model is usually a good
choice due to its computational efficiency and neutral bias toward any learning
algorithm. Many feature selection algorithms [8, 9] are being developed to answer
challenging research issues: from handling a huge number of instances, large
dimensionality, to dealing with data without class labels.

This work is concerned about a huge number of instances with class labels.
Traditional feature selection methods perform dimensionality reduction using
whatever training data is given to them. When the number of instances becomes
very large, sampling is a common approach to overcome the difficulty [10,11].
However, random sampling is blind. It selects instances at random without con-
sidering the characteristics of the training data. In this work, we explore the
possibility of active feature selection that can influence which instances are used
for feature selection by exploiting some characteristics of the data. Our objec-
tive is to actively select instances with higher probabilities to be informative
in determining feature relevance so as to improve the performance of feature
selection without increasing the number of sampled instances. Active sampling
used in active feature selection chooses instances in two steps: first, it partitions
the data according to some homogeneity criterion; and second, it randomly se-
lects instances from these partitions. Therefore, the problem of active feature
selection boils down to how we can partition the data to actively choose useful
instances for feature selection.

2 Feature Selection and Data Partitioning

In this work, we attempt to apply active sampling to feature selection which
exploits data characteristics by sampling from subpopulations®. Each subpopu-
lation is formed according to a homogeneity criterion. Since this work is dealing
with a large number of instances in feature selection, when choosing a feature
selection method to demonstrate the concept of active sampling, efficiency is a
critical factor. We adopt a well received, efficient filter algorithm Relief [12,13]
which can select statistically relevant features in linear time in the number of
features and the number of instances. We first describe Relief, and then examine
two ways of partitioning data into subpopulations using class information.

2.1 Relief for feature selection

The key idea of Relief (shown in Fig. 1) is to estimate the quality of features
according to how well their values distinguish between the instances of the same
and different classes that are near each other. Relief chooses features with n
largest weights as relevant ones. For this purpose, given a randomly selected
instance X from a data set S with k features, Relief searches the data set for

! We follow the practice in data mining that a given data set is treated as a population
although it is only a sample of the true population, and subsets are subpopulations.

its two nearest neighbors: one from the same class, called nearest hit H, and
the other from a different class, called nearest miss M. It updates the quality
estimation W[A;] for all the features A; depending on the difference dif f() on
their values for X, M, and H. The process is repeated for m times, where m is
a user-defined parameter [12,13]. Normalization with m in calculation of W[A;]
guarantees that all weights are in the interval of [-1,1].

Given m - number of sampled instances, and &k - number of features,

1. set all weights W[A;] = 0.0;

2. for j =1 to m do begin

3. randomly select an instance X;

4. find nearest hit H and nearest miss M;
5. for i =1 to k do begin

6. WA= W[A] — dif f(As, X, H)/m
7. end;

8. end;

Fig. 1. Original Relief algorithm.

Time complexity of Relief for a data set with NV instances is O(mkN). Clearly,
efficiency is one of the major advantages of the Relief family over other algo-
rithms. With m being a constant, the time complexity becomes O(kN). However,
since m is the number of instances for approximating probabilities, a larger m
implies more reliable approximations. When N is very large, it often requires
that m <« N. The m instances are chosen randomly in Relief. Given a small
constant m, we ask if by active sampling, we can improve approximations to
close to those using N instances.

2.2 Data partitioning based on class information

Intuitively, since Relief searches for nearest hits and nearest misses, class infor-
mation is important and can be used to form subpopulations for active sampling.
We investigate two ways of using class information below, and indicate why this
scheme of active feature selection should work in helping reduce data size without
performance deterioration.

Stratified sampling. In a typical stratified sampling [10], the population
of N instances is first divided into L subpopulations of N1, Na, ..., N, instances,
respectively. These subpopulations are non-overlapping, and together they com-
prise the whole population, i.e., Ny + N3 + ... + N, = N. If a simple random
sampling is taken in each stratum, the whole procedure is called stratified random
sampling. One of the reasons that stratification is a common technique is that
stratification may produce a gain in precision in the estimates of characteristics

of the whole population. It may be possible to divide a heterogeneous population
into subpopulations, each of which is internally homogeneous. If each stratum is
homogeneous, a precise estimate of any stratum statistics can be obtained from
a small sample in that stratum. These estimates can then be combined into a
precise estimate for the whole population.

