Computability

Post’s Correspondence Problem
Valid Turing Computations and other results

Instance of PCP

- Take two lists of strings over the same alphabet Σ: $A = w_1, w_2, \ldots, w_k$ and $B = x_1, x_2, \ldots, x_k$ for the same k
- PCP has a solution if we can find $i_1 w_{i_2} w_{i_3} \cdots w_i m = x_{i_1} x_{i_2} x_{i_3} \cdots x_{i_m}$
- PCP is undecidable

The CFG ambiguity problem

- Take any PCP over alphabet Σ: $A = w_1, w_2, \ldots, w_n$ and $B = x_1, x_2, \ldots, x_n$ for some n
- Let a_1, a_2, \ldots, a_n be n new symbols
- Define $L_A = \{w_{i_1} w_{i_2} \cdots w_{i_m} a_{i_m} a_{i_m-1} \cdots a_{i_1} \mid m \geq 1\}$ and $L_B = \{x_{i_1} x_{i_2} \cdots x_{i_m} a_{i_m} a_{i_m-1} \cdots a_{i_1} \mid m \geq 1\}$
- CFL’s and ambiguity is equivalent to solving PCP
Valid computations

Section 8.6: valid computations of TM’s

- For use in section 8.6, a valid computation of a Turing machine \(M = (Q, \Sigma, \Gamma, \delta, q_0, B, F) \) is a string
 \(w_1\#w_2\#^Rw_3\#^Rw_4\#^R\ldots \), where each \(w_i \) is an i.d. in a sequence of i.d.’s of the
 TM which accepts \(w \), where \(w_1 = q_0w \)
- The sequence ends with \(w_n\# \) or \(w_n\#^R \) where \(w_n \) contains a state in \(F \)
- Each \(w_i \) is a string in \(\Gamma^*Q\Gamma^* \) that does not end in a \(B \)

Two results on valid computations

- The textbook shows (Lemma 8.6 and Lemma 8.7) that the valid
 computations of a TM form a
 language which is the intersection of
 2 CFL’s and the complement of that
 language is also a CFL
- In fact, given a TM \(M \), the textbook
 shows how to construct grammars
 for the languages needed
- First we describe \(L_1 \cap L_2 \)

Lemma 8.6

- Lemma 8.6 shows that there is a PDA
 for \(L_3 = \{ y \# z^R : y \vdash_M z \} \)
- A PDA can pass the elements of
 \(y = \alpha q \beta \) onto a stack but making the
 transition of \(M \) as it encounters \(q \) and
 the following symbol
- Then the PDA checks \(z^R \) exactly
 matches what is on the stack and
 accepts by empty stack
The CFL’s

- \(L_1 = (L_3 \#)^*(\{\varepsilon\} \cup \Gamma^* F \Gamma^* \#) \)
 - to allow for the last ID of \(w_1 \# w_2 R \# w_3 \# w_4 R \# \ldots \)
 - to be a \(w_n \) or a \(w_n^R \)
- You then make a PDA for \(L_4 = \{ yR \# z : y \vdash_M z \} \) and define
- \(L_2 = \delta \Sigma^* \# (L_4 \#)^*(\{\varepsilon\} \cup \Gamma^* F \Gamma^* \#) \)
- One or other of \(L_1 \) and \(L_2 \) contains the accepting ID of the TM (or its reverse)

Theorem 8.10

- \(L(G_1) \cap L(G_2) = \emptyset \) is undecidable
- Proof: suppose that it was decidable that given any two CFG’s then the intersection of their grammars is or is not empty, then \(L_e \) is decidable:
 - Then given any TM \(M \), we can construct the CFG’s of the CFL’s such that \(L_1 \cap L_2 \) is the set of valid computations of \(M \)
 - \(L(M) = \emptyset \) if and only if \(L_1 \cap L_2 = \emptyset \)

Lemma 8.7

- An invalid computation of a Turing Machine is a string in \((\Gamma \cup Q \cup \{\#\})^* \)
 - that is not of the form of a valid computation
 \(w_1 \# w_2 R \# w_3 \# w_4 R \# \ldots \)
 - (where the \(w \)’s satisfy all the conditions of a valid computation)
- Lemma 8.7 states that the set of invalid computations is a CFL
- It is a union of 3 regular sets and 2 CFL’s

Outline Proof

- What is not a valid computation?
- \(\{x_1 \# x_2 \# x_3 \# x_4 \# \ldots x_n \# : \text{each } x_i \text{ is an ID of } M \text{ or the reverse of one} \}
 - is a regular language with regular expression: \((\Gamma^* Q \Gamma^* \#)^* \) (the reverse of an ID is an ID)
- So the complement is also regular
- That is a large part of the invalid computations
An invalid computation is also one that does not begin with an element of $q_0\Sigma^*$.

Now $q_0\Sigma^*(\Gamma^*Q\Gamma^*)^* = \{x_1 \# x_2 \# x_3 \# x_4 \# \ldots x_n \# : \text{each } x_i \text{ is an ID of } M \text{ and } x_1 \text{ is an initial ID}\}$ is regular so its complement in $(\Gamma \cup Q \cup \{\#\})^*$ is regular.

