Two more languages that are not recursively enumerable

Two complementary languages

- Consider these two languages:
 \[L_r = \{ \langle M \rangle : L(M) \text{ is recursive} \} = \overline{L_{nr}} \]
 \[L_{nr} = \{ \langle M \rangle : L(M) \text{ is not recursive} \} \]

- The textbook shows that both \(L_r \) and \(L_{nr} \) are NOT rec. enum.
- Both proofs involve building “monster” machines
- Both proofs involve showing that if the new language were rec. enum. then \(\overline{L_u} \) would be rec. enum.

Cannot happen

- Now, \(L_u \) is rec. enum (use a universal TM) so if \(L_u \) were rec. enum, then both \(L_u \) and \(\overline{L_u} \) would be recursive (Theorem 8.3)
- However, \(L_u \) is not recursive
First, L_r

- Suppose L_r is rec. enum. and M_r is a TM for L_r. Let M_u be a universal TM.
- Use an algorithm to convert an input $<M, w>$ into a machine M' such that
 - $L(M') = \emptyset$ if $<M, w> \notin L_u$
 - $L(M') = L_u$ if $<M, w> \in L_u$

Details

- The construction of M' from $<M, w>$ and M_u is basically a matter of
 - putting an extra tape to simulate M on w and
 - a transition from the final state of M to the initial state of M_u
- It is obvious that
 - $L(M') = \emptyset$ if $<M, w> \notin L_u$
 - $L(M') = L_u$ if $<M, w> \in L_u$

Next, the monster

- We convert M' to M'' of the Chapter 8 form and obtain its binary encoding $<M''>$
- Feed $<M''>$ to M_r
the conclusion

- M_r accepts $<M''>$ if and only if
- $L(M') = L(M'')$ is recursive if and only if
- $L(M') = \emptyset$, since L_u is not recursive if and only if
- $<M, w> \notin L_u$
- The combination is a TM for $\overline{L_u}$
- Impossible, so M_r does not exist

Next we look at L_{nr}

- Suppose L_{nr} is rec. enum. and M_{nr} is a TM for L_{nr}. Let M_u be as before
- Use an algorithm to convert an input $<M, w>$ into a machine M' such that
 - $L(M') = \Sigma^*$ if $<M, w> \in L_u$
 - $L(M') = L_u$ if $<M, w> \notin L_u$
Use M_{nr}

- We convert M' to M'' of the Chapter 8 form and obtain its binary encoding $<M''>$
- Feed $<M''>$ to M_{nr}

The conclusion

- M_{nr} accepts $<M''>$ if and only if $L(M') = L(M'')$ is not recursive if and only if $L(M') = L_u$ since Σ^* is recursive if and only if $<M,w> \notin L_u$
- The combination is a TM for $\overline{L_u}$
- Impossible, so M_{nr} does not exist

Picture

Two more dots in the diagram
What was not proved

- \(L_r = \{ <M> : L(M) \text{ is recursive} \} \) is NOT \(L_h = \{ <M> : M \text{ halts on all inputs} \} \)
- It is normal for \(L = L(M) \) to be recursive, when some of the machines \(M \) for the language fail to halt on strings that are not in \(L \)
- It is another issue whether \(L_h \) is rec. enum. or recursive

Turing Machines

Decidable and recursively enumerable properties

Properties

- We need Rice’s theorem to make progress on this problem
- We look at properties of recursively enumerable languages
- Let \(\mathcal{S} \) be a set of rec. enum. languages with a common definable property

Examples

- For example:
 - \(S_1 = \{ L : L \text{ is recursive} \} \)
 - \(S_2 = \{ L : L \text{ is not recursive} \} \)
 - \(S_3 = \{ L : L = \emptyset \} = \{ \emptyset \} \)
 - \(S_4 = \{ L : L = (0+1)^* \} = \{(0+1)^* \} \)
 - \(S_5 = \{ L : L \text{ is finite} \} \)
 - \(S_6 = \{ L : L \text{ is infinite} \} \)
More examples

