Pumping Lemma - 1

- The first 9 slides were written out on paper during the class.
- Consider \(L_1 = \{a^ibc^j : i+j \text{ is prime, } |i - j| < 5\} \)
- The PL4CFL gives an "n" for this language if it were a CFL
- Take a prime \(p > n \) and then \(i = \lfloor p/2 \rfloor \) and \(j = \lceil p/2 \rceil \) \((i + j = p)\)
- Then \(a^ibc^j = uvwx^y \) and we can pump on \(v, x \)

Pumping Lemma - 2

- If \(v \) or \(x \) contained \(b \), then \(uv^2wx^2y \) would have 2 \(b \)'s and would not be in the language
- Otherwise, consider \(uv^{p+1}wx^{p+1}y \).
- Here, the number of \(a \)'s + the number of \(c \)'s is \(p + p |vx| = p(1 + |vx|) \), which is not prime

Pumping Lemma - 3

- Next, consider \(L_2 = \{a^{2i+1}z : i \geq 0, z \in (b + c)^*, \ n_b(z) = 4j + 3, \ n_c(z) = 3k, \ 2i - 3 > j, \ 2j < 3k \} \)
- We pick a string of the form \(a^ib^jc^t \in L_2 \) even though \(L_2 \) does not require the \(b \)'s precede all the \(c \)'s
- First, consider \(2j < 3k \) : we could use \(j = 3n, k = 2n+1, \) then \(2j = 6n < 3k = 6n+3 \)
- Next, look at \(2i - 3 > j \)
Pumping Lemma - 4

- So far, we need $2i - 3 > j$, $2j < 3k$
- Because of “$2i$”, we move to $j = 6n$, then $k = 4n + 1$, $i = 3n + 2$ is the smallest that gives $2i - 3 > 6n$
- We always work near the edge of the region given by the inequality

![Diagram]

- We have picked the string $a^{6n+5}b^{24n+3}c^{12n+3} = uvwxy$ using PL4CFL

Pumping Lemma - 5

- If v and x are in the a’s, pump down to uvw. We get $a^{6n+5-|vx|}b^{24n+3}c^{12n+3}$
- If $|vx|$ is odd, then # a’s becomes even
- If $|vx|$ is even, then it is > 2 and the value of i in a^{2i+1} must have decreased by at least 1
- We look at the effect this change has on the constraint $2i - 3 > j$

Pumping Lemma - 6

- When $i = 3n + 2$, we had $2i - 3 = 6n + 1$ but now i is reduced, so $i < 3n + 1$: $2i - 3 < 6n - 1 < 6n = j$ (contradiction)
- If v and x are in the b’s, just pump up as much as needed
- If v and x are in the c’s, pump down:
 - If $|vx|$ not a multiple of 3, $uvw \not\in L_2$
 - If $|vx| = 3r$, $n_c(uvw) = 3(k - r)$.
- Before, k was $4n+1$ and $2j < 3k$, but now $k_{new} \leq 4n$ and $2j = 12n > 3k_{new}$

Pumping Lemma - 7

- If v and x contains a’s and b’s, pump up to break the constraint $2j < 3k$
- If v and x contains b’s and c’s, pump up to break the constraint $2i - 3 > j$
Pumping Lemma - 8

- If we have
 \[a \ldots ab \ldots bc \ldots c \]
 \[u \ v \ w \ x \ y \]
- Then \(uv^2wx^2y \) has the form
 \[a \ldots ab \ldots bc \ldots c \]
 \[u \ v \ w \ x \ y \]
- This is not in \(L_2 \) because of the format (a’s after some b’s)

Pumping Lemma - 9

- If we have
 \[a \ldots ab \ldots bc \ldots c \]
 \[u \ v \ w \ x \ y \]
- Then \(uv^3wx^3y \) has the form
 \[a \ldots ab \ldots bc \ldots bc \ldots bc \ldots c \]
 \[u \ v \ w \ x \ x \ x \ y \]
- This could be in \(L_2 \) because the order of the b’s and c’s does not matter

Computability

- Post’s Correspondence Problem
- Valid Turing Computations and other results

Instance of PCP

- Take two lists of strings over the same alphabet \(\Sigma \): \(A = w_1, w_2, \ldots, w_k \) and \(B = x_1, x_2, \ldots, x_k \) for the same \(k \)
- The two lists \((A, B) \) are called an instance of Post’s Correspondence Problem (PCP)
The PCP instance has a solution when we can find a SINGLE sequence of indices
\(i_1, i_2, ..., i_m \) \(m \geq 1 \), such that
\[i_1 w_{i_2} w_{i_3} \cdots w_{i_m} = x_{i_1} x_{i_2} x_{i_3} \cdots x_{i_m} \]

- Note that the sequence chosen is the same on both sides.

Example

- The PCP \(A = 1, 10111, 10 \) and \(B = 111, 10, 0 \) has a solution \(2,1,1,3: 10111 1 1 10 = 10 111 111 0 \)

- The PCP \(A = 10, 011, 101 \) and \(B = 101, 11, 011 \) does not have a solution

PCP is undecidable

- A lengthy proof shows that if PCP were decidable then \(L_u \) would be recursive (a special form of PCP is used)

- PCP can be used to show that it is undecidable whether a CFG is ambiguous:

The CFG ambiguity problem

- Take any PCP over alphabet \(\Sigma: A = w_1, w_2, ..., w_n \) and \(B = x_1, x_2, ..., x_n \) for some \(n \)

- Let \(a_1, a_2, ..., a_n \) be \(n \) new symbols

- Define two new languages
L_A and L_B

- \(L_A = \{ w_{i_1}w_{i_2} \ldots w_{i_m}a_{i_m}a_{i_{m-1}} \ldots a_{i_1} \mid m \geq 1 \} \) and
- \(L_B = \{ x_{i_1}x_{i_2} \ldots x_{i_m}a_{i_m}a_{i_{m-1}} \ldots a_{i_1} \mid m \geq 1 \} \)
- These are infinite languages because we consider every \(m \) and every sequence \(i_1, i_2, \ldots, i_m \)

CFG's

- \((\{S_A\}, \Sigma', P_A, S_A) \) generates \(L_A \) where \(P_A \) has productions \(S_A \rightarrow w_iS_Aa_i \) and \(S_A \rightarrow w_ia_i \)
- \((\{S_B\}, \Sigma', P_B, S_B) \) generates \(L_B \) where \(P_B \) has productions \(S_B \rightarrow w_iS_Ba_i \) and \(S_B \rightarrow w_ia_i \)

The union

- The grammar
 \[G = (\{S, S_B, S_A\}, \Sigma', P, S) \text{, where} \]
 \[P = \{ S \rightarrow S_B, S \rightarrow S_A \} \cup P_A \cup P_B \]
 generates \(L_A \cup L_B \)
- The textbook shows that this \(G \) is ambiguous if and only if the PCP \((A, B)\) has a solution:

ambiguity

- The only source of ambiguity is
 \[S \Rightarrow S_A \Rightarrow i_1w_{i_2} \ldots w_{i_m}a_{i_m}a_{i_{m-1}} \ldots a_{i_1} \] and
 \[S \Rightarrow S_B \Rightarrow x_{i_1}x_{i_2} \ldots x_{i_m}a_{i_m}a_{i_{m-1}} \ldots a_{i_1} \]
- In which case, we have a solution of \((A, B)\):
 \[i_1w_{i_2}w_{i_3} \ldots w_{i_m} = x_{i_1}x_{i_2}x_{i_3} \ldots x_{i_m} \]
- Thus, if ambiguity of a CFG were decidable then PCP would be decidable