Feature Selection with Selective Sampling

Huan Liu

HLIUQASU.EDU

Department of Computer Science & Engineering, Arizona State University, Tempe, AZ 85287-5406, USA

Hiroshi Motoda

MOTODAQ@QSANKEN.OSAKA-U.AC.JP

Institute of Scientific & Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan

Lei Yu

LEIYUQASU.EDU

Department of Computer Science & Engineering, Arizona State University, Tempe, AZ 85287-5406, USA

Abstract

Feature selection, as a preprocessing step to
machine learning, has been shown very ef-
fective in reducing dimensionality, removing
irrelevant data, increasing learning accuracy,
and improving comprehensibility. In this pa-
per, we consider the problem of active fea-
ture selection in a filter model setting. We
describe a formalism of active feature selec-
tion called selective sampling, demonstrate it
by applying it to a widely used feature selec-
tion algorithm Relief, and show how it real-
izes active feature selection and reduces the
required number of training data for Relief
to achieve time savings without performance
deterioration. We design objective evaluation
measures, conduct extensive experiments us-
ing bench-mark data sets, and observe con-
sistent and significant improvement.

1. Introduction

Inductive learning is one of the major approaches to
automatic extraction of useful patterns (or knowledge)
from massive data. Data become increasingly larger
in both columns (i.e., number of features) and rows
(i-e., number of instances) in many applications such
as genome projects, text mining, customer relationship
management, and market basket analysis. This trend
poses a severe challenge to inductive learning systems
in terms of efficiency and effectiveness. Feature selec-
tion has been shown its impressive performance gains
in attacking large dimensionality with many irrelevant
features (Langley, 1994; Liu & Motoda, 1998; Dy &
Brodley, 2000; Dash & Liu, 2000). In particular, fea-
ture selection can remove irrelevant features (and in
many cases, render the impossible learning possible),

increase efficiency in the learning task, improve learn-
ing performance like predictive accuracy, and enhance
comprehensibility of learned results (Talavera, 1999).
Although there exist numerous feature selection algo-
rithms (Blum & Langley, 1997; Dash & Liu, 1997;
Hall, 1999), new challenging research issues arise for
feature selection: from handling a huge number of in-
stances, large dimensionality (e.g., thousands of fea-
tures), to dealing with data without class labels. This
work is concerned about a huge number of instances.
Sampling is a common approach to this problem. Sam-
pling is both random and blind. In this work, we ex-
plore the possibility if we can take advantage of the re-
cent development in active learning (Roy & McCallum,
2001) to improve the performance of feature selection
without increasing the number of sampled data points.
In the following, we first review the models of feature
selection and explain why a filter model is good for our
consideration - handling a huge number of instances,
then introduce active feature selection.

Feature selection algorithms broadly fall into the filter
model or the wrapper model (Kohavi & John, 1997;
Liu & Setiono, 1996). The filter model relies on general
characteristics of the training data to select some fea-
tures without involving any learning algorithm. The
wrapper model requires one predetermined learning al-
gorithm in feature selection and uses the performance
of the learning algorithm to evaluate and determine
which features are selected. As for each new sub-
set of features, the wrapper model needs to learn a
hypothesis (or a classifier), it tends to give superior
performance as it finds features better suited to the
predetermined learning algorithm, but it also tends to
be more computationally expensive (Langley, 1994).
When the number of instances becomes very large,
the filter model is usually a choice due to its computa-
tional efficiency and neutral bias toward any learning

algorithm. In the context of this work, we focus on
the filter model. A representative example of the filter
model is Relief - a widely used, very efficient feature se-
lection algorithm (Kira & Rendell, 1992; Kononenko,
1994; Witten & Frank, 2000). Its details will be given
in Section 2.1.

Active feature selection is inspired by the workings of
active learning (Roy & McCallum, 2001). It is differ-
ent from traditional supervised learning in which the
learner has the freedom to select which data instances
are added to its training set. The essence of active
learning lies in its control over the choice of instances
used in the training process. Active feature selec-
tion shares this essential character with active learn-
ing that it can influence what instances are used for
feature selection by exploiting some characteristics of
the data. Since a filter model is adopted in this work,
we cannot employ any learning algorithm to actively
choose instances. Therefore, the problem of active fea-
ture selection boils down to how we can actively choose
useful instances for feature selection.