In dealing with a data set with class information, a straightforward way to
form strata is to divide the data according to their class labels. If there are j
classes (c1, 2, ..., ¢;), we can stratify the data into j strata of sizes Ni, Na, ..., N;.
That is, the number of strata is determined by the number of classes. Each
stratum contains instances with the same class. There are only two strata if
j = 2. Time complexity of stratifying the data into j classes is O(jN).

Entropy-based partitioning. Having only j classes, if one wishes to create
more than j strata, different approaches should be explored. The key to strat-
ification is to form homogeneous subpopulations. In order to divide the data
into more than j subpopulations, finer strata need to be formed. We can group
instances that are similar to each other into subpopulations of pure classes. This
can be achieved by (1) dividing the data using feature values, (2) then measuring
each subpopulation’s entropy, and (3) continuing the first two steps until each
subpopulation is pure or it runs out of features to divide subpopulations. This
idea of applying entropy to measure purity of a partition is frequently used in
classification tasks [14]:

j
entropy(pi,ps, - pj) = — Y_ pilogpi ,
i=1

where p; is a fraction estimating the prior probability of class ¢;. One can now
form subpopulations (or partitions) based on feature values?. After using ¢ values
of feature A; to divide the data into ¢ partitions, the expected entropy is the
sum of the weighted entropy values of the partitions:

q
entropya; = Y _ wo * entropyo(py,p2, - pj)y P wWo=1,

o=1 o=1

where w, is the percentage of the data that fall into partition o. It can be shown
that for a pure partition (or all data points in the partition belong to one class),
its entropy value entropy,() is 0. Hence, achieving pure partitions amounts to
minimizing entropy 4,. This partitioning process can continue until all partitions
are pure or no further partitioning can be done. The formed partitions are in
theory better than simple stratification described earlier because instances in
the same partitions share the same feature values determined by partitioning.
In other words, entropy-based partitioning uses feature values to partition data
taking into account of class information. So, instances in a partition are close
to each other besides having the same class value in an ideal case. It is also

2 For continuous values, we find an optimal point that binarizes the values and mini-
mizes the resulting entropy.

reasonable to anticipate that this entropy-based partitioning will result in more
partitions than simple stratification for non-trivial data sets. Time complexity
of entropy-based partitioning is O(kN log N) which is more expensive than that
of stratified sampling (O(jN)).

With the above two methods for data partitioning, we are now able to par-
tition a given data set into different partitions and then randomly sample from
these partitions for Relief in choosing m instances as in Fig. 1. Since the number
of instances in each stratum is different, to select a total of m instances, the
number of instances sampled from a stratum (say, ith one) is proportional to
the size (N;) of the stratum, i.e., its percentage is p;% = N;/N. Given m, the
number of instances (m;) sampled from each stratum is determined by m * p;%
for the ith stratum, and then random sampling is performed for each stratum
to find m; instances. The reason why stratified sampling works should apply
to both methods and we expect gains of applying active sampling for feature
selection. We present the details below.

3 Class-based Active Feature Selection

The two partitioning methods described in Section 2 constitute two versions of
active sampling for Relief in Fig. 2: (1) ReliefC - strata are first formed based
on class values, then m instances are randomly sampled from the strata, and
the rest remains the same as in Relief; and (2) ReliefE - data is first partitioned
using entropy minimization, then m instances are randomly sampled from the
partitions, and the rest remains the same as in Relief. ReliefC in Line 3a of
Fig. 2 uses p% instances randomly sampled from the strata of different classes,
and ReliefE in Line 3b selects p% instances randomly sampled from the partitions
determined by entropy minimization when splitting data along feature values,
where p% =~ m/N. Each partition has a distinct signature which is a combination
of different feature values. The length of a signature is in the order of log N.

In the following, we will conduct an empirical study to verify our hypothesis
that active sampling should allow us to achieve feature selection with fewer
instances (i.e., smaller m). If ReliefC and ReliefE can achieve what they are
designed for, we want to establish which one is more effective. As a reference for
comparison, we use ReliefF [13,15] which extends Relief in many ways: it searches
for several nearest neighbors to be robust to noise, and handles multiple classes.

4 Empirical Study

We wish to compare ReliefC and ReliefE with ReliefF and evaluate their gains in
selecting m instances. Since m is the number of instances used to approximating
probabilities, a larger m implies more reliable approximations. In [13], m is set
to N to circumvent the issue of optimal m when many extensions of Relief are
evaluated. In this work, however, we cannot assume that it is always possible to
let m = N as this would make the time complexity of Relief become O(kN?).