- \(S_7 = \{ L : L \subseteq 0^* \} \)
- \(S_8 = \{ L : L \cap 0^* \neq \emptyset \} \)
- \(S_9 = \{ L : L \cap 0^* = \emptyset \} \)
- \(S_{10} = \{ L : L \cap L_u \neq \emptyset \} \)
- \(S_{11} = \{ L : L \cap L_u = \emptyset \} \)
- \(S_{12} = \{ L : L \text{ has 26 elements} \} \)
- \(S_{13} = \{ L : L \text{ is regular} \} \)
- \(S_{14} = \{ L : L \text{ is a CFL} \} \)

Properties are sets

- We actually call \(S \) a property of rec. enum. languages, e.g. if
- \(S_{13} = \{ L : L \text{ is regular} \} \)
- we say \(S_{13} \) is the property that \(L \) be regular

Corresponding TM's

- For each property \(S \), we associate a language of Chapter 8-style TM encodings:
 - \(L_S = \{ <M> : L(M) \text{ is in } S \} \)
 = \{ <M> : L(M) \text{ has property } S \} \)
- We say that a property \(S \) (of rec. enum. languages) is decidable if \(L_S \) is recursive and undecidable otherwise:

Why \(L_S \)?

- It would be hopeless to try to apply an algorithm to an infinite entity like a typical language \(L \)
- instead we try to find an algorithm that can be applied to a finite entity such as the finite set of transitions of the TM for \(L \)
Trivial properties (all or nothing)

- The property S is *trivial* if and only if S is one of the following two sets:
 - $S = \emptyset$
 - $S = \text{the set of all rec. enum. languages}$
 $= \{ L \subseteq (0+1)^* : L \text{ is recognized by a TM} \}$

Rice’s theorem

- Rice’s Theorem
 The property S is decidable if and only if it is trivial
- We have been practicing the method of proof

Proof

- We want to prove
 $L_S = \{ <M> : L(M) \text{ has property } S \}$
 is not recursive.
- If $L_S = \{ <M> : L(M) \text{ has property } S \}$
 were recursive then
 $L_S = \{ <M> : L(M) \text{ doesn’t have prop. } S \}$
 would be recursive

Assume \emptyset does not have property S

- If \emptyset had property S, then we would work on proving L_S is not recursive
- Since the problems are the same, we will simply assume \emptyset does not have property S, and prove L_S cannot be recursive in this case
We are assuming S is not empty

- First, assume S is not empty
- Take L in S (and note that $L \neq \emptyset$)
- Since everything in S is rec. enum., we can take a TM M_L for L
- Suppose S is decidable and the halting TM M_S accepts L_S

Another M'

- Given $<M, w>$, build M' so that $L(M')$ has property S if and only if M accepts w
- Given $<M, w>$ and M_L, we can add some transitions to create M'

The new machine

- M' first runs M on w-- this may not halt
- IF M halts and ACCEPTS w, then M' runs M_L on x
- M' accepts x if M_L accepts x

The contradiction

- Thus
- $L(M') = L$ if $<M, w> \in L_u$
- $L(M') = \emptyset$ if $<M, w> \notin L_u$
- We convert M' to a Chap. 8 TM M'' and run M_S on $<M''>$
The halting monster machine

Since \emptyset does not have the property, we only accept $<M''>$ if $L(M') = L$, i.e. if and only if $<M,w> \in L_u$

We have an algorithm for L_u (which does not exist)

We have proved that if S is a non-trivial property, then it cannot be decidable

It is easy to see that if S is a trivial property, then it must be decidable

Conclusion

All the properties S_1 through S_{14} are non-trivial and therefore undecidable

Notice that these are not theorems about properties of TM's directly, they are properties of the languages the TM's accept

two example machines

Build 2 TM's, one that accepts all machine encodings and one that accepts nothing (very easy)

These TM's accept the languages $L_S = \{<M> : L(M) \text{ is rec. enum.}\}$

$= 1(0+1)^*+0$ and $L_S = \emptyset$
The halting problem for TM's is undecidable

- We go through the solution to problem 8.3 of the textbook, given at the end of the exercises
- \(L_h = \{<M> : M \text{ halts on all inputs} \} \) is not recursive
- We prove that if \(L_h \) is recursive then a non-trivial property would be recursive