In section 2, we illustrate active feature selection us-
ing Relief with implementation details. In section 3,
we design objective metrics for performance evaluation
including time savings. Sectin 4 is an empirical study
in which we evaluate the gains of active feature selec-
tion via extensive experiments and discuss the impli-
cations of the findings. Section 5 presents a conclusion
with some work to be conducted in the near future.

2. Active Feature Selection for Relief

Traditional feature selection methods perform dimen-
sionality reduction using whatever training data is
given to them. When the training data set is very
large, random sampling is commonly used to over-
come the problem. Active feature selection avoids
pure random sampling and is realized by selective sam-
pling. The intuitive idea is to select only instances with
higher probabilities to be informative in determining
feature relevance.

As mentioned earlier, efficiency is critical for feature
selection algorithms. To demonstrate the working of
active feature selection, we use a well received, ef-
ficient algorithm Relief which can select statistically
relevant features in linear time in the number of fea-
tures and the number of instances. After introduc-
ing Relief, we illustrate how selective sampling can be
approximated and implemented with a data structure
(kd-trees (Friedman et al., 1977)), and present a new
algorithm of active feature selection.

2.1 Relief

The key idea of Relief (given in Figure 1) is to es-
timate the quality of features according to how well
their values distinguish between the instances that are
near to each other. For this purpose, given a ran-
domly selected instance X from a data set S with k at-
tributes, Relief searches the data set for its two nearest
neighbors: one from the same class, called nearest hit
H, and the other from a different class, called nearest
miss M. It updates the quality estimation W[A4;] for
all the features A; depending on the difference dif f()
on their values for X, M, and H. The process is re-
peated for m times, where m is a user-defined param-
eter (Kononenko, 1994; Kira & Rendell, 1992).

Given m - number of sampled instances, and k - num-
ber of features,

1. set all weights W[A4;] := 0.0;
2. for j :=1 to m do begin
3. randomly select an instance X;

4. find nearest hit H and nearest miss M;
5. fori:=1to k do begin

7. end;

8. end;

Figure 1. Original Relief algorithm.

The time complexity of Relief for a data set with N
instances is O(mkN). Clearly, efficiency is one of the
major advantages of the Relief family over other algo-
rithms. With m being a constant, the time complexity
becomes O(kN). However, since m is the number of
instances for approximating probabilities, a larger m
implies more reliable approximations. When N is very
large, it often requires that m << N. The m instances
are chosen randomly in Relief. Given a small constant
m, we ask if by active feature selection, we can improve
approximations to close to those using N instances.

2.2 Approximating selective sampling using
kd-trees

The key to active feature selection is being able to
choose m informative instances in the context of Re-
lief. Without any prior knowledge about data, selec-
tive sampling is no different from random sampling
for Relief. The idea of selective sampling stems from
the fact that instances are not uniformly distributed
and some instances are more representative than oth-
ers (Aha et al., 1991). If one could find representative
instances, only a small number of instances are needed.

The issue is how one can achieve that without access-
ing to a learning algorithm.

A Ekd-tree is an index structure often used for fast near-
est neighbor search (Moore, 1991). It is a generaliza-
tion of the simple binary tree, which uses k features
instead of a single feature. Its interior nodes have an
associated feature A; and a value V' that splits the data
points into two parts: those with A;-value less than V
and those with A;-value equal to or greater than V.
The features at different levels of the tree are different,
with levels rotating among the features of all dimen-
sions. The root of the tree presents all the instances
and the splitting is done recursively in each of the suc-
cessor until the node contains no more than a pre-
defined number of instances (called bucket size). The
leaf nodes (buckets) represent mutually exclusive small
subsets of instances which collectively form a partition
of the whole data set. Which feature is chosen first to
split can result in different kd-trees. For the purpose
of selective sampling, we want to split data into differ-
ent groups as early as possible. Hence, in our building
a kd-tree, a feature is chosen first if it can maximize
the data variance along that dimension. A median
value of that feature is used to split the instances into
two equal sized partitions. Such a kd-tree is a bal-
anced tree and its leaf is called a bucket. The size of a
bucket can be determined a priori. Since instances in
each bucket are relatively close to each other, in selec-
tive sampling, one instance is randomly picked from
each bucket. The time complexity of building such an
optimized kd-tree is O(kNlogN) where N is the total
number of instances. The kd-tree can be built once
and for all if necessary or dynamically when required.
It is shown in (Sikonja, 1998) that kd-trees can speed
up Relief algorithms. The focus of this work is to show
the use of kd-trees in selective sampling.