Given p% - percentage of N data for ReliefC and ReliefF, and k - number of features,

1. set all weights W[A;] = 0.0;
do one of the following:
a.stratifying data using classes; // active sampling for ReliefC
b.entropy-based partitioning; // active sampling for ReliefE
3. corresponding to 2a and 2b,
a.m = Y (sample p% data from each stratum);
b.m =) (sample p% data from each partition);

4. for j =1 to m do begin

5. pick instance Xj;

6. find nearest hit H and nearest miss M;

7. for i =1 to k do begin

8. WIA] = W[A]—dif f(As, X;, H)/m
+dif f(Ai, X;,M)/m;

9. end;

10. end;

Fig. 2. Algorithms ReliefC and ReliefE with active sampling.

It is obvious that an optimal ranking of features can be obtained according
to the weights W[A;] by running ReliefF with m = N. This optimal ranked list
(or set) of features is named Sg,n. Let Y be one of {C, E} and ReliefY denote
either ReliefC or ReliefE. Given various sizes of m and the subsets Sr,, and Sy,
selected by ReliefF and ReliefY respectively, the performance of ReliefY w.r.t.
ReliefF can be measured in two aspects: (1) compare which subset (Sg,., or Sy,m)
is more similar to S n; and (2) compare whether features of the subsets Sg,
and Sy, are in the same order of the features in Sg . Aspect (1) is designed for
feature subset selection to see if two subsets contain the same features; aspect (2)
is for feature ranking and is more stringent than the first aspect. It compares the
two ordered lists produced by ReliefY and by ReliefF of m < N with reference
to ReliefF of m = N. We discuss issues of performance measures below.

4.1 Measuring goodness of selected features

A goodness measure of selected features should satisfy (1) its value improves as
m increases; (2) its value reaches the best when m = N; and (3) it is a function
of the features of the data. Given an optimal ranked list S n, a target set T'
is defined as the optimal subset of features which contains the top n weighted
features in Sp . For a data set without knowledge of the number of relevant
features, T is chosen as the top n features whose weights > v, where v is a
threshold equal to W[i] (the i-th largest weight in Sp v and the gap defined by
Wi] and Wi + 1] is sufficiently large (e.g., greater than the average gap among
k — 1 gaps). To compare the performance of both ReliefF' and ReliefY with
different sizes of m, we can define a performance measure P(Sp,n, R) where

R can be either Sg,, or Sy,, with varying size m. We examine below three
measures for P().

Precision. Precision is computed as the number of features in T that are
also in R,, (the subset of top n features in R), normalized by dividing the number

of features in T':
H{z:z €T Az € R,}|

IT|

Precision ranges from 0 to 1, where the value of 1 is achieved when subsets T
and R,, are equal.

Distance Measure. Precision treats all features in T equally without con-
sidering the ordering of features. One way of considering the ordering of features
in the two subsets is named Distance Measure (DM) which is the sum of dis-
tances of the same features in R and T'. The distance of a feature between two
sets is the difference of their positions in the ranking. Let Si y be Sp,n in re-
verse order. The maximum possible ranking distance between the two sets Sg,
and Sp - that share the same features is:

Dinge = Z [position(A; € Sp,n) — position(A; € Sp)| , and
VA;ESF,N
> |position(A; € T') — position(A; € R)|

Dmaz

Since the subset R, may not contain all the features in 7', we use the full set R
in the definition of DM. D,,,, is used to normalize DM so that it ranges from
0 to 1, where the value of 0 is achieved if the two sets T" and R,, have identical
ranking, otherwise, DM is larger than 0.

Raw Distance. A straightforward performance measure is to directly cal-
culate the sum of the differences of weights for the same features in the optimal
ranking list Sp,x and R. We name it Raw Distance (RD):

k
Z [Ws[Ai] — Wr[Ai]l ,

where Wg[A;] and Wg[A;] are associated with Spx and R, respectively. RD
considers all the k features in the two sets. Thus, this measure avoids choosing a
threshold for «v. When it is used for comparing the results of ReliefF with those
of ReliefE and ReliefC, it serves the purpose well, although it cannot be used for
measuring the performance of subset selection as it uses all features.