We need an \(M' \)

- Given \(<M>\), construct \(M' \) so that \(L(M) = L(M') \) and \(M' \) ONLY halts on \(L(M) \)
- \(M' \) shifts its input one space to the right, putting “$” at the first position

What to do at the left-hand end

- Move back to the start of \(w \) and simulate \(M \) on \(w \)
- If \(M \) reaches “$”, it would have halted and failed on \(w \); for every \(q \) in \(M \) add a transition \(\delta(q, $) = (p_1, $, R) \), for a new state \(p_1 \)
What to do if M halts

- In M', add transition $\delta(q,X) = (p_1,X,R)$, whenever q is not final and $\delta(q,X)$ is undefined in M
- If M halts (and fails) in a state q with X at the read/write head, M' will move to p_1

send M' into an infinite loop

- To force M' to run for ever, add transitions $\delta(p_1,X) = (p_2,X,L)$ for all X
- Then add transitions $\delta(p_2,X) = (p_1,X,R)$ for all X
- Once we get into p_1 and p_2 we run for ever

M' has the correct properties

- Of course if M ran for ever, then M' runs for ever
- M' accepts w if and only if M accepts w and M' accepts w if and only if M' halts on w

A non-trivial property would be decidable

- Suppose L_h is recursive and M_h is the halting TM for L_h
- Construct an algorithm for $L_{S_4} = \{<M>: L(M) = (0+1)^* \}$ as follows:
Contradiction

- Given $<M>$, construct M' as before and create a Chapter 8 encoding $<M''>$ to feed to M_h
- If M_h accepts $<M''>$
- then M' halts on all inputs and accepts all inputs, which happens if and only if
 - $L(M) = (0+1)^*$, since $L(M) = L(M')$

apply Rice's theorem

- All together we get an algorithm for the set of TM encodings, for which the property is the non-trivial property $L = (0+1)^*$
- Such an algorithm does not exist by Rice’s theorem

Similar results

- Suppose we take the problem “Does M halt on a fixed w?”
- Consider the property $S = \{ L : w \in L \}$
- We know that S is undecidable because it is non-trivial, i.e. $\{<M> : w \in L(M) \}$ is not recursive

halting on a fixed string

- Suppose we had an algorithm A that answers the question “Does M halt on w?”
 i.e. Suppose A accepts the language $\{<M> : M \text{ halts on } w \}$
- Then take $<M>$, construct M' from M as before and create a Chapter 8 encoding M'' of M' to feed to A
getting to the language question

- \(A \) accepts \(<M''>\) if and only if \(w \in L(M) = L(M') = L(M'') \) since \(M'' \) halts on \(w \) if and only if \(M'' \) accepts \(w \)
- Thus we get an algorithm for \{\(<M> : w \in L(M)\}\) which is impossible

another result related to emptiness

- Similarly, if we had an algorithm for “Does \(M \) halt on some input?”
- we would deduce an algorithm for \(L_{ne} = \{<M> : L(M) \text{ is not empty}\} \) which does not exist

halting on some string

- Suppose we had an algorithm \(B \) that answers the question “Does \(M \) halt on some \(w \)?”
 i.e. Suppose \(B \) accepts the language \{\(<M> : M \text{ halts on some input}\}\)
- Then take any \(<M>\), construct \(M' \) from \(M \) as before and create a Chapter 8 encoding \(M'' \) of \(M' \) to feed to \(B \)

Conversion to a known non-trivial problem

- \(B \) accepts \(<M''>\) if and only if \(L(M) = L(M') = L(M'') \) is not empty, since \(M'' \) halts on a string if and only if \(M'' \) accepts that string
- Thus we get an algorithm for \{\(<M> : L(M) \text{ is not empty}\}\) which is impossible
Rice's theorem for recursive index sets

- It is more complicated to find out whether L_S is or is not rec. enum.
- Rice has a theorem: L_S is rec. enum. if and only if S satisfies 3 conditions: