Radiosity Method
(1) Concept

- Ray tracing:
 - synthesized (not very realistic as compared to results using the radiosity method)
 - it only models one aspect of the light interaction, which has perfect specular reflection and transmission
 - ambient constant to model

- Radiosity
 - interaction between diffusely reflecting surfaces, devised by the group in Cornell University (1980’s)
 - more reality than the ray-tracing method
 - successful in dealing with man-made environment (e.g., interiors of offices, factories and the like, closed environment)
 - Drawback: very computation intensive (very time-consuming) (e.g., simulating a steel mill which contains 30,000 patches costs 190 hours on VAX8700 machine).
(2) Theory

- Principle of heat transfer or interchange between surfaces

- The energy input to the system is from those surfaces that act as emitters
 - The light source is treated like any other surface except that it possesses an initial (non-zero) radiosity

- Divide the environment into “patches”

- Radiosity B of a patch is a total rate of energy leaving a surface
 \[\Rightarrow = \text{emitted energy} + \text{reflected energy} \]

- \textit{Reflected energy} = \textit{reflection coefficient} \times \textit{energy incident on the patch from all other patches}
e.g.,

- Energy exchange between patch P_i and P_j is a function of distance and orientation.
- High energy interchange will occur if P_i, P_j are close together and parallel to each other.
- Radiosity is view-independent.
(3) Algorithm

\[B_i dA_i = E_i dA_i + P_i \left(\int B_j dA_j \right) F_{dA_j dA_i} \]

\(E_i \): energy emitted from a patch per unit time and unit area \(dA_i \)

\(F_{dA_j dA_i} \): form factor between the \(dA_j \) and \(dA_i \) or the fraction of energy leaving \(dA_j \) that arrives at \(dA_i \)

In a close environment an energy equilibrium must be established itself and a set of linear equations is formulated.

For \(n \) patches:

\[B_i A_i = E_i A_i + P_i \sum_{j=1}^{n} B_j F_{ji} A_j \quad (1) \]

\[F_{ji} = F_{Aj Ai} \]

energy exchange depends only on the relative geometry of the patches:
\[F_{ij} A_i = F_{ji} A_j \]
\[\Rightarrow F_{ij} = F_{ji} \frac{A_i}{A_j} \]

substitute equation 1:
\[\Rightarrow B_i = E_i + \rho_i \sum_{j=1}^{n} B_j F_{ij} \text{ for each patch} \]

For n patched
\[\Rightarrow n \text{ simultaneous equations in } n \text{ unknown } B_i: \]
\[
\begin{bmatrix}
1 - \rho_1 F_{11} & -\rho_1 F_{12} & \cdots & -\rho_1 F_{1n} \\
-\rho_2 F_{21} & 1 - \rho_2 F_{22} & \cdots & -\rho_2 F_{2n} \\
\cdots & \cdots & \cdots & \cdots \\
-\rho_n F_{n1} & -\rho_n F_{n2} & \cdots & 1 - \rho_n F_{nn}
\end{bmatrix}
\begin{bmatrix}
B_1 \\
B_2 \\
\vdots \\
B_n
\end{bmatrix} =
\begin{bmatrix}
E_1 \\
E_2 \\
\vdots \\
E_n
\end{bmatrix}
\]

\(E_i \) values are nonzero only at surfaces that provide illumination.
The equation set is an expression of energy equilibrium for a particular wavelength; E_i and P_i are the function of wavelength.

⇒ A set of equation needs to be solved for each color band of interest (e.g., R, G, B or more)

- $F_{ii} = 0$ for a plane or convex surface – none of the radiation leaving a surface will strike itself.

- Radiosity values are constant over the extent of a patch.

- Standard render requires vertex radiosities or intensities.
(4) Calculation

- “Gathering” iteration
 - update the radiosity of single patch

- “Shooting” iteration
 - progressive refinement – update the entire image as each iteration

- Increasing accuracy of the solution:
 - “substructuring” (“elements” of a patch)
 - patches that need to be divided into elements are revealed by examine the graduation of the coarse patch solution

(5) Stages in a complete radiosity solution
(6) Form Factor definition

- calculation is non-trivial

- Solid angle subtended by dA_j at dA_i

 \[
 dw_{ij} = \cos(\phi_j) \frac{dA_j}{r^2}
 \]

 r: distance between dA_j and dA_i

- Energy leaving dA_i that reaches dA_j

 \[
 dE_i dA_i = I_i \cos(\phi_i) dw_{ij} dA_i
 = I_i \cos(\phi_i) \cos(\phi_j) dA_i \frac{dA_j}{r^2}
 \]

- Total energy leaving dA_i in all direction into the hemisphere centered on that area:

 \[E_i dA_i\]
• element → element

\[F_{dA_i dA_j} = \frac{\text{Radiative energy reaching } dA_j \text{ from } dA_i}{\text{Total energy leaving } dA_i \text{ in all directions}} \]

Total energy leaving \(A_i \): \(E_i dA_i = I_i \pi dA_i \)
where
\(I_i \): intensity or energy
\(I_i \pi \): integrating over hemisphere centered on \(dA_i \)

\[\Rightarrow F_{dA_i dA_j} = \frac{dE_i dA_i}{E_i dA_i} = \frac{\cos \phi_i \cos \phi_j dA_j}{\pi r^2} \]

\(dA_i \rightarrow A_j \):
\[F_{dA_i dA_j} = \int_{A_j} \frac{\cos \phi_i \cos \phi_j dA_j}{\pi r^2} \]

• patch → patch

\[F_{dA_i dA_j} = F_{ij} = \frac{\text{Radiative energy leaving surface } A_i \text{ that strikes } A_j \text{ directly}}{\text{Energy leaving } A_i \text{ in all directions of hemispherical space surrounding } A_i} \]
\[F_{ij} = \frac{1}{A_i} \int_{A_i} \int_{A_j} \frac{\cos \phi_i \cos \phi_j}{\pi r^2} dA_j dA_i \]

- Numerical calculation is not easy!

- \[\sum_{k=1}^{n} F_{ik} = 1 \ (i = 1, \ldots, n) \]

\[\rightarrow \text{convex surface: } F_{ii} = 0 \text{ (radiation leaving the surface cannot strike itself)} \]

\[\rightarrow \text{concave surface: } F_{ii} \neq 0 \text{ (possible strike itself)} \]