4.2 Data and experiments

The experiments are conducted using Weka’s implementation of ReliefF' [15].
ReliefC' and ReliefE are also implemented in Weka. All together 12 data sets
from the UC Irvine machine learning data repository [16] and the UCI KDD

Table 1. Summary of bench-mark data sets.

| Title |# Total Instances|# Total Features|# Total Classes]
WDBC 569 30 plus class 2
Balance 625 4 plus class 3
Pima-Indian 768 8 plus class 2
Vehicle 846 18 plus class 4
German 1000 24 plus class 2
Segment 2310 19 plus class 7
Abalone 4177 8 plus class 3
Satimage 4435 36 plus class 6
Waveform 5000 40 plus class 3
Page-Blocks 5473 10 plus class 5
ColIL2000 5822 85 plus class 2
Shuttle 14500 8 plus class 7

Archive [17] are used in experiments. All have numeric features with varied
numbers of instances (from 569 to 14500), number of features (from 4 to 85),
and number of classes (from 2 to 7). The data sets are summarized in Table 1.

We use increasing percentages of data with three versions of Relief and have
ReliefF with m = N as their reference point. Each experiment is conducted as
follows: For each data set,

1. Run ReliefF using all the instances, and obtain the ranked list of features
according to their weights, i.e., Sp,n. The parameter for k-nearest neighbor
search in ReliefF is set to 5 (neighbors). This parameter remains the same
for all the experiments.

2. Specify five increasing percentage values P; where 1 <17 < 5.

3. Run ReliefE, ReliefC, and ReliefF with each P; determined in Step 2. For each
P;, run each algorithm 30 times and calculate Precision, Distance, and Raw
Distance each time, and obtain their average values after 30 runs. Curves
are plotted with average results.

4.3 Results and discussions

Intuitively, if active sampling works and the data is divided sensibly, we should
observe that the finer the data is divided, the more gain there should be in
performance improvement. For each data set, we obtain three curves for the
three versions of Relief for each performance measure. Fig. 3 demonstrates two
illustrative sets of average results for Precision, Distance, and Raw Distance.
Recall that for Precision, 1 is the best possible value, while for Distance and
Raw Distance, 0 is the best possible value. As shown in Fig. 3, for the Segment
Data, we notice that all three versions of Relief perform equally well in Precision,
but differently in Distance and Raw Distance. Precision is 1 indicates that all
features selected are the same as if we use the whole N instances for selection.
When Distance and Raw Distance have values greater than 0, it indicates that

Preci si on

Di st ance

Raw Di st ance

Fig

Segment Data

1.01 T T T T T T 1
1.005 1
1 HK—HK—H—K
0.995 | RE —— -
RC ---%---
RF ---%---
0.99 I S T RN TR N B
102030405060708090100
Per cent age
0.12 T T T T T T 1
" RE —+—
0.1 R RC ---x--- 7
N RF ---%---
0.08 - *x -
X\\
0.06 * -
><\ \x‘
0.04 - X3 \ .
EaREVAN
0.02 - \\\\ o
0 T T T T
102030405060 708090100
Per cent age
009 1 T T IRIE T T T
L —
s R
07 =2 RF - 7]
0.06 %\]
0.05 + x -
0.04 ‘\ ** =
0.03 \><\§< \ b
0.02 — S N —
0.01 \\‘\\:\\—
0 IR TR N N N N M

102030405060 708090100

Per cent age

Preci si on

Di st ance

Raw Di st ance

1
0.999
0.998
0.997
0.996
0.995
0.994
0.993
0.992

Satimage Data

0.12

0.1
0.08
0.06
0.04
0.02

EOLATEL N G NG B R
_;" RE —+—
B RC =
ko1 |R|T |*||
102030405060708090100
Per cent age
X1 1T T 1T _1T T T 1
X RE —+—
—\\X\ RC ---x--- -
N\x % RF x|
— \\X\:\‘X —
L 2k i
L1 \|

0

102030405060 708090100

0.12
0.1
0.08
0.06
0.04
0.02
0

Per cent age

T T T _ T T T 1
RE —+—
-*\‘ RC ---x--- -+
RF ---%---
X,
X
\\ %\ —
\\ *. .
L XX * .
Ko e
TR TR N N N B \j =

102030405060 708090100

Per cent age

. 3. Two illustrative sets of performance results on Segment and Satimage data
sets.

the selected results are not exactly the same as that of using IV instances. For the
two sets of results (Segment and Satimage), we note one interesting difference
between the two that ReliefE is, in general, worse than ReliefC for Segment in
Distance Measure. It can be observed in all three versions of Relief that the more
instances used, the better the performance of feature selection. A similar trend
can also be observed for the Satimage data. It is clear that the two versions of
active sampling generate different effects in feature selection.

Table 2. Precision, Distance, Raw Distance results: applying ReliefE (RE), ReliefC
(RC) and ReliefF (RF) to feature selection on bench-mark data sets. We underline
those figures that do not obey the general trend P(RE) > P(RC) > P(RF) and
boldface those that are worse than P(RF).

Precision Distance Raw Distance
RE| RC |RF|| RE | RC | RF || RE| RC | RF
WDBC 0.992(0.990(0.991(| 0.137 | 0.136 |0.139(|0.105| 0.111 {0.111

Balance 0.891]|0.884 |0.864/| 0.317 | 0.398 |0.468|(0.030| 0.032 |0.037
Pima-Indian|{0.919| 0.914 |0.906||0.249|0.249|0.248||0.019|0.020(0.019

Vehicle 0.999]0.999 {0.996|| 0.150 | 0.183 {0.206||0.041| 0.048 {0.052
German 0.907] 0.907 {0.898]| 0.345 | 0.352 |0.360||0.146| 0.149 |0.154
Segment 1.0 | 1.0 | 1.0 ||0.040]0.036 |0.074(/0.025| 0.027 |0.054

Abalone 0.956| 0.953 |0.947(| 0.251 [0.277(0.257|/0.002| 0.003 |0.003
Satimage 1.0 | 1.0 |0.998||0.064 |0.073|0.088(|0.039| 0.042 |0.065
Waveform 1.0 | 1.0 | 1.0 ||0.070|0.072]0.080(|0.043| 0.045 |0.047
Page-Blocks|| 1.0 | 1.0 | 1.0 ||0.214|0.220(0.202||0.006| 0.006 [0.006
CoIL2000 1.0 | 1.0 | 1.0 ||0.054|0.056 |{0.060(/0.102]| 0.106 {0.110
Shuttle 1.0 1.0 | 1.0 | 0.0 | 0.0 | 0.0 ||0.002|0.002|0.003

Table 2 presents a summary of performance measures P; averaged over five
percentage values P; and 1 <14 <5, i.e.,

5

val gy = (Z Pi)/5 .

=1

It is different from the results demonstrated in Fig. 3 that shows the progressive
trends. Table 2 only provides one number (valayg) for each version of Relief
(RE, RC, RF) and for each performance measure. In general, we observe that
P(RE) > P(RC) > P(RF) where > means “better than or as good as”. In
Precision, ReliefC has one case that is worse than ReliefF. In Distance, ReliefE
has two cases that are worse than ReliefC, and two cases that are worse than
ReliefF; ReliefC'has 3 cases that are worse than ReliefF. In Raw Distance, ReliefC
has one case that is worse than ReliefF. It is clear that for the 12 data sets,
ReliefE is better than or as good as ReliefC with two exceptions in all three
measures; and ReliefC' is better than or as good as ReliefF with four exceptions
in all three measures. The unexpected are (1) ReliefE does not show significant

superiority over ReliefC; and (2) in a few cases, ReliefE performs worse than
ReliefC as shown in Table 2 and Fig. 3, although ReliefE uses both feature
values and class information to partition data. ReliefE and ReliefC can usually
gain more for data sets with more classes.

The two versions of active sampling incur different overheads. As discussed
earlier, between the two, the extra cost incurred by ReliefC is smaller - its
time complexity is O(jN). Time complexity of entropy-based partitioning is
O(kN log N) which is more expensive than O(jN) and usually k£ > j, where k
is number of features. However, the additional costs for both versions incur only
once. Because for 8 out of 12 cases ReliefC is better than ReliefF, with its low
overhead, ReliefC can be chosen over ReliefF for feature selection. In ReliefF,
it takes O(NV) to find the nearest neighbors; using signatures, it costs O(log N)
for ReliefE to do the same. Therefore, the one-time loss of time in obtaining
signatures can normally be compensated by the savings of at least m times of
searching for neighbors. In addition, as an example seen in Fig. 3 (Segment
Data), ReliefE and ReliefC using 10% of the data can achieve a performance
similar to ReliefF using 50% of the data in terms of Distance and Raw Distance.