2.3 Relief with selective sampling

Recall that the value of m is critical in approximating
probabilities in Relief. Our first attempt is to selec-
tively sample m instances according to the kd-tree.
There are two ways of controlling the kd-tree splitting
process if one does not want the bucket size to be 1.
One is to use a given m, and the other is to use a
predetermined bucket size ¢. One can easily establish
that ¢ = N/m. Therefore, if m is known, the split-
ting process stops when we reach the level where the
bucket contains N/m or less instances. On the other
hand, given a t, we have m = N/t. For instance, if
we choose t to be 1 (i.e., each bucket contains only
one instance), all the instances in the data set will be
selected for Relief. If we increase t to 2, then all the
buckets used for sampling will have no more than two

instances, and the number of selected instances m will
be 0.5N < m < N. For a bucket size 3, m will be
0.33N < m < 0.5N. For a bucket size t = N, the
root node is not split at all, only one instance will be
selected. From each bucket whose size is greater than
1, one instance is randomly selected.

In this work, we use bucket size ¢ to control the num-
ber of selected instances m which is the number of
buckets. Relief with selective sampling is referred as
ReliefS detailed in Figure 2. One important point in

buildKDTree(t) is that each feature should be normal-
ized before the variance calculation in order to choose
the feature with largest variance to split.

Given t - bucket size,

set all weights W[A;] := 0.0;

buildKDTree(t);

m := number of buckets;

for j := 1 to m do begin
randomly select an instance X € Bucket[j];
find nearest hit H and nearest miss M;
for i := 1 to k do begin

PN O WD

9. end;
10. end;

Figure 2. Algorithm ReliefS with selective sampling.

To recap, Relief basically relies on the search of a
predefined number of nearest neighbors (Kononenko,
1994), and the kd-tree data structure is designed for
fast nearest neighbor search. The kd-tree divides the
sample space into strata so that m instances can be se-
lected from these strata. In the following, we will con-
duct an empirical study to exam if ReliefS can achieve
what it is designed for. We use ReliefF' (Kononenko,
1994; Witten & Frank, 2000) which extends Relief in
many ways: it searches for several nearest neighbors
to be robust to noise, and handles multiple classes.

3. Issues of Performance Evaluation

Let us first discuss the criteria for the performance
metrics. Any performance measure should satisfy the
following for ReliefF:

R1. TIts value reaches the best when m = N.
R2. Its value improves as m increases.

R3. It is a function of the features of the data.

It is obvious that the best performance we can achieve
is the features ranked by ReliefF' with m = N. This
ranked list of features is named Spn. The perfor-
mance of ReliefS w.r.t. ReliefF can be measured in
two aspects: (1) given various sizes of m and the sub-
sets Sr,m and S, selected by ReliefF' and ReliefS re-
spectively, we compare which subset (Sg,;, or Ss) is
more similar to Sg,n - the best subset by ReliefF; and
(2) we compare whether features of the subsets Sg,m,
and Ss ,, are in the same order of the features in Sg .
Aspect 1 of performance measure is designed for fea-
ture subset selection; aspect 2 of performance measure
is for feature ranking and basically it concerns the two
lists of ReliefS and ReliefF with m < N in comparison
with ReliefF of m = N. We present next four different
measures and check if they satisfy the above 3 require-
ments. In section 3.2, we discuss how to measure time
savings due to active feature selection.

3.1 Performance measures

The optimal ranking of the features can be obtained
by running ReliefF with all the instances (m = N)
according to the weights W[A;]. The optimal set (list)
of features is Sp,n. Then a target subset of features
T is an optimal subset of features which contains the
top n weighted features in Sg . For a data set, an
optimal subset of features is the top n features whose
weights > v, where + is a threshold equal to W[i] (the
i-th largest weight in Sg n and the gap defined by Wi
and Wi+ 1] is sufficiently large (e.g., greater than the
average gap among k — 1 gaps).

Let Sy and Sg be the subsets of n features obtained
by ReliefF' and ReliefS respectively. To compare the
performance of both ReliefF' and ReliefS with differ-
ent sizes of m, we can define a performance measure
P(T, R) where R can be either Sg, or Ss 5, with vary-
ing size m. We examine below what are the sensible
candidates for P().

Precision

Precision is computed as the number of features in T'
that are also in R, normalized by dividing the number
of features in R:

{z:z e RAzeT}
R '

The value of Precision ranges from 0 to 1, where the
value of 1 is achieved for perfectly matched sets.