An invalid computation is also one that does not end with a final state.

Now $(\Gamma^*Q\Gamma^*)^*(\Gamma^*F\Gamma^*)^* = \{x_1 \# x_2 \# x_3 \# x_4 \# \ldots x_n \# : \text{each } x_i \text{ is an ID of } M \text{ and } x_n \text{ is a final ID}\}$ is regular so its complement in $(\Gamma \cup Q \cup \{\#\})^*$ is regular.

What remains as invalid is a part of the following larger set of invalid computations:

$\{x_1 \# x_2 \# x_3 \# x_4 \# \ldots x_n \# : \text{each } x_i \text{ is an ID of } M \text{ and for some odd } i, x_i \vdash (x_{i+1})^R \text{ is false or for some even } i, x_i^R \vdash x_{i+1} \text{ is false}\}$

This set is the union of two CFL’s.

One of the two CFL’s is:

$\{x_1 \# x_2 \# x_3 \# x_4 \# \ldots x_n \# : \text{each } x_i \text{ is an ID of } M \text{ and for some odd } i, x_i \vdash (x_{i+1})^R \text{ is false}\}$

A PDA randomly starts analyzing after passing and even number of #’s.

As it reads x_i it creates the correct next ID on the stack (as in Lemma 8.6).

Then it compares x_{i+1} with the stack contents: if there is a mismatch the PDA moves to the end & succeeds.
The other set is
{\(x_1 \# x_2 \# x_3 \# x_4 \# ... x_n \#\) : each \(x_i\) is an ID of \(M\) and for some even \(i\), \(x_i^R \vdash x_{i+1}\) is false}

This is a CFL for similar reasons

Hence the set of invalid computations is a CFL

Suppose it were decidable whether \(L(G) = \Sigma^*\), we could deduce that \(L(M) = \emptyset\) is decidable (which is false)

Take \(M\), and construct the grammar \(G\) of all invalid computations of \(M\)

Theorem 8.11

- \(L(M) = \emptyset\) if and only if
- all computations are invalid if and only if
- \(L(G) = \Sigma^*\)
- If there were an algorithm to test \(L(G) = \Sigma^*\), we could now check if \(L(M) = \emptyset\)

Consequences of Theorem 8.11

- Theorem 8.12
 Let \(G_1\) and \(G_2\) be arbitrary CFG’s and \(R\) a regular set. The following are undecidable:
 - \(L(G_1) = L(G_2)\),
 - \(L(G_2) \subseteq L(G_1)\),
 - \(L(G_1) = R\),
 - \(R \subseteq L(G_1)\)
Proof

- Pick G_2 so that $L(G_2) = \Sigma^*$ where Σ is the alphabet of G_1, then (1) and (2) reduce to $L(G_1) = \Sigma^*$
- Pick $R = \Sigma^*$ then statements (3) and (4) reduce to determining if $L(G_1) = \Sigma^*$
- Deciding if $L(G_1) = \Sigma^*$ is undecidable (so the 4 problems are undecidable even in this special case)

Something that IS decidable

- For an arbitrary CFG G and a regular language R, it is decidable that $L(G) \subseteq R$
- This property is equivalent to $L(G) \cap R = \emptyset$
- Since that intersection is a CFL, we can test if it is empty by checking if the start symbol is useful

Lemma 8.8

- Let M be a Turing machine that makes at least 3 moves on every input, then the set of valid computations of M is a CFL if and only if $L(M)$ is finite
- Proof:
 1. If $L(M)$ is finite, then the set of valid computations is finite, which is certainly a CFL
 2. (ii) if the set of valid computations were a CFL and $L(M)$ were infinite, then pick a valid computation starting $w_1 \# w_2^R \# w_3 \# ...$ where w_1 is long enough to make w_2 longer than the n of Ogden’s lemma (an extension of PL4CFL)
 3. That allows to pump up on w_2^R only and the computation becomes invalid
 4. Hence the valid comp’s are not a CFL
Theorem 8.13

- It is undecidable for arbitrary CFG’s G_1 and G_2 whether
 (i) $L(G_1)$ is a CFL
 (ii) $L(G_1) \cap L(G_2)$ is a CFL
- Proof. (i) Take any M and convert it so that it makes 2 moves at least on all inputs
- Construct the grammar G for all invalid computations
- $L(G)$ is a CFL iff M accepts a finite set

But finiteness is undecidable
- Proof (ii) Take any M and convert it to always make at least 2 moves
- Construct the G_1 and G_2 so that $L(G_1) \cap L(G_2)$ is the set of valid comps of M
- $L(G_1) \cap L(G_2)$ is a CFL iff M accepts a finite set but
- Finiteness is undecidable

Section 8.7 - Greibach

- The textbook goes on to describe a result of Greibach and shows how to deduce the undecidability of the questions:
- whether a CFG generates a regular language
- inherent ambiguity of a CFL is undecidable

Greibach’s Theorem

- Let C be a class of languages that is \textit{effectively} closed under concatenation with regular sets and union and for which “= Σ^*” is undecidable for any large Σ.
- Let P be any non-trivial property that is true for all regular sets and that is preserved under $L \rightarrow \{w : wa \in L\}$
- Then P is undecidable for C