The three performance measures are defined with different purposes. For
feature selection, in effect, Precision is sufficient as we do not care about the
ordering of selected features. Many cells have value 1 in Table 2 for Precision
measure. This means that for these data sets, the feature selection algorithms
work very well - the usual smallest percentage (P, = 10%) can accomplish
the task: in order to have the average value to be 1, each P; in (E?Zl Pi)/5
should be 1. Similarly, we can infer that when the average Precision value is
very close to 1, it indicates that active sampling can usually work with a smaller
percentage of data. Since Relief is a ranking algorithm, when it selects features,
it provides additional ordering information about selected features. When the
value of Precision is 1, it does not mean that the orders of the two feature subsets
are the same. We can further employ Distance (with a threshold v for selecting
features) and Raw Distance to examine whether their orders are also the same.

5 Concluding Remarks

In order to maintain the performance while reducing the number of required
instances used for feature selection, active feature selection is proposed, im-
plemented, and experimentally evaluated using a widely used algorithm Relief.
Active sampling exploits data characteristics to first partition data, and then
randomly sample data from the partitions. Two versions of active sampling for
feature selection are investigated: (a) ReliefC - stratification using class labels
and (b) ReliefE - entropy-based partitioning. Version (a) uses only class infor-
mation, and version (b) splits data according to feature values while minimizing
each split’s entropy. The empirical study suggests that (1) active sampling can
be realized by sampling from partitions, and the theory of stratified sampling in
Statistics suggests some reasons why it works; (2) active sampling helps improve
feature selection performance - the same performance can be achieved with fewer

instances; and (3) between the two versions, in general, ReliefE performs better
than ReliefC in all three measures (Precision, Distance, and Raw Distance).

6

Acknowledgments

We gratefully thank Bret Ehlert and Feifang Hu for their contributions to this
work. This work is in part based on the project supported by National Science
Foundation under Grant No. IIS-0127815 for H. Liu.

References

1.

2.

3.

10.
11.

12.

13.

14.

15.

16.

17

R. Kohavi and G.H. John. Wrappers for feature subset selection. Artificial Intel-
ligence, 97(1-2):273-324, 1997.

H. Liu and H. Motoda. Feature Selection for Knowledge Discovery & Data Mining.
Boston: Kluwer Academic Publishers, 1998.

M. Dash and H. Liu. Feature selection methods for classifications. Intelligent Data
Analysis: An International Journal, 1(3), 1997.

L. Talavera. Feature selection as a preprocessing step for hierarchical clustering.
In Proceedings of Internationl Conference on Machine Learning (ICML’99), 1999.
U.M. Fayyad and K.B. Irani. The attribute selection problem in decision tree
generation. In AAAI-92, Proceedings of the Ninth National Conference on Artificial
Intelligence, pages 104-110. AAAT Press/The MIT Press, 1992.

G.H. John, R. Kohavi, and K. Pfleger. Irrelevant feature and the subset selection
problem. In W.W. Cohen and Hirsh H., editors, Machine Learning: Proceedings of
the Eleventh International Conference, pages 121-129, New Brunswick, N.J., 1994.
Rutgers University.

P. Langley. Selection of relevant features in machine learning. In Proceedings of
the AAAI Fall Symposium on Relevance. AAAI Press, 1994.

P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization
and support vector machines. In Proceedings of Fifteenth International Conference
on Machine Learning, pages 82-90, 1998.

M.A. Hall. Correlation-based feature selection for discrete and numeric class ma-
chine learning. In Proceedings of Seventeenth International Conference on Machine
Learning (ICML-00). Morgan Kaufmann Publishers, 2000.

W.G. Cochran. Sampling Techniques. John Wiley & Sons, 1977.

B. Gu, F. Hu, and H. Liu. Sampling: Knowing Whole from Its Part, pages 21 —
38. Boston: Kluwer Academic Publishers, 2001.

K. Kira and L.A. Rendell. The feature selection problem: Traditional methods and
a new algorithm. In Proceedings of the Tenth National Conference on Artificial
Intelligence, pages 129-134. Menlo Park: AAAI Press/The MIT Press, 1992.

I. Kononenko. Estimating attributes : Analysis and extension of RELIEF. In
F. Bergadano and L. De Raedt, editors, Proceedings of the European Conference on
Machine Learning, April 6-8, pages 171-182, Catania, Italy, 1994. Berlin: Springer.
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
I.H. Witten and E. Frank. Data Mining - Practical Machine Learning Tools and
Techniques with JAVA Implementations. Morgan Kaufmann Publishers, 2000.
C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.
http://www.ics.uci.edu/~mlearn/MLRepository.html.

S. D. Bay. The UCI KDD archive, 1999. http://kdd.ics.uci.edu.