Weighted Precision

Precision treats all features in T equally without con-
sidering the ordering of the features. To overcome
this drawback, we develop the weighted precision mea-

sure. First, we assign each feature A;(1 < i < k)
in the optimal sequence S,y another weight wa, =
k — i+ 1(where k is the total number of features in the
data set, and ¢ is the rank of the feature 4; in S).
Then the weighted precision is computed as:

E WA;

VA;ER

Z wAi-

VA;eT

The weighted precision measure ranges from (n +
1)/(2k — n + 1) to 1, where the value becomes the
upper bound (1) when Precision is 1, and the lower
bound is reached when the n features in R are the n
features with the least ranking values from the optimal
sequence Sr,y. Using weighted precision, we are able
to evaluate the closeness between R and T by looking
at both the number of matched features of the two
subsets and the orders of the two subsets.

Distance Measure

Another way of considering the orders of the features
in the two subsets is named Distance Measure (DM)
which is the sum of distances of the same features in
R and T. The distance of a feature between two sets
is the difference of their positions in the ranking. Let
T' be T in reverse order and S’ be the set of k features
whose top n features form R (n is determined by)
using all k features. The maximum possible ranking
distance between two sets T and T’ that share the
same features is:

Doz = Z |position(A; € T) — position(A; € T")|.
VA;eT

Because subset R may not contain all the features in
T, DM is given using S’ as follows:

> |position(A; € T) — position(A; € S')|
VA;eT

Dmaz

D 4z is used to normalize Distance measure. For sets
T and R with Precision = 1, DM ranges from 0 to
1, where DM of 0 is achieved for the two sets having
identical ranking, and DM of 1 is achieved for the two
sets that are in absolutely reverse order.

Raw Distance

A straightforward performance measure is to directly
calculate the sum of the difference of weights for each
of the same feature in the optimal sequence Sy ny and
the sequence R. We name it Raw Distance (RD):

> [Ws[Ai] - Wr[Ai]l,

i=1

Metrics Precision | Weighted Precision | Distance | Raw Distance
Complexity O(n?) O(nk) O(nk) O(k?)
Upper bound 1 1 None!
Lower bound 0 (n+1)/(2k—n+1) 0 0
Sensitivity None Low High High

v setting Yes Yes Yes No

Table 1. Summary of Performance Measures.

where Ws[A;] and Wg[A;] are associated with Sp N
and R, respectively. RD includes all the k features in
the two sets. Thus, this measure avoids choosing a
threshold for v. When it is used for comparing the re-
sults of ReliefF and ReliefS, it serves the purpose well,
although it cannot be used for measuring the perfor-
mance of subset selection as it uses all features.

Table 1 provides a summary of these four metrics. Sen-
sitivity is about how sensitive the measure is toward
the order of features in a subset. «y setting is required
in Relief for feature subset selection. Only Raw Dis-
tance does not require this threshold setting. Since
the Distance measure is more sensitive than Weighted
Precision, we choose Distance along with Precision and
Raw Distance as performance measures in our exper-
iments. Precision is a good and simple measure for
feature subset selection where the order of features is
not a concern.

3.2 Measuring time savings

A natural question is whether the use of selective sam-
pling in feature selection would result in any time sav-
ing. This is because the initial building of kd-trees
incurs certain costs. This question is best answered
by providing time measures. The comparison can be
conducted as follows: one can choose a performance
measure from the above; for a given performance, Re-
liefS and ReliefF require different numbers of instances
(m) to achieve the performance, thus we can measure
their running time. Let Txq, T's, and TF be time for
kd-tree building, time for running ReliefS, and time
for running ReliefF with a given performance, respec-
tively. We will report Tyq4, Ts, and Tr and compare
Tyq+ Ts with Tr, the difference is either the saving or
the loss.

4. Empirical Study

The objective of this section is to evaluate if active fea-
ture selection can, in the context of ReliefF, do better
in selecting m instances. Since m is the number of
instances used to approximating probabilities (seen in

Figure 1), a larger m implies more reliable approxima-
tions. In (Kononenko, 1994), m is set to N to circum-
vent the issue of optimal m when many extensions of
ReliefF are evaluated. In this work, however, we can-
not assume that it is always possible to let m = N
as this would make the time complexity of ReliefF be-
come O(kN?). In section 4.1, we describe the experi-
mental setup and procedures of using real world data
sets. In section 4.2, we present results and discussion
of the experiments.

4.1 Experiment Setup

| Title | N [Num | Nom | #C |
Iris 150 4 0 3
Glass 214 9 0 7
Balance 625 4 0 3
Pima-Indian 768 8 0 2
Vehicle 846 18 0 4
Segment 2310 | 19 0 7
Waveform 5000 | 40 0 3
Breast-cancer 286 0 9 2
Primary-tumor | 339 0 17 22
KRKPAT 3196 0 36 2
Mushroom 8124 0 22 2
Z00o 101 1 16 7
Autos 205 15 10 7
Colic 368 7 15 2
Vowel 990 10 3 11
Hypothyroid 3772 7 22 4

Table 2. Summary of Benchmark Data Sets: N - number of
instances, Num - numeric features, Nom - nominal features,
#C - number of classes.

The experiments are conducted using Weka’s imple-
mentation of ReliefF and ReliefS is also implemented
in the Weka environment (Witten & Frank, 2000). All
together 16 data sets are selected from the UCI Irvine
machine learning data repository (Blake & Merz, 1998)
with all nominal classes and varying data sizes. A sum-
mary of data sets is presented in Table 2. Three groups

Precision Distance Raw Distance

ReliefF | ReliefS || ReliefF | ReliefS || ReliefF | ReliefS
Iris 1.0 1.0 0.050 0.006 0.057 0.016
Glass 0.980 0.992 0.158 0.097 0.078 0.046
Balance 0.861 0.931 0.433 0.265 0.040 0.016
Pima-Indian 0.902 0.917 0.277 0.214 0.020 0.014
Vehicle 0.997 1.0 0.205 0.105 0.055 0.026
Segment 1.0 1.0 0.082 0.030 0.060 0.016
Waveform 1.0 1.0 0.079 0.060 0.048 0.034
W/L/T 0/4/3 0/7/0 0/7/0

Table 3. Average values for ReliefF and ReliefS of three different measures for continuous data.

of data are chosen. Group 1 contains only continuous
data, Group 2 only nominal data, Group 3 mixed data.
Each experiment is conducted as follows:

For each data set,

1. Run ReliefF using all the instances, and obtain
the ranked list of features according to their
weights, i.e., S n. The parameter for k-nearest
neighbor search is set to 5 (neighbors). This pa-
rameter remains the same for all the experiments.

2. Run ReliefF with increasing percentage of in-
stances corresponding to bucket sizes from 7 to
1. At each percentage value, run ReliefF' 30 times
with different seeds and calculate measures Pre-
cision, Distance, and Raw Distance for each iter-
ation to obtain average results for these perfor-
mance measures to eliminate any idiosyncrasy in
a single run. A curve is plotted for comparison
purpose.

3. Run ReliefS with increasing percentage of in-
stances. The percentage value is automatically
decided by the decreasing bucket size from 7 to 1
for each data set as in Step 2. For each bucket
size, run ReliefS 30 times and calculate Precision,
Distance and Raw Distance each time and obtain
average results as in Step 2 for ReliefF. A curve
is plotted for comparison purpose.

4.2 Results and Discussions

Two sets of results are presented in Table 3 and Fig-
ure 3. Three performance measures of average results
for each data set are reported in Table 3. They are
averaged over results of different bucket sizes from 7 to
2 as ReliefF and ReliefS are the same when bucket size
is 1. (W/L/T) in Table 3 summarizes Win/Loss/Tie
in comparing ReliefF' with ReliefS. For every data set,
ReliefS is as good as or better than ReliefF. This sug-
gests that instances selected using kd-tree are more

effective than randomly chosen ones. Now let us look
at the trends of the three performance measures when
the number of instances increases for both ReliefF and
ReliefS. Figure 3 shows the average results of all 7
data sets with different bucket sizes from 7 to 1. As
the number of instances increases, all three measures
improve and reach their best values when all instances
are used in Relief. Figure 3 complements Table 3 in
displaying results summarized along different aspects:
numbers of instances and different data sets.

Figure 3 and Table 3 indicate that active feature se-
lection has achieved improved results for continuous
data. This is largely due to the use of kd-trees to par-
tition the data. The kd-tree can be built once for all
for each size of the data. After the kd-tree is built, we
only need a maximum of O(logN) to reach a certain
bucket of size t. Therefore, the subsequent run time
of ReliefS is really the same as that of ReliefF after
the kd-tree is built. To actually compare the running
time of ReliefS with that of ReliefF, we follow section
3.2 and consdier the case of the smallest bucket size
2 (i.e., mp is around 50% of the whole data for Reli-
efF) and use this performance (raw distance) to find
corresponding mg. Table 4 records the running times
Tra,Ts and T as well as mg and mp. We can observe
that: (1) the time savings are consistent with the time
complexity analysis of Relief- O(kmN); (2) the larger
the data set, the more savings in time; and (3) the
ratio of Tyq/Ts decreases when data size increases.

Another interesting point to notice is that ReliefF’
works on both continuous, nominal and mixed data.
Since variance is calculated in the kd-tree building,
we naturally question if ReliefS can be directly ex-
tended to nominal and mixed data (Groups 2 and
3 in Table 2) by simply treating them as contin-
uous. The results are reported in Table 5. Re-
liefS works as well as or better than ReliefF' except
for 3 cases (some particular bucket sizes for data
sets PrimaryTumor, Zoo, Colic). The detailed re-

1
0.995
0.99
0.985
0.98
0.975
0.97
0.965)
0.96 = | Reliefs —+— 7]
0.955 % ReliefF ---x---
095 | | | 11 | | |

1020304050607080901L00

Per cent age by bucket size from7 to 1

Pr eci si on

0.25 1

I | I I I I
ReliefS —+—

0.2 X, Relieff --x-— _
X

0.15

Di st ance

0.1

0.05

0
102030405060708090100

Per cent age by bucket size from7 to 1

0.07
0.06 [-X
0.05 | ¥
0.04
0.03
0.02
0.01
0

ReliefS —+—
ReliefF —--x---

Raw di st ance

102030405060708090100

Per cent age by bucket size from7 to 1

Figure 3. Average results of 3 performance measures on
continuous data.

ReliefS RelieF

Tra Ts mg Tr mg

(ms) | (ms) (ms)
Iris 20 14 18 60 87
Glass 61 140 62 259 126
Balance 136 223 88 743 313
Pima 246 484 Vi 2684 476
Vehicle 530 2874 195 6790 499
Segment 1520 | 10870 | 277 | 53300 | 1317
Waveform | 7170 | 359840 | 1900 | 529860 | 2950

Table 4. Time savings by ReliefS w.r.t. ReliefF. ms and
mp are instances used by ReliefS and ReliefF' to achieve
the same performance in raw distance.

sults for individual data sets in postscript can be
found at (http://www.public.asu.edu/~huanliu/icml-
figs.ps). Comparing the results in Tables 3 and 5, we
observe that both ReliefF' and ReliefS work generally
better on continuous data than on nominal or mixed
data. For the Precision measure, the larger the better;
for the two Distance measures, the smaller the better.

5. Conclusions and Further Work

Here we present a case of active feature selection. A
formalism of active feature selection is formed as selec-
tive sampling. We chose an efficient feature selection
algorithm Relief in our case study to evaluate whether
selective sampling has consistent advantages over ran-
dom sampling. In particular, we use the kd-tree to par-
tition data and representative instances are randomly
selected from the partitions (one from each bucket).
Extensive experiments are conducted to evaluate this
novel formalism of active feature selection.

Although the experimental study demonstrates the ef-
fectiveness of the very first version of active feature se-
lection, we plan future work along the following lines:
(1) to further reduce the required instances without
affecting the achieved performance by separating fea-
ture selection and feature ranking; (2) to investigate
why ReliefS still works in cases where data are not
purely continuous; (3) to automatically determine ~y
in feature subset selection as Relief is basically a fea-
ture ranking algorithm; and (4) to apply active feature
selection to the vast body of feature selection and other
algorithms (Liu & Motoda, 2001).

Acknowledgments

We gratefully thank Bret Ehlert, Feifang Hu, and
Manoranjan Dash for their contributions to this work and
anonymous reviewers and Area Chair for their constructive
comments. This work is in part based on the project sup-

Precision Distance Raw Distance
ReliefF' | ReliefS || ReliefF | ReliefS || ReliefF | ReliefS
Breast-cancer 0.768 0.828 0.741 0.589 0.222 0.158
Primary-tumor 0.956 0.966 0.262 0.192 0.306 0.228
KRKPAT7 0.959 0.984 0.117 0.066 0.172 0.095
Mushroom 1.0 1.0 0.685 0.290 0.153 0.055
Zoo 0.988 0.994 0.139 0.106 0.672 0.469
Autos 0.921 0.935 0.361 0.205 0.408 0.278
Colic 0.840 0.866 0.383 0.308 0.411 0.310
Vowel 1.0 1.0 0.077 0.020 0.047 0.019
Hypothyroid 0.965 0.974 0.123 0.078 0.074 0.045
W/L/T 0/7/2 0/9/0 0/9/0

Table 5. Average values for ReliefF' and ReliefS of three different measures for nominal and mixed data.

ported by National Science Foundation under Grant No.
11S-0127815 for H. Liu, and on Grant-in-Aid for Scientific
Research on Priority Areas (B), No. 759: Active Mining
Project by Ministry of Education, Culture, Sports, Science
and Technology of Japan for H. Motoda.

References

Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-
based learning algorithms. Machine Learning, 6, 37-66.

Blake, C., & Merz, C. (1998). UCI repository of machine
learning databases.
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Blum, A., & Langley, P. (1997). Selection of relevant fea-
tures and examples in machine learning. Artificial Intel-
ligence, 97, 245-271.

Dash, M., & Liu, H. (1997). Feature selection methods for
classifications. Intelligent Data Analysis: An Interna-
tional Journal, 1.

Dash, M., & Liu, H. (2000). Feature selection for clus-
tering. Proceedings of Fourth Pacific Asia Conference
on Knowledge Discovery and Data Mining, (PAKDD-
2000). Kyoto, Japan. Springer-Verlag.

Dy, J. G., & Brodley, C. E. (2000). Feature subset selec-
tion and order identification for unsupervised learning.
Proceedings of the Seventeenth International Conference
on Machine Learning (pp. 247-254).

Friedman, J. H., Bentley, J. L., & Finkel, R. A. (1977).
An algorithm for finding best matches in logarithmic
expected time. ACM Trans. Math. Software, 3, 209-226.

Hall, M. (1999). Correlation based feature selection for
machine learning. Doctoral dissertation, University of
Waikato, Dept. of Computer Science.

Kira, K., & Rendell, L. (1992). The feature selection prob-
lem: Traditional methods and a new algorithm. Proceed-
ings of the Tenth National Conference on Artificial In-
telligence (pp. 129-134). Menlo Park: AAAT Press/The
MIT Press.

Kohavi, R., & John, G. (1997). Wrappers for feature subset
selection. Artificial Intelligence, 97, 273-324.

Kononenko, I. (1994). Estimating attributes : Analysis
and extension of RELIEF. Proceedings of the European
Conference on Machine Learning, April 6-8 (pp. 171-
182). Catania, Italy: Berlin: Springer-Verlag.

Langley, P. (1994). Selection of relevant features in machine
learning. Proceedings of the AAAI Fall Symposium on
Relevance. AAAI Press.

Liu, H., & Motoda, H. (1998). Feature selection for knowl-
edge discovery data mining. Boston: Kluwer Academic
Publishers.

Liu, H., & Motoda, H. (Eds.). (2001). Instance selection
and construction for data mining. Boston: Kluwer Aca-
demic Publishers.

Liu, H., & Setiono, R. (1996). A probabilistic approach to
feature selection - a filter solution. Proceedings of Inter-
national Conference on Machine Learning (ICML-96),
July 8-6, 1996 (pp. 319-327). Bari, Italy: San Fran-
cisco: Morgan Kaufmann Publishers, CA.

Moore, A. W. (1991). An introductory tutorial on
kd-treesExtract from Ph.D. Thesis Tech Report No.
209). Computer Laboratory, University of Cambridge,
Robotics Institute, Carnegie Mellon University.

Roy, N., & McCallum, A. (2001). Toward optimal active
learning through sampling estimation of error reduction.
Proceedings of the Eighteenth International Conference
On Machine Learning.

Sikonja, M. (1998). Speeding up Relief algorithms with k-d
trees. Proceedings of the Electrotechnical and Computer
Science Conference ERK’98.

Talavera, L. (1999). Feature selection as a preprocessing
step for hierarchical clustering. Proceedings of Interna-
tionl Conference on Machine Learning (ICML’99).

Witten, 1., & Frank, E. (2000). Data mining - pracitcal
machine learning tools and techniques with JAVA imple-
mentations. Morgan Kaufmann Publishers.

